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Abstract

We present SParse, our Graph-Based Pars-
ing model submitted for the CoNLL 2018
Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies (Ze-
man et al., 2018). Our model ex-
tends the state-of-the-art biaffine parser
(Dozat and Manning, 2016) with a struc-
tural meta-learning module, SMeta, that
combines local and global label predic-
tions. Our parser has been trained and
run on Universal Dependencies datasets
(Nivre et al., 2016, 2018) and has 87.48%
LAS, 78.63% MLAS, 78.69% BLEX and
81.76% CLAS (Nivre and Fang, 2017)
score on the Italian-ISDT dataset and has
72.78% LAS, 59.10% MLAS, 61.38%
BLEX and 61.72% CLAS score on the
Japanese-GSD dataset in our official sub-
mission. All other corpora are evaluated
after the submission deadline, for whom
we present our unofficial test results.

1 Introduction

End-to-end learning with neural networks has
proven to be effective in parsing natural language
(Kiperwasser and Goldberg, 2016). Graph-based
dependency parsers (McDonald et al., 2005) repre-
sent dependency scores between words as a matrix
representing a weighted fully connected graph,
from which a spanning tree algorithm extracts the
best parse tree. This setting is very compatible
with neural network models that are good at pro-
ducing matrices of continuous numbers.

Compared to transition-based parsing (Kırnap
et al., 2017; Kiperwasser and Goldberg, 2016),
which was the basis of our university’s last year
entry, graph-based parsers have the disadvantage
of producing n2 entries for parsing an n-word

sentence. Furthermore, algorithms used to parse
these entries can be even more complex than
O(n2). However, graph-based parsers allow easy-
to-parallelize static architectures rather than se-
quential decision mechanisms and are able to
parse non-projective sentences. Non-projective
graph-based parsing is the core of last year’s win-
ning entry (Dozat et al., 2017).

Neural graph-based parsers can be divided into
two components: encoder and decoder. The en-
coder is responsible for representing the sentence
as a sequence of continuous feature vectors. The
decoder receives this sequence and produces the
parse tree, by first creating a graph representation
and then extracting the maximum spanning tree
(MST).

We use a bidirectional RNN (bi-RNN) to pro-
duce a contextual vector for each word in a sen-
tence. Use of bi-RNNs is the defacto standard
in dependency parsing, as it allows representing
each word conditioned on the whole sentence. Our
main contribution in the encoder part is to the
word embeddings feeding the bi-RNN. We use
word vectors coming from a language model pre-
trained on very large language corpora, similar to
Kırnap et al. (2017). We extend word embeddings
with learnable embeddings for UPOS tags, XPOS
tags and FEATs where applicable.

Our decoder can be viewed as a more struc-
tured version of the state-of-the-art biaffine de-
coder of Dozat et al. (2017), where we attempt
to condition the label-seeking units to a parse-
tree instead of simple local predictions. We pro-
pose a meta-learning module that allows struc-
tured and unstructured predictions to be combined
as a weighted sum. This additional computational
complexity is paid off by our simple word-level
model in the encoder part. We call it that we call
structured meta-biaffine decoder or shortly SMeta.

We implemented our model using Knet deep
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learning framework (Yuret, 2016) in Julia lan-
guage (Bezanson et al., 2017). Our code will be
made available publicly.

We could only get official results for two cor-
pora due to an unexpected software bug. There-
fore, we present unofficial results obtained after
the submission deadline as well.

2 Related work

Kiperwasser and Goldberg (2016) use trainable
BiLSTMs to represent features of each word, in-
stead of defining the features manually. They for-
mulated the structured prediction using hinge loss
based on the gold parse tree and parsed scores.

Dozat and Manning (2016) propose deep bi-
affine attention combined with the parsing model
of Kiperwasser and Goldberg (2016), which sim-
plifies the architecture by allowing implementa-
tion with a single layer instead of two linear layers.

Stanford’s Graph-based Neural Dependency
Parser (Dozat et al., 2017) at the CoNLL 2017
Shared Task (Zeman et al., 2017) is implemented
with four ReLU layers, two layers for finding
heads and dependents of each word, and two lay-
ers for finding the dependency relations for each
head-dependent pair. The outputs are then fed into
two biaffine layers, one for determining the head
of the word, and another for determining the de-
pendency relation of head-dependent pair.

We propose a dependency parsing model based
on the graph-based parser by Dozat and Manning
(2016). We are adding a meta-biaffine decoder
layer, similar to the tagging model proposed by
Bohnet et al. (2018), for computing the arc labels
based on the full tree constructed from the unla-
beled arc scores instead of computing them inde-
pendently.

Our parsing model uses pretrained word em-
beddings from Kırnap et al. (2017). Our parser
uses the same language model with Kırnap et al.
(2017), in which graph based-parsing algorithms
are applied. However, a transition-based parsing
model is given in Kırnap et al. (2017). There-
fore, some adaptations are made on the features
proposed by Kırnap et al. (2017) in order to use
them in a graph based parsing model. We did not
use contextual features coming from the language
model or features related to words in stack and
buffer. Instead, we trained a three-layer BiLSTM
from scratch to encode contextual features.

3 Model

In this section, we depict important aspects of our
architecture which is shown in Figure 1. We dis-
cuss encoder and decoder separately and then give
the model hyper-parameters used.

3.1 Encoder

Word Model
We used four main features to represent each word
in a sentence: a pre-trained word embedding,
UPOS tag embedding, XPOS tag embedding and
FEAT embedding.

Pre-trained words come from the language
model in Kırnap et al. (2017). This model rep-
resents each word using a character-level LSTM,
which is a suitable setting for morphologically rich
languages, as shown in Dozat et al. (2017). We use
the word vectors without further training.

UPOS and XPOS tag embeddings are repre-
sented by vectors randomly initialized using unit
Gaussian distribution.

Morphological features, also called FEATs, are
different in the sense that there are zero or more
FEATs for each word. We follow a simple strat-
egy: we represent each FEAT using a randomly
initialized vector and add all FEAT embeddings
for each word. We simply used zero for word vec-
tors without any morphological features.

For practical reasons, we also needed to repre-
sent ROOT word of a sentence. We do so by ran-
domly initializing a word embedding and setting
all other embeddings to zero.

At test time, we used tags and morphological
features produced by MorphNet (Dayanık et al.,
2018). For languages where this model is not
available, we directly used UDPipe results (Straka
et al., 2016).

Sentence Model
We used a three-layer bidirectional LSTM to rep-
resent a sentence. We used the hidden size of 200
for both forward and backward LSTMs. Dropout
(Srivastava et al., 2014) is performed at the input
of each LSTM layer, including the first layer. Our
LSTM simply use nth hidden state for nth word,
different from the language model in Kırnap et al.
(2017).

The language model discussed in the previous
section also provides context embeddings. We
performed experiments for combining our own
contextual representation with this representation
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Figure 1: Overall model architecture.

using various concatenation and addition strate-
gies, but we observed poorer performance in terms
of generalization. Also, using the language model
directly as a feature extractor led to unsatisfactory
performance, different from last years’ transition-
based entry of our institution (Kırnap et al., 2017).

3.2 Decoder
Structured Meta-Biaffine Decoder (SMeta)
Deep biaffine decoder (Dozat and Manning, 2016)
is the core of last year’s winning entry (Dozat
et al., 2017), so we used this module as our start-
ing point. Biaffine architecture is computationally
efficient and can be used with easy-to-train soft-
max objective, different from harder-to-optimize
hinge loss objectives as in Kiperwasser and Gold-
berg (2016).

Similar to (Dozat et al., 2017), we produce four
different hidden vectors, two for arcs and two for
relations (or labels). Formally

(1)h(arc−dep)
i = MLP(arc−dep)(hi)

(2)h(arc−head)
i = MLP(arc−head)(hi)

(3)h(rel−dep)
i = MLP(rel−dep)(hi)

(4)h(rel−head)
i = MLP(rel−head)(hi)

where hi represents ith hidden state of the bi-
LSTM embedding. The vectors correspond to
arcs seeking their dependents, arcs seeking their
heads, and corresponding relations. MLP can be
any neural network module. Here, we simply use
dense layers followed by ReLU activations, as in
(Dozat et al., 2017).

Now, we perform the biaffine transformation to
compute the score matrix representing the graph,

(5)s(arc)i = H(arc−head)W (arc)hi

+H(arc−head)bT(arc)

where H(arc−head) represents matrix of
h(arc−head)
i vectors, W (arc) and b(arc) are

learnable weights.
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Up to this point, our decoder is identical to the
one in (Dozat et al., 2017). The difference is in the
computation of predicted arcs. We compute two
different predictions:

(6)y
′l(arc)
i = argmax

j
s
(arc)
ij

(7)p = parse(S(arc))

(8)y
′s(arc)
i = pi

Here S(arc) is the matrix of arc scores and
parse is a spanning tree algorithm that com-
putes the indices of the predicted arcs. Now, we
compute label scores using these two predictions.
First, we compute coefficient vector k using the
bi-RNN encodings,

(9)h′ =
∑n

i=1 hi

n

(10)k = W (meta)h′ + b(meta)

where n is the number of words in the sentence,
W and b are learned parameters. Averaging over
time is inspired by the global average pooling op-
erator in the vision literature (Lin et al., 2013),
transforming temporal representation to a global
one.

We now compute the weighted sum of label pre-
dictions using coefficient vector k.

sl(rel)i = hT(rel−head)
y
′l(arc)
i

U(rel)h(rel−dep)
i

+W (rel)cat(h(rel−dep)
i ,h(rel−head)

y
′l(arc)
i

)

+ b(rel)

(11)

ss(rel)i = hT(rel−head)
y
′s(arc)
i

U(rel)h(rel−dep)
i

+W (rel)cat(h(rel−dep)
i ,h(rel−head)

y
′s(arc)
i

)

+ b(rel)

(12)

(13)s(rel)i = k1sl(rel)i + k2ss(rel)i

(14)y
′(rel)
i = argmax

j
s
(rel)
ij

where U(rel), W (rel) and b(rel) are learned param-
eters.

Our model is trained using sum of softmax
losses similar to (Dozat et al., 2017).

Parsing algorithms

In our parsing model, Chu-Liu-Edmonds algo-
rithm (Chu, 1965; Edmonds, 1967) and Eisner
(1996)’s algorithm are used interchangeably, dur-
ing both the training of parser models and parsing
phase of test datasets. On the languages whose
training dataset consists of more than 250,000
words, Chu-Liu-Edmonds algorithm is used for
parsing since it has a complexity of O(n2), where
n is the number of words.

This approach allows us to train our models on
relatively larger datasets in less amount of time,
compared to the Eisner’s algorithm whose time
complexity is O(n3).

On training datasets having at most 250,000
words, Eisner’s algorithm is used during both
training and parsing phase. Eisners algorithm
produces only projective trees and Chu-Liu-
Edmonds algorithm produces both projective and
non-projective trees. This means the number
of possible trees Eisner’s algorithm can gener-
ate is fewer compared to Chu-Liu-Edmonds al-
gorithm, so even though Eisner’s algorithm has
higher time complexity than Chu-Liu-Edmonds
algorithm, parsing models are trained faster when
Eisner’s algorithm is used.

3.3 Hyperparameters

We used a 150-dimensional tag and feature em-
beddings and 350-dimensional word embeddings
for the word model. Bi-RNN sentence model has
the hidden size of 200 for both forward and back-
ward RNNs, producing 400-dimensional feature
context vectors. We used the hidden size of 400
for arc MLPs and 100 for relation MLPs.

4 Training

We used Adam optimizer (Kingma and Ba, 2014)
with its standard parameters. Based on dataset
size, we trained the model for 25 to 100 epochs
and selected the model based on its validation la-
beled attachment accuracy.

We sampled sentences with identical number of
words in a minibatch. In training corpora that are
sufficiently large, we sampled minibatches so that
approximately 500 tokens exist in a single mini-
batch. We reduced this size to 250 for relatively
small corpora. For very small corpora, we simply
sample a constant number of sentences as a mini-
batch.
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Dataset LAS MLAS BLEX Dataset LAS MLAS BLEX
ar padt 67.57% 56.22% 58.84% hu szeged 73.84% 56.03% 63.31%
bg btb 85.85% 76.28% 74.73% id gsd 76.88% 65.34% 64.89%
ca ancora 87.60% 79.05% 79.49% it isdt 87.51% 78.81% 78.75%
cs cac 86.05% 73.54% 80.14% it postwita 69.48% 56.20% 56.73%
cs fictree 84.21% 71% 76.86% ja modern 22.91% 8.47% 9.73%
cs pdt 86.07% 76.54% 81.39% ko gsd 75.52% 69.15% 63.18%
cs pud 81.80% 68.19% 75.10% ko kaist 81.64% 74.46% 68.86%
cu proiel 67.80% 56.51% 60.93% la ittb 77.66% 68.09% 73.91%
da ddt 77.90% 68.14% 68.64% la perseus 47.45% 29.99% 32.47%
de gsd 70.65% 34.50% 60.40% la proiel 64.29% 51.80% 58.05%
el gdt 83.65% 66.76% 70.14% lv lvtb 71.52% 57.26% 60.20%
en ewt 77.87% 68.57% 70.83% nl alpino 78.28% 63.38% 66.08%
en gum 75.51% 63.95% 63.52% nl lassysmall 78.10% 65.73% 66.77%
en lines 73.97% 65.15% 66.06% pl lfg 88.21% 75.40% 79.25%
en pud 81.31% 69.85% 73.18% pl sz 83.01% 65.10% 73.34%
es ancora 86.94% 79.14% 79.58% pt bosque 84.32% 70.27% 75.29%
et edt 77.45% 69.58% 66.05% ro rrt 82.74% 74.19% 74.60%
eu bdt 73.84% 60.49% 66.38% ru syntagrus 88.22% 80.16% 81.05%
fa seraji 81.74% 75.15% 71.93% ru taiga 40.01% 23.92% 25.44%
fi ftb 76.62% 66.28% 62.88% sk snk 77.81% 56.11% 62.23%
fi tdt 79.30% 71.07% 64.37% sl ssj 78.46% 64.93% 70.50%
fr gsd 82.32% 72.91% 74.97% sl sst 43.63% 31.14% 35.41%
fr sequoia 82.60% 73.07% 76.07% sv lines 74.87% 59.32% 67.25%
fr spoken 64.62% 53.15% 54.18% sv pud 71.66% 43.65% 55.60%
ga idt 35.84% 13.07% 16.77% sv talbanken 79.06% 70.55% 71.16%
gl ctg 80.31% 67.77% 70.72% tr imst 60.19% 49.57% 51.02%
got proiel 62.40% 49.19% 55.15% ug udt 58.48% 38.18% 45.94%
grc perseus 61.82% 34.17% 41.16% uk iu 75.93% 57.81% 64.84%
grc proiel 68.03% 49.40% 55.62% ur udtb 78.41% 51.28% 64.94%
he htb 60.09% 46.32% 49.19% vi vtb 41.27% 34.73% 36.95%
hi hdtb 87.66% 70% 80.47% zh gsd 59.51% 49.33% 54.33%
hr set 80.86% 60.65% 72.36%

Table 1: Our unofficial F1 scores. Tests are done in TIRA (Potthast et al., 2014) machine allocated for
the task.
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We saved best models with corresponding con-
figurations, scores and optimization states during
training for recovery. We then re-create the model
files for the best models of each corpus by remov-
ing the optimization states.

MorphNet is the morphological analysis and
disambiguation tool proposed by Dayanık et al.
(2018), which we used while training our pars-
ing model. During training of the parser, CoNLL-
U formatted training dataset files, which are pro-
duced by UDPipe (Straka et al., 2016), are given
to MorphNet as input. Then, MorphNet applies
its own morphological analysis and disambigua-
tion, and new CoNLL-U formatted files produced
by MorphNet are used by our parser.

Even though we used lemmatized and tagged
outputs generated by MorphNet while training our
parser, we run our parser on outputs generated by
UDPipe, due to time constrains during parsing.

5 Results and Discussion

Short after the testing period ended, our parser ob-
tained results on 64 treebank test sets out of 82,
which are shown in Table 1. According to the re-
sults announced including the unofficial runs, we
had an average LAS score of 57% on the 64 test
sets on which our model is run and ranked 24th
among the best runs of 27 teams. The MLAS score
of our model is 46.40% and our model is ranked
22nd out of the submissions of 27 models. And,
the BLEX score of our model is 49.17% and our
model is ranked 21st out of the best BLEX results
of all 27 models including unofficial runs.1

According to the results, our model performs
better at datasets with comparably larger training
data. For instance, our model has around 90%
LAS score on Catalan, Indian, Italian, Polish and
Russian languages which have higher number of
tokens in training data. Furthermore, our model
performs relatively well in some low-resource lan-
guages like Turkish and Hungarian. However, on
the datasets with very small or no training data,
such as Japanese Modern, Russian Taiga and Irish
IDT, we get lower scores. Hence, our model bene-
fits from large amount of data during training pro-
cess, but prediction with low resources remains as
an issue for our model.

1Best results of each team including unofficial runs are an-
nounced in http://universaldependencies.org/conll18/
results-best-all.html Our results and rankings announced in the
paper are taken from the CoNLL 2018 best results webpage in September 2,
2018 and may change with the inclusion of new results of participated teams
later.

6 Contributions

In this work, we proposed a new decoding mecha-
nism, called SMeta, for graph-based neural depen-
dency parsing. This architecture attempts to com-
bine structured and unstructured prediction meth-
ods using meta-learning. We coupled this archi-
tecture with custom training methods and algo-
rithms to evaluate its performance.
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