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Abstract

This paper describes our system (SLI-
Interactions) for the CoNLL 2018 shared
task: Multilingual Parsing from Raw Text
to Universal Dependencies. Our system
performs three main tasks: word segmen-
tation (only for few treebanks), POS tag-
ging and parsing. While segmentation is
learned separately, we use neural stacking
for joint learning of POS tagging and pars-
ing tasks. For all the tasks, we employ
simple neural network architectures that
rely on long short-term memory (LSTM)
networks for learning task-dependent fea-
tures. At the basis of our parser, we
use an arc-standard algorithm with Swap
action for general non-projective pars-
ing. Additionally, we use neural stack-
ing as a knowledge transfer mechanism for
cross-domain parsing of low resource do-
mains. Our system shows substantial gains
against the UDPipe baseline, with an aver-
age improvement of 4.18% in LAS across
all languages. Overall, we are placed at
the 12" position on the official test sets.

1

Our system for the CoNLL 2018 shared task (Ze-
man et al., 2018) contains the following modules:
word segmentation, part-of-speech (POS) tagging
and dependency parsing. In some cases, we also
use a transliteration module to transcribe data into
Roman form for efficient processing.

Introduction

e Segmentation We mainly use this module to
identify word boundaries in certain languages
such as Chinese where space is not used as a
boundary marker.
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e POS tagging For all the languages, we only
focus on universal POS tags while ignoring
language specific POS tags and morphologi-
cal features.

e Dependency parsing We use an arc-standard
transition system (Nivre, 2003) with an ad-
ditional Swap action for unrestricted parsing
(Nivre, 2009).

We rely on UDPipe 1.2 (Straka and Strakova,
2017) for tokenization for almost all the treebanks
except for Chinese and Japanese where we ob-
served that the UDPipe segmentation had an ad-
verse effect on parsing performance as opposed to
gold segmentation on the development sets. More-
over, we also observed that training a separate
POS tagger was also beneficial as the UDPipe POS
tagger had slightly lower performance in some
languages. However, other than tokenization, we
ignored other morphological features predicted by
UDPipe and didn’t explore their effect on parsing.

Additionally, we use knowledge transfer ap-
proaches to enhance the performance of parsers
trained on smaller treebanks. We leverage re-
lated treebanks (other treebanks of the same lan-
guage) using neural stacking for learning better
cross-domain parsers. We also trained a generic
character-based parsing system for languages that
have neither in-domain nor cross-domain training
data.

Upon the official evaluation on 82 test sets, our
system (SLT-Interactions) obtained the 12th posi-
tion in the parsing task and achieved an average
improvement of 4.18% in LAS over the UDPipe
baseline.
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2 System Architecture

2.1 Text Processing

Given the nature of the shared task, sentence and
word segmentation are the two major prerequi-
site tasks needed for parsing the evaluation data.
For most of the languages, we rely on UDPipe
for both sentence segmentation and word segmen-
tation. However, in few languages such as Chi-
nese and Japanese which do not use white space
as explicit word boundary marker, we build our
own word segmentation models. Our segmenta-
tion models use a simple neural network classifier
that relies on character bidirectional LSTM (Bi-
LSTM) representations of a focus character to pro-
duce a probabilistic distribution over two bound-
ary markers: Begining of a word and Inside of a
word. The segmentation network is shown in Fig-
ure 1. The models are trained on the respective
training data sets by merging the word forms in
each sentence into a sequence of characters. At
inference, the segmentation model relies on sen-
tence segmentation from UDPipe.
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Figure 1: Word segmentation model based on
character Bi-LSTM networks.

ja_gsd zh_gsd
Precision Recall F1-score Precision Recall F1-score
B 97.43 97.26 97.35 96.50 96.48 96.49
1 96.35 96.58 96.46 93.94 93.96 93.95
avg 96.97 96.97 96.97 95.96 95.96 95.96

Table 1: Word segmentation results on Chinese
and Japanese development sets. B and I mark the
Begining and Inside of a word.

Other than word segmentation, we used Roman al-
phabet for Hindi. The goal is to normalize the spell
variations in Hindi texts. We used an open source
converter' that uses a deterministic mapping be-
tween Devanagari to Roman alphabet.

"https://github.com/ltrc/indic-wx-converter
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2.2 Dependency Parsing
2.2.1 Parsing Algorithm

We employ an arc-standard transition system
(Nivre, 2003) as our parsing algorithm. A typi-
cal transition-based parsing system uses the shift-
reduce decoding algorithm to map a parse tree
onto a sequence of transitions. Throughout the de-
coding process a stack and a queue data structures
are maintained. The queue stores the sequence of
raw input, while the stack stores the partially pro-
cessed input which may be linked with the rest of
the words in the queue. The parse tree is build
by consuming the words in the queue from left to
right by applying a set of transition actions. There
are three kinds of transition actions that are per-
formed in the parsing process: shift, Left-Arc,
Right-Arc. Additionally, we use a swap action
which reorders top node in the stack and the top
node in the queue for parsing non-projective arcs
(Nivre, 2009).

At training time, the transition actions are inferred
from the gold parse trees and the mapping between
the parser state and the transition action is learned
using a simple LSTM-based neural networking ar-
chitecture presented in Goldberg (2016). While
training, we use the oracle presented in (Nivre
et al., 2009) to restrict the number of swap ac-
tions needed to parse non-projective arcs. Given
that Bi-LSTMs capture global sentential context
at any given time step, we use minimal set of fea-
tures in our parsing model. At each parser state,
we restrict our features to just two top nodes in
the stack. Since swap action distorts the linear or-
der of word sequence, it renders the LSTM repre-
sentations irrelevant in case of non-projective sen-
tences. To capture this distortion, we also use the
top most word in the queue as an additional fea-
ture.

2.3 Joint POS tagging and Parsing

Inspired by stack-propagation model of Zhang and
Weiss (2016), we jointly model POS tagging and
parsing using a stack of tagger and parser net-
works. The parameters of the tagger network are
shared and act as a regularization on the parsing
model. The overall model is trained by minimiz-
ing a joint negative log-likelihood loss for both
tasks. Unlike Zhang and Weiss (2016), we com-
pute the gradients of the log-loss function simul-
taneously for each training instance. While the
parser network is updated given the parsing loss



only, the tagger network is updated with respect to
both tagging and parsing losses. Both tagger and
parser networks comprise of an input layer, a fea-
ture layer, and an output layer as shown in Figure
2. Following Zhang and Weiss (2016), we refer to
this model as stack-prop.

Tagger network: The input layer of the tagger
encodes each input word in a sentence by concate-
nating a pre-trained word embedding with its char-
acter embedding given by a character Bi-LSTM.
In the feature layer, the concatenated word and
character representations are passed through two
stacked Bi-LSTMs to generate a sequence of hid-
den representations which encode the contextual
information spread across the sentence. The first
Bi-LSTM is shared with the parser network while
the other is specific to the tagger. Finally, output
layer uses the feed-forward neural network with
a softmax function for a probability distribution
over the Universal POS tags. We only use the for-
ward and backward hidden representations of the
focus word for classification.
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Figure 2: POS tagging and parsing network
based on stack-propagation model proposed in
(Zhang and Weiss, 2016).

Parser Network: Similar to the tagger network,
the input layer encodes the input sentence using
word and character embeddings which are then
passed to the shared Bi-LSTM. The hidden rep-
resentations from the shared Bi-LSTM are then
concatenated with the dense representations from
the feed-forward network of the tagger and passed
through the Bi-LSTM specific to the parser. This
ensures that the tagging network is penalized for
the parsing error caused by error propagation by
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back-propagating the gradients to the shared tag-
ger parameters (Zhang and Weiss, 2016). Finally,
we use a non-linear feed-forward network to pre-
dict the labeled transitions for the parser config-
urations. From each parser configuration, we ex-
tract the top node in the stack and the first node
in the buffer and use their hidden representations
from the parser specific Bi-LSTM for classifica-
tion.

2.4 Cross-domain Transfer

Among 57 languages, 17 languages presented in
the task have multiple treebanks from different
domains. From among the 17 languages, almost
5 languages have at-least one treebank which is
smaller in size than the rest containing no more
than 2000 sentences for training. To boost the
performance of parsers trained on these smaller
treebanks (target), we leverage large cross-domain
treebanks (source) in the same language using
neural stacking as a knowledge transfer mecha-
nism.
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Figure 3: Knowledge transfer from resource-
rich domains to resource-poor domains using
neural stacking (Zhang and Weiss, 2016; Chen
etal., 2016).

As we discussed above, we adapted feature-level
neural stacking (Zhang and Weiss, 2016; Chen
et al.,, 2016) for joint learning of POS tagging
and parsing. Similarly, we also adapt this stack-
ing approach for cross-domain knowledge trans-



fer by incorporating the syntactic knowledge from
resource-rich domain into resource-poor domain.
Recently, Wang et al. (2017); Bhat et al. (2018)
showed significant improvements in parsing social
media texts by injecting syntactic knowledge from
large cross-domain treebanks using neural stack-
ing.

As shown in Figure 3, we transfer both POS
tagging and parsing information from the source
model. For tagging, we augment the input layer of
the target tagger with the hidden layer of multi-
layered perceptron (MLP) of the source tagger.
For transferring parsing knowledge, hidden repre-
sentations from the parser specific Bi-LSTM of the
source parser are augmented with the input layer
of the target parser which already includes the hid-
den layer of the target tagger, word and character
embeddings. In addition, we also add the MLP
layer of the source parser to the MLP layer of the
target parser. The MLP layers of the source parser
are generated using raw features from target parser
configurations. Apart from the addition of these
learned representations from the source model, the
overall target model remains similar to the base
model shown in Figure 2. The tagging and pars-
ing losses are back-propagated by traversing back
the forward paths to all trainable parameters in the
entire network for training and the whole network
is used collectively for inference.

3 Experiments

We train three kinds of parsing models based on
the availability of training data: stack-prop mod-
els trained for languages having large treebanks,
i) stacking models for languages having smaller
in-domain treebanks and large out-domain tree-
banks, and iii) backoff character models for those
languages which have neither in-domain nor out-
domain training data. We will first discuss the
details about the experimental setup for all these
models and subsequently, we will discuss the re-
sults.

3.1 Hyperparameters

Word Representations For the stack-prop and
stacking models, we include lexical features in
the input layer of the neural networks using 64-
dimension pre-trained word embeddings concate-
nated with 64-dimension character-based embed-
dings obtained using a Bi-LSTM over the charac-
ters of a word. For each language, we include pre-
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trained embeddings only for 100K most frequent
words in the raw corpora.

The distributed word representations for each lan-
guage are learned separately from their mono-
lingual corpora collected from Web to Corpus
(W2C) (Majlis, 2011)> and latest wiki dumps?.
The word representations are learned using Skip-
gram model with negative sampling which is im-
plemented in word2vec toolkit (Mikolov et al.,
2013). For our backoff character model we
only use 64-dimension character Bi-LSTM em-
beddings in the input layer of the network.

Hidden dimensions The word-level Bi-LSTMs
have 128 cells while the character-level Bi-LSTMs
have 64 cells. The POS tagger specific MLP has
64 hidden nodes while the parser MLP has 128
hidden nodes. We use hyperbolic tangent as an
activation function in all tasks.

Learning We use momentum SGD for learning
with a minibatch size of 1. The initial learning rate
is set to 0.1 with a momentum of 0.9. The LSTM
weights are initialized with random orthonormal
matrices as described in (Saxe et al., 2013). We
set the dropout rate to 30% for all the hidden states
in the network. All the models are trained for up
to 100 epochs, with early stopping based on the
development set.

All of our neural network models are implemented
in DyNet (Neubig et al., 2017).

4 Results

In Table 4, we present the results of our parsing
models on all the official test sets, while in Ta-
ble 5, we report the average results across evalu-
ation sets. In both tables, we also provide com-
parison of results on all the evaluation matrices
with the UDPipe baseline models. For 74 out of 82
treebanks, we have obtained an average improve-
ment of 5.8% in LAS over the UDPipe baseline
models. Although, we ranked 12! in the over-
all shared task, our rankings are particularly better
for all those treebanks which were parsed using
the stacking models or parsed after segmentation
by our own segmentation models.

2As pointed out by one of the reviewers, W2C was not
listed on the list of allowed resources. Using this data for
training word embeddings might have a significant impact
for resource-poor languages. Our results, therefore, might
not be directly comparable with other participating teams and
should be taken with a grain of salt!

‘https://dumps.wikimedia.org
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Our parsing system took around 1 hour 30 minutes
to parse all the official test sets on TIRA virtual
machine.

Impact of Word Segmentation To evaluate the
impact of our segmentation models, we conducted
two parsing experiments; one using the segmen-
tation from the UDPipe models, and the other us-
ing the segmentation from our own segmentation
models. We compared the performance of both
segmentations on Japanese and Chinese develop-
ment sets. The results are shown in Table 2. As
shown in the Table, we achieved an average im-
provement of 3% in LAS over the UDPipe base-
line. By using our segmentation models, we have
achieved better ranking for these two languages
than our average ranking in the official evaluation.

UDPipe Our model
UPOS ULAS LAS UPOS ULAS LAS
ja_gsd 89.14 7873 7747 90.92 8257 81.30
zh.gsd 8430 6536 61.96 86.51 68.51 64.89

Table 2: Impact of our word segmentation mod-
els on Chinese and Japanese development sets.

Impact of Domain Adaptation We also con-
ducted experiments to evaluate the impact of neu-
ral stacking for knowledge transfer from resource-
rich domains to resource-poor domains. In all the
cases of neural stacking, we used the base mod-
els trained on those domains that have larger tree-
banks. We show the comparison of performance
of stacking models with the base models trained
on just the in-domain smaller treebanks. Results
on development sets of multiple domains of En-
glish and French are shown in Table 3. For En-
glish domains, there is an improvement of 1% to
2% using eng_ewt as source domain for knowl-
edge transfer, while for French improvements are
quite high (2% to 5%) using £ r _gsd as source do-
main. Similar to the impact of word segmentation,
our ranking on treebanks that use neural stacking
is better than our average.

Base model Stacking model
UPOS ULAS LAS UPOS ULAS LAS
en_gum 96.29 86.96 83.53 96.68  88.51 85.47
en_lines 96.71 8395 80.16 97.13 8521 81.70
frsequoia 9827 9042 87.72 98.75 92.18 89.79
frspoken 9591 8240 74.96 9725 86.01 79.82

Table 3: Impact of neural stacking on multiple
domains of English and French.
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5 Conclusion

In this paper, we have described our parsing mod-
els that we have submitted to CoNLL-2018 pars-
ing shared task on Universal Dependencies. We
have developed three types of models depending
on the number of training samples. All of our
models learn POS tag and parse tree information
jointly using stack-propagation. For smaller tree-
banks, we have used neural stacking for knowl-
edge transfer from large cross-domain treebanks.
Moreover, we also developed our own segmenta-
tion models for Japanese and Chinese for improv-
ing the parsing results of these languages. We have
significantly improved the baseline results from
UDPipe for almost all the official test sets. Finally,
we have achieved 12" rank in the shared task for
average LAS.
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65.56
79.27
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76.10
66.16
62.16
57.75
67.57
57.86
87.15
78.61
23.64
66.76
21.79
74.37
86.26
66.81
72.32
22.71
24.21
23.92
61.40

MLAS BLEX
64.48  66.60
55.01  57.60
7530  73.78

0.37 2.10
2.09 4.41
76.74  717.27
70.89  77.65
69.26  74.96
7432 79.39
66.53  73.79
5396  58.39
6541  66.04
34.09  60.56
6533  68.67
68.70  71.02
62.66  62.14
64.03  65.42
67.59 71.14
76.01  76.43
67.12  63.85
57.65  63.50
7220 6943
6522  61.76
73.16  65.46
68.58  62.19
0.36 5.56
72.16  74.22
7134 7441
53.46  54.67
70.70 7445
37.66  42.06
62.11  65.29
49.13  51.60
48.57  55.02
31.05 38.74
49.51  55.85
44.09  46.51
69.09  79.93
58.72  70.26
3.55 11.72
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58.35  60.17
8.10 9.49
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5.47 11.86
54.10  50.50
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97.08
94.03
97.64
94.88
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95.66
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96.91
95.72
97.15
95.02
86.74
96.16
59.61
96.12
97.83
97.11
76.67
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96.92
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82.60
97.48
97.88
76.60
95.14
43.41
93.79
97.93
95.43
90.29
53.36
40.98
42.08
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ULAS
86.05
75.38
91.84
36.06
24.89
91.77
91.37
91.52
90.74
88.63
74.66
83.97
81.61
89.16
84.04
85.47
82.53
87.36
90.90
84.89
83.08
88.42
86.90
65.44
86.30
57.64
87.56
89.66
77.61
67.47
75.84
82.93
77.50
70.33
71.11
76.27
65.68
94.22
89.59
54.86
79.93
33.17
83.98
91.22
77.21
80.60
34.11
21.92
25.80
85.21

LAS
83.07
71.52
88.64
14.15
8.29
89.42
89.14
88.13
88.44
83.76
68.81
81.09
77.23
86.67
81.52
82.42
78.38
84.64
88.68
81.85
79.57
84.94
83.64
54.12
83.63
44.51
84.74
88.11
73.04
52.97
66.54
80.46
72.54
63.38
65.00
71.64
62.13
91.08
84.83
46.42
74.80
11.61
77.66
89.14
72.54
78.717
27.01
7.10
9.39
81.82

MLAS
68.66
58.00
78.63

0.17
0.86
80.79
74.27
72.82
71.07
68.39
54.65
69.45
38.50
68.10
71.37
67.95
68.41
71.41
80.77
71.18
63.57
77.32
70.66
48.74
72.84
0.52
75.31
77.90
62.46
35.06
36.66
67.90
53.42
47.31
39.96
51.57
47.57
72.79
61.70
7.67
58.08
1.13
65.76
79.79
57.89
62.39
11.08
0.95
0.55
76.51

BLEX
72.89
63.20
78.00

3.66
3.76
82.21
83.37
81.25
84.14
77.33
61.15
71.81
67.89
74.05
75.21
70.41
71.25
76.89
81.93
69.65
72.15
75.39
68.89
50.14
67.63
11.30
78.44
82.62
62.14
44.91
45.17
70.93
58.05
55.86
43.70
59.41
51.89
63.66
76.31
20.17
64.77
5.36
65.99
81.00
59.96
60.62
12.45
2.65
4.02
68.66

Table 4: Accuracy of different parsing models on the evaluation set. POS tags
are jointly predicted with parsing. LID = Language tag, TRN = Translitera-
tion/normalization.

All treebanks
Big treebanks
Parallel treebanks
Small treebanks

Low-resource treebanks

Table 5: POS tagging accuracies of different models on

stack-prop.

UPOS
87.32
93.71
85.23
87.36
45.20

BASELINE UDPipe 1.2
LAS MLAS BLEX

ULAS
71.64
78.78
71.22
63.17
30.08

65.80
74.14
66.63
55.01
17.17

5242 55.80
61.27  64.67
51.75  54.87
38.80  41.06
3.44 7.63
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UPOS ULAS
88.12  75.46
95.11  83.50
85.07  70.96
87.36  65.17
43.04 3148

LAS
69.98
79.67
64.73
56.74
17.47

MLAS
54.52
64.95
48.47
35.73

1.79

CS evaluation set.

BLEX
59.68
69.77
54.90
42.90

6.95

SP =
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