
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 124–132
Brussels, Belgium, October 31 – November 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/K18-2012

124

Tree-stack LSTM in Transition Based Dependency Parsing

Ömer Kırnap Erenay Dayanık Deniz Yuret

Koç University
Artificial Intelligence Laboratory

İstanbul, Turkey
okirnap,edayanik16,dyuret@ku.edu.tr

Abstract

We introduce tree-stack LSTM to model
state of a transition based parser with
recurrent neural networks. Tree-stack
LSTM does not use any parse tree based
or hand-crafted features, yet performs
better than models with these features.
We also develop new set of embeddings
from raw features to enhance the perfor-
mance. There are 4 main components of
this model: stack’s σ-LSTM, buffer’s β-
LSTM, actions’ LSTM and tree-RNN. All
LSTMs use continuous dense feature vec-
tors (embeddings) as an input. Tree-RNN
updates these embeddings based on transi-
tions. We show that our model improves
performance with low resource languages
compared with its predecessors. We par-
ticipate in CoNLL 2018 UD Shared Task
as the ”KParse” team and ranked 16th in
LAS, 15th in BLAS and BLEX metrics, of
27 participants parsing 82 test sets from 57
languages.

1 Introduction

Recent studies in neural dependency parsing cre-
ates an opportunity to learn feature conjunctions
only from primitive features.(Chen and Manning,
2014) A designer only needs to extract primitive
features which may be useful to take parsing ac-
tions. However, extracting primitive features from
state of a parser still remains critical. On the other
hand, representational power of recurrent neural
networks should allow a model both to summarize
every action taken from the beginning to the cur-
rent state and tree-fragments obtained until a cur-
rent state.

We propose a method to concretely summarize
previous actions and tree fragments within current

word embeddings. We employ word and context
embeddings from (Kırnap et al., 2017) as an ini-
tial representer. Our model modifies these embed-
dings based on parsing actions. These embeddings
are able to summarize, children-parent relation-
ship. Finally, we test our system in CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies.

Rest of the paper is organized as follows: Sec-
tion 2 summarizes related work done in neural
transition based dependency parsing. Section 3
describes the models that we implement for tag-
ging, lemmatization and dependency parsing. Sec-
tion 4 discusses our results and section 5 presents
our contributions.

2 Related Work

In this section we describe the related work done
in neural transition based dependency parsing and
morphological analysis.

2.1 Morphological Analysis and Tagging
Finite-state transducers (FST) have an impor-
tant role in previous morphological analyzers.
(Koskenniemi, 1983) Unlike modern neural sys-
tems, these type of analyzers are language de-
pendent rule based systems. Morphological tag-
ging, on the other hand, tries to solve tagging and
analysis problem at the same stage. Koskenniemi
proposed conditional random fields (CRFs) based
model and Heigold et al. proposed neural network
architectures to solve tagging and analysis prob-
lem immediately. Modern systems heavily based
on word and context based features that we explain
in the following paragraph.

2.2 Embedding Features
Chen and Manning, Kiperwasser and Goldberg,
use pre-trained word and random part-of-speech
(POS) embeddings. Ballesteros et al. use

125

character-based word representation for the stack-
LSTM parser. In Alberti et al., end-to-end ap-
proach is taken for both word and POS embed-
dings. In other words, one component of their
model has responsibility to generate POS embed-
dings and the other to generate word embeddings.

2.3 Decision Module

We name a part of our model, which provides tran-
sitions from features, as decision module. Deci-
sion module is a neural architecture designed to
find best feature conjunctions. Chen and Manning
uses MLP, Dozat et al. applies BiLSTM stacked
with MLP as a decision module. We inspire from
Dyer et al.’s stack-LSTM which basically repre-
sents each component of a state (buffer, stack and
actions) with an LSTM. We found new inputs to
tree-RNN, and modify this model to obtain better
results.

3 Model

In this section, we describe MorphNet (Dayanık
et al., 2018) used for tagging and lemmatization;
and Tree-stack LSTM used for dependency pars-
ing. We train these models separately. MorphNet
employs UDPipe (Straka et al., 2016) for tokeniza-
tion to generate conll-u formatted file with miss-
ing head and dependency relation columns. Tree-
stack LSTM takes that for dependency parsing.
We detail these models in the remaining part of
this section.

3.1 Lemmatization and Part of Speech
Tagging

We implement MorphNet (Dayanık et al., 2018)
for lemmatization and Part of Speech tagging. It
is trained on (Nivre et al., 2018). MorphNet is
a sequence-to-sequence recurrent neural network
model used to produce a morphological analysis
for each word in the input sentence. The model
operates with a unidirectional Long Short Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) encoder to create a character-based word
embeddings and a bidirectional LSTM encoder to
obtain context embeddings. The decoder consists
of two layers LSTM.

The input to the MorphNet consists of an N
word sentence S = [w1, . . . , wN], where wi

is the i’th word in the sentence. Each word
is input as a sequence of characters wi =
[wi1, . . . , wiLi], wij ∈ A where A is the set of

alphanumeric characters and Li is the number of
characters in word wi.

The output for each word consists
of a stem, a part-of-speech tag and
a set of morphological features, e.g.
“earn+Upos=verb+Mood=indicative+Tense=past”
for “earned”. The stem is produced one character
at a time, and the morphological information is
produced one feature at a time. A sample output
for a word looks like [si1, . . . , siRi , fi1, . . . , fiMi]
where sij ∈ A is an alphanumeric character in
the stem, Ri is the length of the stem, Mi is
the number of features, fij ∈ T is a morpho-
logical feature from a feature set such as T =
{Verb,Adjective,Mood=Imperative,Tense=Past, . . .}.

In Word Encoder we map each character wij

to an A dimensional character embedding vec-
tor aij ∈ RA.The word encoder takes each word
and processes the character embeddings from left
to right producing hidden states [hi1, . . . , hiLi]
where hij ∈ RH . The final hidden state ei = hiLi

is used as the word embedding for word wi.

hij = LSTM(aij , hij−1) (1)

hi0 = 0 (2)

ei = hiLi (3)

We model context encoder by using a bidirec-
tional LSTM. The inputs are the word embed-
dings e1, · · · , eN produced by the word encoder.
The context encoder processes them in both di-
rections and constructs a unique context embed-
ding for each target word in the sentence. For a
word wi I define its corresponding context embed-
ding ci ∈ R2H as the concatenation of the for-
ward −→c i ∈ RH and the backward←−c i ∈ RH hid-
den states that are produced after the forward and
backward LSTMs process the word embedding ei.
Figure illustrates the creation of the context vector
for the target word earned.

−→c i = LSTMf (ei,
−→c i−1) (4)

←−c i = LSTMb(ei,
←−c i+1) (5)

−→c 0 = ←−c N+1 = 0 (6)

ci = [−→c i;←−c i] (7)

The decoder is implemented as a 2-Layer
LSTM network that outputs the correct tag for a
single target word. By conditioning on the input
embeddings and its own hidden state, the decoder

126

learns to generate yi = [yi1, . . . , yiKi] where yi is
the correct tag of the target word wi in sentence
S, yij ∈ A ∪ T represents both stem characters
and morphological feature tokens, and Ki is the
total number of output tokens (stem + features) for
word wi. The first layer of the decoder is initial-
ized with the context embedding ci and the second
layer is initialized with the word embedding ei.

d1i0 = relu(Wd × ci ⊕Wdb) (8)

d2i0 = ei (9)

(10)

We parameterize the distribution over possible
morphological features and characters at each time
step as

p(yij |d2ij) = softmax(Ws × d2ij ⊕Wsb) (11)

where Ws ∈ R|Y|×H and Wsb ∈ R|Y| where
Y = A ∪ T is the set of characters and morpho-
logical features in output vocabulary.

3.2 Word and Context Embeddings
We benefit pre-trained word embeddings from
(Kırnap et al., 2017) in our parser. Both word and
context embeddings are extracted from the lan-
guage model described in section 3.1 of (Kırnap
et al., 2017).

3.3 Features
We use limited number of continuous embeddings
in parser model. These are POS, word, context,
and morphological feature embeddings. Word and
context embeddings are pre-trained and not fine-
tuned during training. POS and morphological
feature embeddings are randomly initialized and
learned during training.

Abbrev Feature
c context embedding
v word embedding
p universal POS tag
f morphological features

Table 1: Possible features for each word

3.4 Morphological Feature Embeddings
We introduce morphological feature embeddings,
which differs from (Dyer et al., 2015), as an ad-
ditional input to our model. Each feature is rep-
resented with 128 dimensional continuous vector.

We experiment that vector sizes lower than 128
reduces the performance of a parser, and higher
than 128 does not bring further enhancements.
We formulate morphological feature embeddings
by adding feature vectors of a word. For exam-
ple, suppose we are given a word it with follow-
ing morphological features: Case=Nom and Gen-
der=Neut and Number=Sing and Person=3 and
PronType=Prs. We basically sum corresponding
5 unique vectors to provide morphological feature
embedding. However, our experiments suggest
that not all languages benefit from morphological
feature embeddings. (See section 4 for details)

3.5 Dependency Label Embeddings

Each distinct dependency label defined in CoNLL
2018 UD Shared Task represented with a 128 di-
mensional continuous vector. These vectors com-
bined to construct hidden states in tree-RNN part
of our model. We randomly initialize these vectors
and learned during training.

3.6 ArcHybrid Transition System

We implement the ArcHybrid Transition System
which has three components, namely a stack of
tree fragments σ, a buffer of unused words β and
a set A of dependency arcs, c = (σ, β,A). Stack
is empty, there is no any arcs and, all the words of
a sentence are in buffer initially. This system has
3 type of transitions:

• shift(σ, b|β,A) = (σ|b, β,A)

• leftd(σ|s, b|β,A) = (σ, b|β,A ∪ {(b, d, s)})

• rightd(σ|s|t, β, A) = (σ|s, β,A∪{(s, d, t)})

where | denotes concatenation and (b, d, s) is a de-
pendency arc between b (head) and s (modifier)
with label d. The system terminates parsing when
the buffer is empty and the stack has only one word
assumed to be the root.

3.7 Tree-stack LSTM

Tree-stack LSTM has 4 main components:
buffer’s β-LSTM, stack’s σ-LSTM, actions’-
LSTM and tree’s tree-RNN or t-RNN in short.
We aim to represent each component of the transi-
tion system, c = (σ, β,A), with a distinct LSTM
similar to (Dyer et al., 2015). Initial inputs to
these LSTMs are embeddings obtained by con-
catenating the features explained in section 3.3.

127

 e3 e1 e2 e6 e4 e5 e7

 c2

 Wd

d1
20

(c) Context Encoder

 e2

e a r n e

(b) Word Encoder

d2
20

 <s>

 e

 e Upos =
verb

Mood =
indicative

 a r n

Upos =
verb a r n

 Mood =
indicative

Tense =
past

Tense =
past

</s>

d

Figure 1: MorphNet illustration for the sentence ”Bush earned 340 points in 1969” and target word
”earned”.

. . . Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs ...IT It

Figure 2: Morphological feature embeddings ob-
tained by adding individual feature embeddings

Our model differs from (Dyer et al., 2015) by rep-
resenting actions and dependency relations sep-
arately and including morphological feature em-
beddings. The transition system (see section 3.6
for details) is also different from theirs.

Buffer’s β-LSTM is initialized with zero hidden
state, and fed with input features from last word to
the beginning. Similarly, stack’s σ-LSTM is also
initialized with zero hidden state and fed with in-
put features from the beginning word to the last
word of a stack. Actions’ LSTM is also started
with zero hidden state, and updated after each ac-
tion. Inputs to σ-LSTM and β-LSTM are updated
via tree-RNN.

We update either buffer’s or stack’s input em-
beddings based on parsing actions. For instance,
suppose we are given βi a top word in buffer and
σi a final word in stack. The leftd transition
taken in current state. tree-RNN uses concatena-
tion of previous embedding, σi, and dependency
relation embedding (explained in 3.5) as a hidden
ht−1.Input of a tree-RNN is a previous word em-

 LSTM LSTM LSTM

wi+2
wi+1wi

Figure 3: β − LSTM processing a sentence. It
starts to read from right to left. Each vector ((wi)
represents the concatenation of POS, language and
morph-feat embeddings.

 LSTM LSTM LSTM

si si+1 si+2

Figure 4: σ − LSTM processing a sentence.
It starts to read from left to right. Each input
(si) is transformed version of initial feature vec-
tor. Transformations are based on local transitions
see 3.6 for details.

bedding, βi. Output ht becomes a new word em-
bedding for buffer’s top word βi−new. Figure 5

128

depicts this flow. Similarly to left transition, right
transition updates the stack’s second top word.
Hidden state of an RNN is calculated by concate-
nating stack’s top word and dependency relation.

There are 73 distinct actions for shift, labeled
left and labeled right actions. We randomly ini-
tialize 128 dimensional vector for each labeled ac-
tion and shift. These vectors become an input for
action-LSTM shown in Figure 6.

 t-RNN

 LSTM LSTM
βi

concat

ht-1

βnew

Dependency Relation

Figure 5: Buffer word’s embedding update based
on left move. Inputs are old embeddings obtained
from Table 3.3
.

Concatenation of stack’s LSTM, buffer’s LSTM
and actions’ LSTM’s final hidden layer becomes
an input to MLP which outputs the probabilities
for each transition in the next step.

3.8 Training
Our training strategy varies based on training data
sizes. We divide datasets into 4 parts: 100k to-
kens or more, tokens in between 50k and 100k,
and more than 20k less than 50k tokens.

For languages having more than 50k tokens in
training data, we employ morphological feature-
embeddings as an additional input dimension (see
Figure 2). However, for languages having tokens
less than 50k we do not use this feature dimen-
sion. Finally we realize that the languages with
more than 100k tokens, using morphological fea-
ture embeddings does not improve parsing perfor-
mance but we use that additional feature dimen-
sion.

We use 5-fold cross validation for languages
without development data. We do not change the
LSTMs’ hidden dimensions, but record the num-
ber of epochs took for convergence. The average

of these epochs is used to train a model with whole
training set.

3.8.1 Optimization and Hyper-Parameters
We conduct experiments to find best set of hyper-
parameters. We start with a dimension of 32
and increase the dimension by powers of two un-
til 512 for LSTM hiddens, 1024 for LM matrix
(explained in below). We report the best hyper-
parameters in this paper. Although the perfor-
mance does not decrease after the best setting,
we choose the minimum-best size not to sacrifice
from training speed.

All the LSTMs and tree-RNN have hidden di-
mension of 256. The vectors extracted from LM
having dimension of 950, but we reduce that to
512 by a matrix-vector multiplication. This matrix
is also learned. We use Adam optimizer with de-
fault parameters. (Kingma and Ba, 2014).Training
is terminated if the performance does not improve
for 9 epochs.

4 Results

In this section we inspect our best/worst results
and the conclusions we obtain during CoNLL 2018
UD Shared Task experiments.

We submit our system to CoNLL 2018 UD
Shared Task as ”KParse” team. Our scoring is pro-
vided under the official CoNLL 2018 UD Shared
Task website.1 as well as in Table 4.1. All ex-
periments are done with UD version 2.2 datasets
(Nivre et al., 2018) and (Nivre et al., 2017) for
training and testing respectively. The model im-
proves performance by reducing hand-crafted fea-
ture selection. In order to analyze our tree-stack
LSTM, we compare that model with Kırnap et al.
sharing similar feature interests and transition sys-
tem with our model. The difference between these
two models is that Kırnap et al. based on hand-
crafted feature selection from state, e.g. number of
left children of buffer’s first word. However, tree-
stack LSTM only needs raw features and previous
parsing actions.

Our model comparatively performs better with
languages less than 50k training tokens, e.g.
sv lines and hu szeged and tr imst. However,
when the number of training examples increases
the performance improve slightly saturates, e.g.
ar padt, en ewt. This may be due to conver-
gence problems of our model. This conclusion

1
http://universaldependencies.org/conll18/

results.html

 http://universaldependencies.org/conll18/results.html
 http://universaldependencies.org/conll18/results.html

129

 t-RNN

Head word

Dependent word Dependency
Relation

 LSTM LSTM LSTM LSTM LSTM

 LSTM LSTM A

Concat

 MLP

Figure 6: End-to-end tree-stack model composed of 4 main components, namely, β-LSTM, σ-LSTM
and actions’ LSTMs and the tree-RNN.

Lang code Kırnap et al. New Model
tr imst 56.78 58.75
hu szeged 66.21 68.18
en ewt 74.87 75.77
ar padt 67.83 68.02
cs cac 83.39 83.57
sv lines 71.12 74.81

Table 2: Comparison of two models

is also agrees with our official ranking in CoNLL
2018 UD Shared Task because our ranking in low-
resource languages is 10, but general ranking is
16.

We next analyze the performance gain by in-
cluding morphological features with languages
training token in between 50k and 100k. As we de-
duce from Table 3, tree-stack LSTM benefits from
morphological information with mid-resource lan-
guages. However, we could not gain the similar

Lang code Morp-Feats no Morp-Feats
ko gsd 73.74 72.54
got proiel 54.33 53.24
id gsd 75.76 73.97

Table 3: Morphological feature embeddings in
some languages having tokens more than 50k and
less than 100k in training data

performance enhancement with languages more
than 100k training tokens.

4.1 Languages without Training Data

We have three criteria to choose a trained model
for languages without training data. If there is a
training corpus with the same language we use that
as a parent. If there is no data from the same lan-
guage, we pick a parent language from the same
family. If there are more than one parent for a lan-
guage, we select a parent with more training data.

130

We list our selections in Table 4.

Language Parent Language
en pud en ewt
ja modern ja gsd
cs pud cs pdt
sv pud sv talbanken
fi pud fi tdt
th pud id gsd
pcm nsc en ewt
br keb en ewt

Table 4: Our parent choices in languages without
train data

5 Discussion

We use tree-stack LSTM model in transition based
dependency parsing framework. Our main motiva-
tion for this work is to reduce the human designed
features extracted from state components. Our re-
sults prove that the model is able to learn better
than its predecessors. Moreover, we examine that
the model performs better in languages with low
resources compared in CoNLL 2018 UD Shared
Task. We also constitute morphological feature
embeddings which become useful for dependency
parsing. All of our work is done in transition based
dependency parsing, which sacrifices performance
due to locality and non projectiveness. This study
opens a question on adapting the tree-stack LSTM
in graph based dependency parsing. Our code is
publicly available at https://github.com/
kirnap/ku-dependency-parser2.

Acknowlegments

This work was supported by the Scientific
and Technological Research Council of Turkey
(TÜBİTAK) grants 114E628 and 215E201.

References
Chris Alberti, Daniel Andor, Ivan Bogatyy, Michael

Collins, Dan Gillick, Lingpeng Kong, Terry
Koo, Ji Ma, Mark Omernick, Slav Petrov,
Chayut Thanapirom, Zora Tung, and David
Weiss. 2017. Syntaxnet models for the conll
2017 shared task. CoRR abs/1703.04929.
http://arxiv.org/abs/1703.04929.

Miguel Ballesteros, Chris Dyer, and Noah A Smith.
2015. Improved transition-based parsing by mod-
eling characters instead of words with lstms. arXiv
preprint arXiv:1508.00657 .

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In EMNLP. pages 740–750.

Erenay Dayanık, Ekin Akyürek, and Deniz Yuret.
2018. Morphnet: A sequence-to-sequence model
that combines morphological analysis and disam-
biguation. arXiv preprint arXiv:1805.07946 .

Timothy Dozat, Peng Qi, and Christopher D Manning.
2017. Stanford’s graph-based neural dependency
parser at the conll 2017 shared task. Proceedings
of the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies pages
20–30.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long
short-term memory. CoRR abs/1505.08075.
http://arxiv.org/abs/1505.08075.

Georg Heigold, Guenter Neumann, and Josef van Gen-
abith. 2017. An extensive empirical evaluation of
character-based morphological tagging for 14 lan-
guages. In Proceedings of the 15th Conference of
the European Chapter of the Association for Com-
putational Linguistics: Volume 1, Long Papers. vol-
ume 1, pages 505–513.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput. 9(8):1735–
1780. https://doi.org/10.1162/neco.1997.9.8.1735.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidi-
rectional LSTM feature representations. CoRR
abs/1603.04351. http://arxiv.org/abs/1603.04351.

Ömer Kırnap, Berkay Furkan Önder, and Deniz Yuret.
2017. Parsing with context embeddings. Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies
pages 80–87.

Kimmo Koskenniemi. 1983. Two-level model for mor-
phological analysis. In IJCAI. volume 83, pages
683–685.

Joakim Nivre et al. 2017. Universal Dependencies
2.0 CoNLL 2017 shared task development and test
data. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-2184. http://hdl.handle.net/11234/1-
2184.

Joakim Nivre et al. 2018. Universal Dependen-
cies 2.2. LINDAT/CLARIN digital library
at the Institute of Formal and Applied Lin-
guistics, Charles University, Prague, http:
//hdl.handle.net/11234/1-1983xxx.
http://hdl.handle.net/11234/1-1983xxx.

https://github.com/kirnap/ku-dependency-parser2
https://github.com/kirnap/ku-dependency-parser2
http://arxiv.org/abs/1703.04929
http://arxiv.org/abs/1703.04929
http://arxiv.org/abs/1703.04929
http://arxiv.org/abs/1505.08075
http://arxiv.org/abs/1505.08075
http://arxiv.org/abs/1505.08075
http://arxiv.org/abs/1505.08075
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1603.04351
http://arxiv.org/abs/1603.04351
http://arxiv.org/abs/1603.04351
http://arxiv.org/abs/1603.04351
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-1983xxx
http://hdl.handle.net/11234/1-1983xxx
http://hdl.handle.net/11234/1-1983xxx
http://hdl.handle.net/11234/1-1983xxx
http://hdl.handle.net/11234/1-1983xxx

131

Language LAS MLAS BLEX Ranks Language LAS MLAS BLEX Ranks
af afribooms 78.12 65.12 63.93 17-15-19 ar padt 68.02 58.05 61.21 16-11-13
bg btb 84.53 75.58 77.63 20-16-9 br keb 8.91 0.35 1.77 19-15-19
bxr bdt 9.93 0.49 0.69 18-22-23 ca ancora 85.89 77.22 77.22 18-17-17
cs cac 83.57 75.3 77.24 19-12-18 cs fictree 82.67 71.93 75.31 18-15-16
cs pdt 81.43 73.77 71.44 21-21-22 cs pud 78.69 64.14 84.52 18-19-17
cu proiel 59.42 46.96 81.55 23-22-21 da ddt 76.4 67.05 63.09 17-15-19
en ewt 75.77 66.78 68.76 20-20-18 en gum 76.44 65.19 64.32 16-12-15
de gsd 71.59 46.87 35.41 17-8-23 el gdt 83.34 65.74 66.6 16-14-18
en lines 73.96 64.91 62.76 17-15-19 en pud 78.41 66.16 69.25 19-19-17
es ancora 84.99 76.71 77.06 18-17-16 et edt 74.52 65.7 63.5 20-19-17
eu bdt 74.55 63.11 61.25 17-13-18 fa seraji 81.18 74.84 71.65 17-16-14
fi ftb 75.84 65.53 67.91 17-16-11 fi pud 81.55 74.18 66.29 13-12-10
fi tdt 78.42 70.4 65.89 16-15-12 fo oft 22.5 0.29 5.44 20-19-20
fr gsd 81.07 72.07 73.96 19-19-17 fr sequoia 84.36 76.56 71.33 14-10-20
fr spoken 57.32 15 57.76 10-10-10 fro srcmf 76.92 67.85 71.35 20-19-20
ga idt 63.13 34.36 40.76 13-19-16 gl ctg 79.02 66.13 71.12 14-14-9
gl treegal 70.45 52.15 56.38 10-9-9 got proiel 54.33 40.58 40.51 24-24-22
grc perseus 55.03 34.19 37.0 20-15-16 grc proiel 62.11 43.92 37.00 22-21-20
he htb 58.28 45.06 48.09 18-16-16 hi hdtb 86.86 70.44 79.98 20-17-15
hr set 81.6 65.23 68.74 17-8-18 hsb ufal 30.81 6.22 15.39 8-9-7
hu szeged 68.18 51.13 50.53 14-20-21 hy armtdp 24.58 7.24 6.96 12-9-21
id gsd 75.51 65.02 63.92 17-13-17 it isdt 85.80 75.5 70.16 22-21-22
it postwita 70.03 56.04 47.53 13-12-20 ja gsd 73.30 59.46 59.89 14-14-20
ja modern 23.35 8.94 10.13 5-4-5 kk ktb 23.86 5.98 8.02 11-11-13
kmr mg 23.39 3.97 7.56 15-15-16 ko gsd 73.74 67.31 60.52 19-18-16
ko kaist 78.81 71.49 65.29 19-19-16 la ittb 75.79 71.49 71.66 20-19-19
la perseus 51.6 33.65 38.04 11-8-8 la proiel 59.35 46.36 51.13 20-19-19
lv lvtb 72.33 57.08 60.54 16-13-14 nl alpino 78.83 64.22 65.79 17-16-15
nl lassysmall 76.70 63.97 64.58 16-15-15 no bokmaal 82.32 37.93 73.52 20-19-18
no nynorsk 80.57 70.78 72.27 20-19-17 no nynorsklia 53.33 41.01 44.46 13-10-11
pcm nsc 15.84 5.3 13.61 10-1-11 pl lfg 86.12 71.96 76.71 21-21-20
pl sz 82.83 63.76 73.05 16-17-14 pt bosque 82.71 68.01 73.07 18-17-15
ro rrt 80.90 72.39 72.59 17-14-14 ru syntagrus 82.89 56.8 75.48 20-19-18
ru taiga 60.55 39.41 44.05 11-9-9 sk snk 75.75 53.49 61.0 20-20-16
sl ssj 78.18 62.94 69.49 16-18-14 sl sst 48.77 34.66 39.82 10-11-9
sme giella 53.39 39.13 41.75 19-19-15 sr set 80.85 67.46 72.09 20-19-16
sv lines 74.81 59.72 67.35 17-15-15 sv pud 70.77 43.04 54.67 16-12-15
sv talbanken 77.91 69.25 69.87 17-16-17 th pud 0.74 0.04 0.44 7-8-8
tr imst 58.75 48.28 49.84 15-12-13 ug udt 57.04 36.63 44.44 16-16-14
uk iu 76.5 36.63 65.5 16-16-13 ur udtb 78.12 51.25 64.66 17-15-15
vi vtb 40.48 33.88 36.03 16-14-15 zh gsd 59.76 50.87 53.11 19-15-18

Table 5: Our official results in CoNLL 2018 UD Shared Task, ranks are given in LAS-MLAS-BLEX
order

132

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

