82 Treebanks, 34 Models: Universal Dependency Parsing with
Multi-Treebank Models

Aaron Smith* Bernd Bohnet’ Miryam de Lhoneux*

Joakim Nivre* Yan Shao* Sara Stymne*

*Department of Linguistics and Philology

Uppsala University
Uppsala, Sweden

Abstract

We present the Uppsala system for the
CoNLL 2018 Shared Task on universal
dependency parsing. Our system is a
pipeline consisting of three components:
the first performs joint word and sentence
segmentation; the second predicts part-of-
speech tags and morphological features;
the third predicts dependency trees from
words and tags. Instead of training a sin-
gle parsing model for each treebank, we
trained models with multiple treebanks for
one language or closely related languages,
greatly reducing the number of models.
On the official test run, we ranked 7th of
27 teams for the LAS and MLAS metrics.
Our system obtained the best scores over-
all for word segmentation, universal POS
tagging, and morphological features.

1 Introduction

The CoNLL 2018 Shared Task on Multilingual
Parsing from Raw Text to Universal Dependencies
(Zeman et al., 2018) requires participants to build
systems that take as input raw text, without any
linguistic annotation, and output full labelled de-
pendency trees for 82 test treebanks covering 46
different languages. Besides the labeled attach-
ment score (LAS) used to evaluate systems in the
2017 edition of the Shared Task (Zeman et al.,
2017), this year’s task introduces two new met-
rics: morphology-aware labeled attachment score
(MLAS) and bi-lexical dependency score (BLEX).
The Uppsala system focuses exclusively on LAS
and MLAS, and consists of a three-step pipeline.
The first step is a model for joint sentence and
word segmentation which uses the BIRNN-CRF
framework of Shao et al. (2017, 2018) to predict
sentence and word boundaries in the raw input and
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simultaneously marks multiword tokens that need
non-segmental analysis. The second component
is a part-of-speech (POS) tagger based on Bohnet
et al. (2018), which employs a sentence-based
character model and also predicts morphological
features. The final stage is a greedy transition-
based dependency parser that takes segmented
words and their predicted POS tags as input and
produces full dependency trees. While the seg-
menter and tagger models are trained on a single
treebank, the parser uses multi-treebank learning
to boost performance and reduce the number of
models.

After evaluation on the official test sets (Nivre
et al., 2018), which was run on the TIRA server
(Potthast et al., 2014), the Uppsala system ranked
7th of 27 systems with respect to LAS, with a
macro-average F1 of 72.37, and 7th of 27 sys-
tems with respect to MLAS, with a macro-average
F1 of 59.20. It also reached the highest aver-
age score for word segmentation (98.18), universal
POS (UPOS) tagging (90.91), and morphological
features (87.59).

Corrigendum: After the test phase was over, we
discovered that we had used a non-permitted re-
source when developing the UPOS tagger for Thai
PUD (see Section 4). Setting our LAS, MLAS and
UPOS scores to 0.00 for Thai PUD gives the cor-
rected scores: LAS 72.31, MLAS 59.17, UPOS
90.50. This does not affect the ranking for any of
the three scores, as confirmed by the shared task
organizers.

2 Resources

All three components of our system were trained
principally on the training sets of Universal De-
pendencies v2.2 released to coincide with the
shared task (Nivre et al., 2018). The tagger and
parser also make use of the pre-trained word em-
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beddings provided by the organisers, as well as
Facebook word embeddings (Bojanowski et al.,
2017), and both word and character embed-
dings trained on Wikipedia text! with word2vec
(Mikolov et al., 2013). For languages with no
training data, we also used external resources in
the form of Wikipedia text, parallel data from
OPUS (Tiedemann, 2012), the Moses statistical
machine translation system (Koehn et al., 2007),
and the Apertium morphological transducer for
Breton.”

3 Sentence and Word Segmentation

We employ the model of Shao et al. (2018) for
joint sentence segmentation and word segmen-
tation. Given the input character sequence, we
model the prediction of word boundary tags as
a sequence labelling problem using a BiRNN-
CRF framework (Huang et al., 2015; Shao et al.,
2017). This is complemented with an attention-
based LSTM model (Bahdanau et al., 2014) for
transducing non-segmental multiword tokens. To
enable joint sentence segmentation, we add extra
boundary tags as in de Lhoneux et al. (2017a).
We use the default parameter settings intro-
duced by Shao et al. (2018) and train a segmen-
tation model for all treebanks with at least 50 sen-
tences of training data. For treebanks with less or
no training data (except Thai discussed below), we
substitute a model for another treebank/language:

e For Japanese Modern, Czech PUD, English
PUD and Swedish PUD, we use the model
trained on the largest treebank from the same
language (Japanese GSD, Czech PDT, En-
glish EWT and Swedish Talbanken).

e For Finnish PUD, we use Finnish TDT rather
than the slightly larger Finnish FTB, because
the latter does not contain raw text suitable
for training a segmenter.

e For Naija NSC, we use English EWT.

e For other test sets with little or no training
data, we select models based on the size of
the intersection of the character sets mea-
sured on Wikipedia data (see Table 2 for de-
tails).3

"https://dumps.wikimedia.org/

backup-index-bydb.html
https://github.com/apertium/
apertium-bre

3North Sami Giella was included in this group by mistake,
as we underestimated the size of the treebank.
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Thai Segmentation of Thai was a particularly
difficult case: Thai uses a unique script, with no
spaces between words, and there was no training
data available. Spaces in Thai text can function
as sentence boundaries, but are also used equiva-
lently to commas in English. For Thai sentence
segmentation, we exploited the fact that four other
datasets are parallel, i.e., there is a one-to-one
correspondence between sentences in Thai and
in Czech PUD, English PUD, Finnish PUD and
Swedish PUD.* First, we split the Thai text by
white space and treat the obtained character strings
as potential sentences or sub-sentences. We then
align them to the segmented sentences of the four
parallel datasets using the Gale-Church algorithm
(Gale and Church, 1993). Finally, we compare the
sentence boundaries obtained from different par-
allel datasets and adopt the ones that are shared
within at least three parallel datasets.

For word segmentation, we use a trie-based seg-
menter with a word list derived from the Face-
book word embeddings.’ The segmenter retrieves
words by greedy forward maximum matching
(Wong and Chan, 1996). This method requires no
training but gave us the highest word segmenta-
tion score of 69.93% for Thai, compared to the
baseline score of 8.56%.

4 Tagging and Morphological Analysis

We use two separate instantiations of the tag-
ger® described in Bohnet et al. (2018) to predict
UPOS tags and morphological features, respec-
tively. The tagger uses a Meta-BiLSTM over the
output of a sentence-based character model and a
word model. There are two features that mainly
distinguishes the tagger from previous work. The
character BiLSTMs use the full context of the sen-
tence in contrast to most other taggers which use
words only as context for the character model.
This character model is combined with the word
model in the Meta-BiLSTM relatively late, after
two layers of BiLSTMs.

For both the word and character models, we
use two layers of BiLSTMs with 300 LSTM cells
per layer. We employ batches with 8000 words
and 20000 characters. We keep all other hyper-
parameters as defined in Bohnet et al. (2018).
From the training schema described in the above

“This information was available in the README files dis-
tributed with the training data and available to all participants.

Sgithub.com/facebookresearch/fastText
*https://github.com/google/meta_tagger
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paper, we deviate slightly in that we perform early
stopping on the word, character and meta-model
independently. We apply early stopping due to
the performance of the development set (or train-
ing set when no development set is available) and
stop when no improvement occurs in 1000 training
steps. We use the same settings for UPOS tagging
and morphological features.

To deal with languages that have little or no
training data, we adopt three different strategies:

e For the PUD treebanks (except Thai),
Japanese Modern and Naija NSC, we use the

same model substitutions as for segmentation
(see Table 2).

For Faroese we used the model for Norwe-
gian Nynorsk, as we believe this to be the
most closely related language.

For treebanks with small training sets we use
only the provided training sets for training.
Since these treebanks do not have develop-
ment sets, we use the training sets for early
stopping as well.

For Breton and Thai, which have no training
sets and no suitable substitution models, we
use a bootstrapping approach to train taggers
as described below.

Bootstrapping We first annotate an unlabeled
corpus using an external morphological analyzer.
We then create a (fuzzy and context-independent)
mapping from the morphological analysis to uni-
versal POS tags and features, which allows us to
relabel the annotated corpus and train taggers us-
ing the same settings as for other languages. For
Breton, we annotated about 60,000 sentences from
Breton OfisPublik, which is part of OPUS,’ us-
ing the Apertium morphological analyzer. The
Apertium tags could be mapped to universal POS
tags and a few morphological features like per-
son, number and gender. For Thai, we anno-
tated about 33,000 sentences from Wikipedia us-
ing PyThaiNLP® and mapped only to UPOS tags
(no features). Unfortunately, we realized only af-
ter the test phase that PyThaiNLP was not a per-
mitted resource, which invalidates our UPOS tag-
ging scores for Thai, as well as the LAS and
MLAS scores which depend on the tagger. Note,
however, that the score for morphological features

"https://opus.nlpl.eu/OfisPublik.php
$https://github.com/PyThaiNLP/
pythainlp/wiki/PyThaiNLP-1.4
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is not affected, as we did not predict features at all
for Thai. The same goes for sentence and word
segmentation, which do not depend on the tagger.

Lemmas Due to time constraints we chose not
to focus on the BLEX metric in this shared task.
In order to avoid zero scores, however, we simply
copied a lowercased version of the raw token into
the lemma column.

5 Dependency Parsing

We use a greedy transition-based parser (Nivre,
2008) based on the framework of Kiperwasser and
Goldberg (2016b) where BiLSTMs (Hochreiter
and Schmidhuber, 1997; Graves, 2008) learn rep-
resentations of tokens in context, and are trained
together with a multi-layer perceptron that pre-
dicts transitions and arc labels based on a few
BiLSTM vectors. Our parser is extended with a
SWAP transition to allow the construction of non-
projective dependency trees (Nivre, 2009). We
also introduce a static-dynamic oracle to allow the
parser to learn from non-optimal configurations at
training time in order to recover better from mis-
takes at test time (de Lhoneux et al., 2017b).

In our parser, the vector representation x; of a
word type w; before it is passed to the BiLSTM
feature extractors is given by:

zi = e(w;) o e(pi) © BILSTM(chi:m).

Here, e(w;) represents the word embedding and
e(p;) the POS tag embedding (Chen and Manning,
2014); these are concatenated to a character-based
vector, obtained by running a BiLSTM over the
characters chy.,, of w;.

With the aim of training multi-treebank mod-
els, we additionally created a variant of the parser
which adds a treebank embedding e(tb;) to input
vectors in a spirit similar to the language embed-
dings of Ammar et al. (2016) and de Lhoneux et al.
(2017a):

x; = e(w;) o e(p;) o BILSTM(chy.pm,) o e(th;).

We have previously shown that treebank em-
beddings provide an effective way to combine
multiple monolingual heterogeneous treebanks
(Stymne et al., 2018) and applied them to low-
resource languages (de Lhoneux et al., 2017a). In
this shared task, the treebank embedding model
was used both monolingually, to combine sev-
eral treebanks for a single language, and multilin-
gually, mainly for closely related languages, both
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for languages with no or small treebanks, and for
languages with medium and large treebanks, as
described in Section 6.

During training, a word embedding for each
word type in the training data is initialized using
the pre-trained embeddings provided by the or-
ganizers where available. For the remaining lan-
guages, we use different strategies:

e For Afrikaans, Armenian, Buryat, Gothic,
Kurmanji, North Sami, Serbian and Upper
Sorbian, we carry out our own pre-training
on the Wikipedia dumps of these languages,
tokenising them with the baseline UDPipe
models and running the implementation of
word2vec in the Gensim Python library” with
30 iterations and a minimum count of 1.

For Breton and Thai, we use specially-trained
multilingual embeddings (see Section 6).

For Naija and Old French, we substitute En-
glish and French embeddings, respectively.

For Faroese, we do not use pre-trained em-
beddings. While it is possible to train such
embeddings on Wikipedia data, as there is no
UD training data for Faroese we choose in-
stead to rely on its similarity to other Scandi-
navian languages (see Section 6).

Word types in the training data that are not found
amongst the pre-trained embeddings are initial-
ized randomly using Glorot initialization (Glorot
and Bengio, 2010), as are all POS tag and tree-
bank embeddings. Character vectors are also ini-
tialized randomly, except for Chinese, Japanese
and Korean, in which case we pre-train character
vectors using word2vec on the Wikipedia dumps
of these languages. At test time, we first look
for out-of-vocabulary (OOV) words and charac-
ters (i.e., those that are not found in the treebank
training data) amongst the pre-trained embeddings
and otherwise assign them a trained OOV vec-
tor.! A variant of word dropout is applied to
the word embeddings, as described in Kiperwasser
and Goldberg (2016a), and we apply dropout also
to the character vectors.

We use the extended feature set of Kiperwasser
and Goldberg (2016b) (top 3 items on the stack
together with their rightmost and leftmost depen-

‘https://radimrehurek.com/gensim/

19 An alternative strategy is to have the parser store embed-
dings for all words that appear in either the training data or
pre-trained embeddings, but this uses far more memory.
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Character embedding dimension 500
Character BiLSTM layers 1
Character BiLSTM output dimension 200
Word embedding dimension 100
POS embedding dimension 20
Treebank embedding dimension 12
Word BiLSTM layers 2
Word BiLSTM hidden/output dimension | 250
Hidden units in MLP 100
Word dropout 0.33
a (for OOV vector training) 0.25
Character dropout 0.33
Dagg (for exploration training) 0.1

Table 1: Hyper-parameter values for parsing.

dents plus first item on the buffer with its left-
most dependent). We train all models for 30
epochs with hyper-parameter settings shown in Ta-
ble 1. Note our unusually large character embed-
ding sizes; we have previously found these to be
effective, especially for morphologically rich lan-
guages (Smith et al., 2018). Our code is publicly
available. We release the version used here as UU-
Parser 2.3.!!

Using Morphological Features Having a
strong morphological analyzer, we were inter-
ested in finding out whether or not we can improve
parsing accuracy using predicted morphological
information. We conducted several experiments
on the development sets for a subset of treebanks.
However, no experiment gave us any improvement
in terms of LAS and we decided not to use this
technique for the shared task.

What we tried was to create an embedding rep-
resenting either the full set of morphological fea-
tures or a subset of potentially useful features, for
example case (which has been shown to be use-
ful for parsing by Kapociute-Dzikiene et al. (2013)
and Eryigit et al. (2008)), verb form and a few oth-
ers. That embedding was concatenated to the word
embedding at the input of the BILSTM. We varied
the embedding size (10, 20, 30, 40), tried different
subsets of morphological features, and tried with
and without using dropout on that embedding. We
also tried creating an embedding of a concatena-
tion of the universal POS tag and the Case fea-
ture and replace the POS embedding with this one.
We are currently unsure why none of these exper-
iments were successful and plan to investigate this

Uhttps://github.com/UppsalaNLP/
uuparser
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in the future. It would be interesting to find out
whether or not this information is captured some-
where else. A way to test this would be to use
diagnostic classifiers on vector representations, as
is done for example in Hupkes et al. (2018) or in
Adi et al. (2017).

6 Multi-Treebank Models

One of our main goals was to leverage informa-
tion across treebanks to improve performance and
reduce the number of parsing models. We use two
different types of models:

1. Single models, where we train one model per
treebank (17 models applied to 18 treebanks,
including special models for Breton KEB and
Thai PUD).

2. Multi-treebank models

e Monolingual models, based on multiple
treebanks for one language (4 models,
trained on 10 treebanks, applied to 11
treebanks).

e Multilingual models, based on tree-
banks from several (mostly) closely re-
lated languages (12 models, trained on
48 treebanks, applied to 52 treebanks;
plus a special model for Naija NSC).

When a multi-treebank model is applied to a test
set from a treebank with training data, we naturally
use the treebank embedding of that treebank also
for the test sentences. However, when parsing a
test set with no corresponding training data, we
have to use one of the other treebank embeddings.
In the following, we refer to the treebank selected
for this purpose as the proxy treebank (or simply
Proxy).

In order to keep the training times and lan-
guage balance in each model reasonable, we cap
the number of sentences used from each treebank
to 15,000, with a new random sample selected at
each epoch. This only affects a small number of
treebanks, since most training sets are smaller than
15,000 sentences. For all our multi-treebank mod-
els, we apply the treebank embeddings described
in Section 5. Where two or more treebanks in
a multilingual model come from the same lan-
guage, we use separate treebank embeddings for
each of them. We have previously shown that
multi-treebank models can boost LAS in many
cases, especially for small treebanks, when ap-
plied monolingually (Stymne et al., 2018), and ap-
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plied it to low-resource languages (de Lhoneux
et al., 2017a). In this paper, we add POS tags and
pre-trained embeddings to that framework, and ex-
tend it to also cover multilingual parsing for lan-
guages with varying amounts of training data.

Treebanks sharing a single model are grouped
together in Table 2. To decide which languages to
combine in our multilingual models, we use two
sources: knowledge about language families and
language relatedness, and clusterings of treebank
embeddings from training our parser with all avail-
able languages. We created clusterings by train-
ing single parser models with treebank embed-
dings for all treebanks with training data, capping
the maximum number of sentences per treebank
to 800. We then used Ward’s method to perform a
hierarchical cluster analysis.

We found that the most stable clusters were
for closely related languages. There was also a
tendency for treebanks containing old languages
(i.e., Ancient Greek, Gothic, Latin and Old Church
Slavonic) to cluster together. One reason for these
languages parsing well together could be that sev-
eral of the 7 treebanks come from the same anno-
tation projects, four from PROIEL, and two from
Perseus, containing consistently annotated and at
least partially parallel data, e.g., from the Bible.

For the multi-treebank models, we performed
preliminary experiments on development data in-
vestigating the effect of different groupings of lan-
guages. The main tendency we found was that it
was better to use smaller groups of closely related
languages rather than larger groups of slightly
less related languages. For example, using multi-
lingual models only for Galician-Portuguese and
Spanish-Catalan was better than combining all
Romance languages in a larger model, and com-
bining Dutch-German-Afrikaans was better than
also including English.

A case where we use less related languages is
for languages with very little training data (31 sen-
tences or less), believing that it may be benefi-
cial in this special case. We implemented this
for Buryat, Uyghur and Kazakh, which are trained
with Turkish, and Kurmanji, which is trained with
Persian, even though these languages are not so
closely related. For Armenian, which has only
50 training sentences, we could not find a close
enough language, and instead train a single model
on the available data. For the four languages that
are not in a multilingual cluster but have more than



one available treebank, we use monolingual multi-
treebank models (English, French, Italian and Ko-
rean).

For the nine treebanks that have no training data
we use different strategies:

e For Japanese Modern, we apply the mono-

treebank Japanese GSD model.

For the four PUD treebanks, we apply
the multi-treebank models trained using the
other treebanks from that language, with the
largest available treebank as proxy (except
for Finnish, where we prefer Finnish TDT
over FTB; cf. Section 3 and Stymne et al.
(2018)).

For Faroese, we apply the model for the
Scandinavian languages, which are closely
related, with Norwegian Nynorsk as proxy
(cf. Section 4). In addition, we map the
Faroese characters {f}’/l’lé}, which do not oc-
cur in the other Scandinavian languages, to
{Iyud}.

For Naija, an English-based creole, whose
treebank according to the README file con-
tains spoken language data, we train a spe-
cial multilingual model on English EWT and
the three small spoken treebanks for French,
Norwegian, and Slovenian, and usd English
EWT as proxy.!?

For Thai and Breton, we create multilin-
gual models trained with word and POS
embeddings only (i.e., no character mod-
els or treebank embeddings) on Chinese and
Irish, respectively. These models make use
of multilingual word embeddings provided
with Facebook’s MUSE multilingual embed-
dings,'? as described in more detail below.

For all multi-treebank models, we choose the
model from the epoch that has the best mean LAS
score among the treebanks that have available de-
velopment data. This means that treebanks with-
out development data rely on a model that is good
for other languages in the group. In the cases
of the mono-treebank Armenian and Irish models,
where there is no development data, we choose the

2We had found this combination to be useful in prelim-
inary experiments where we tried to parse French Spoken
without any French training data.

Bhttps://github.com/facebookresearch/
MUSE
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model from the final training epoch. This also ap-
plies to the Breton model trained on Irish data.

Thai—Chinese For the Thai model trained on
Chinese, we were able to map Facebook’s mono-
lingual embeddings for each language to English
using MUSE, thus creating multilingual Thai-
Chinese embeddings. We then trained a mono-
lingual parser model using the mapped Chinese
embeddings to initialize all word embeddings, and
ensuring that these were not updated during train-
ing (unlike in the standard parser setup described
in Section 5). At test time, we look up all OOV
word types, which are the great majority, in the
mapped Thai embeddings first, otherwise assign
them to a learned OOV vector. Note that in this
case, we had to increase the word embedding di-
mension in our parser to 300 to accomodate the
larger Facebook embeddings.

Breton-Irish For Breton and Irish, the Face-
book software does not come with the necessary
resources to map these languages into English.
Here we instead created a small dictionary by us-
ing all available parallel data from OPUS (Ubuntu,
KDE and Gnome, a total of 350K text snip-
pets), and training a statistical machine translation
model using Moses (Koehn et al., 2007). From
the lexical word-to-word correspondences created,
we kept all cases where the translation probabil-
ities in both directions were at least 0.4 and the
words were not identical (in order to exclude a
lot of English noise in the data), resulting in a
word list of 6027 words. We then trained mono-
lingual embeddings for Breton using word2vec on
Wikipedia data, and mapped them directly to Irish
using MUSE. A parser model was then trained,
similarly to the Thai-Chinese case, using Irish em-
beddings as initialization, turning off updates to
the word embeddings, and applying the mapped
Breton embeddings at test time.

7 Results and Discussion

Table 2 shows selected test results for the Upp-
sala system, including the two main metrics LAS
and MLAS (plus a mono-treebank baseline for
LAS),'# the sentence and word segmentation ac-
curacy, and the accuracy of UPOS tagging and
morphological features (UFEATS). To make the
table more readable, we have added a simple color

!4Since our system does not predict lemmas, the third main
metric BLEX is not very meaningful.
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LANGUAGE TREEBANK LAS MLAS SENTS | WORDS UPOS | UFEATS SEGMENTATION TAGGING | PARSING
ARABIC PADT 73.54 | 73.54 61.04 68.06 96.19 90.70 88.25
ARMENIAN ARMTDP 23.90 | 23.90 6.97 57.44 93.20 75.39 54.45
BASQUE BDT 78.12 | 78.12 67.67 100.00 100.00 96.05 92.50
BULGARIAN BTB 88.69 | 88.69 81.20 95.58 99.92 98.85 97.51
BRETON KEB 33.62 | 33.62 13.91 91.43 90.97 85.01 70.26 FRENCH GSD SPECIAL*
CHINESE GSD 69.17 | 69.17 59.53 99.10 93.52 89.15 92.35
GREEK GDT 86.39 | 86.39 72.29 91.92 99.69 97.26 93.65
HEBREW HTB 67.72 | 67.72 44.19 100.00 90.98 80.26 79.49
HUNGARIAN SZEGED 73.97 | 73.97 56.22 94.57 99.78 94.60 86.87
INDONESIAN GSD 78.15 | 78.15 | 67.90 93.47 99.99 93.70 95.83
IRISH IDT 68.14 | 68.14 41.72 94.90 99.60 91.55 81.78
JAPANESE GSD 79.97 | 79.97 65.47 94.92 93.32 91.73 91.66
JAPANESE MODERN 28.27 | 28.27 11.82 0.00 72.76 54.60 71.06 JAPANESE GSD
LATVIAN LVTB 76.97 | 76.97 63.90 96.97 99.67 94.95 91.73
OLD FRENCH SRCMF 78.71 | 78.71 69.82 59.15 100.00 95.48 97.26
ROMANIAN RRT 84.33 | 84.33 76.00 95.81 99.74 97.46 97.25
THAI PUD 486 486 222 11.69 69.93 3375 65.72 SPECIAL*
VIETNAMESE VTB 46.15 | 46.15 | 40.03 88.69 86.71 78.89 86.43
AFRIKAANS AFRIBOOMS 7947 | 78.89 | 66.35 99.65 99.37 96.28 95.39
DUTCH ALPINO 83.58 | 81.73 | 71.11 89.04 99.62 95.78 95.89
LASSYSMALL 82.25 | 79.59 70.88 73.62 99.87 96.18 95.85
GERMAN GSD 75.48 | 75.15 53.67 79.36 99.37 94.02 88.13
ANCIENT GREEK PERSEUS 65.17 | 6295 | 4431 98.93 99.97 92.40 90.12
PROIEL 7224 | 71.58 54.98 51.17 99.99 97.05 91.04
GOTHIC PROIEL 63.40 | 60.58 49.79 31.97 100.00 93.43 88.60
LATIN ITTB 83.00 | 82.55 75.38 94.54 99.99 98.34 96.78
PERSEUS 58.32 | 49.86 37.57 98.41 100.00 88.73 78.86
PROIEL 64.10 | 63.85 51.45 37.64 100.00 96.21 91.46
OLD CHURCH SLAVONIC  PROIEL 70.44 | 70.31 58.31 44.56 99.99 95.76 88.91
BURYAT BDT 17.96 8.45 1.26 93.18 99.04 50.83 40.63 RUSSIAN SYNTAGRUS
KAZAKH KTB 31.93 | 23.85 8.62 94.21 97.40 61.72 48.45 RUSSIAN SYNTAGRUS
TURKISH IMST 61.34 | 61.77 51.23 96.63 97.80 93.72 90.42
UYGHUR UDT 62.94 | 62.38 42.54 83.47 99.69 89.19 87.00
CATALAN ANCORA 88.94 | 88.68 81.39 99.35 99.79 98.38 97.90
SPANISH ANCORA 88.79 | 88.65 81.75 97.97 99.92 98.69 98.23
CROATIAN SET 84.62 | 84.13 70.53 96.97 99.93 97.93 91.70
SERBIAN SET 86.99 | 85.14 75.54 93.07 99.94 97.61 93.70
SLOVENIAN SSJ 87.18 | 87.28 77.81 93.23 99.62 97.99 94.73
SST 56.06 | 53.27 | 4122 23.98 100.00 93.18 84.75
CZECH CAC 89.49 | 88.94 82.25 100.00 99.94 99.17 95.84
FICTREE 89.76 | 87.78 80.63 98.72 99.85 98.42 95.52
PDT 88.15 | 88.09 | 82.39 92.29 99.96 99.07 96.89
PUD 84.36 | 83.35 74.46 96.29 99.62 97.02 93.66 CZECH PDT
POLISH LFG 93.14 | 92.85 84.09 99.74 99.91 98.57 94.68
sz 89.80 | 88.48 77.28 98.91 99.94 97.95 91.82
SLOVAK SNK 86.34 | 83.80 | 71.15 88.11 99.98 96.57 89.51
UPPER SORBIAN UFAL 28.85 2.70 343 73.40 95.15 5891 42.10 SPANISH ANCORA
DANISH DDT 80.08 | 79.68 71.19 90.10 99.85 97.14 97.03
FAROESE OFT 41.69 | 39.94 0.70 95.32 99.25 65.54 34.56 DANISH DDT [ NORWEGIAN NYNORSK
NORWEGIAN BOKMAAL 88.30 | 87.68 81.68 95.13 99.84 98.04 97.18
NYNORSK 87.40 | 86.23 79.42 92.09 99.94 97.57 96.88
NYNORSKLIA 59.66 | 55.51 45.51 99.86 99.99 90.02 89.62
SWEDISH LINES 80.53 | 78.33 | 65.38 85.17 99.99 96.64 89.54
PUD 78.15 | 75.52 49.73 91.57 98.78 93.12 78.53 SWEDISH TALBANKEN
TALBANKEN 84.26 | 83.29 76.74 96.45 99.96 97.45 96.82
ENGLISH EWT 81.47 | 81.18 | 72.98 75.41 99.10 95.28 96.02
GUM 81.28 | 79.23 69.62 81.16 99.71 94.67 95.80
LINES 78.64 | 76.28 70.18 88.18 99.96 96.47 96.52
PUD 84.09 | 83.67 72.49 97.02 99.69 95.23 95.16 ENGLISH EWT
ESTONIAN EDT 81.09 | 81.47 74.11 92.16 99.96 97.16 95.80
FINNISH FTB 84.19 | 83.12 76.40 87.91 99.98 96.30 96.73
PUD 86.48 | 86.48 80.52 92.95 99.69 97.59 96.84 FINNISH TDT
TDT 84.33 | 84.24 77.50 91.12 99.78 97.06 95.58
NORTH SAAMI GIELLA 64.85 | 64.14 51.67 98.27 99.32 90.44 85.03 GERMAN GSD
FRENCH GSD 85.61 | 85.16 | 76.79 95.40 99.30 96.86 96.26
SEQUOIA 87.39 | 86.26 79.97 87.33 99.44 97.92 97.47
SPOKEN 71.26 | 69.44 60.12 23.54 100.00 95.51 100.00
GALICIAN CTG 7841 | 7827 | 65.52 96.46 98.01 95.80 97.78
TREEGAL 72.67 | 70.16 58.22 82.97 97.90 93.25 92.15
PORTUGUESE BOSQUE 84.41 | 84.27 71.76 90.89 99.00 95.90 95.41
HINDI HDTB 89.37 | 89.23 74.62 99.02 100.00 97.44 93.55
URDU UDTB 80.40 | 79.85 52.15 98.60 100.00 93.66 80.78
ITALIAN ISDT 89.43 | 89.37 | 81.17 99.38 99.55 97.79 97.36
POSTWITA 76.75 | 76.46 66.46 54.00 99.04 95.61 95.63
KOREAN GSD 81.92 | 81.12 | 77.25 92.78 99.87 95.61 99.63
KAIST 84.98 | 84.74 78.90 100.00 100.00 95.21 100.00
KURMANIJI MG 29.54 7.61 5.77 90.85 96.97 61.33 48.26 SPANISH ANCORA
PERSIAN SERAII 83.39 | 83.22 | 76.97 99.50 99.60 96.79 97.02
NAIJA NSC 2044 | 19.44 3.55 0.00 98.53 57.19 36.09 ENGLISH EWT SPECIAL*
RUSSIAN SYNTAGRUS 89.00 | 89.39 81.01 [| 98.79 99.61 98.59 94.89
TAIGA 65.49 | 59.32 46.07 66.40 97.81 89.32 82.15
UKRAINIAN U 82.70 | 81.41 59.15 93.42 99.76 96.89 81.95
[ALL OFFICIAL [[ 7237 [ 707+ | 5920 [[ 83.80 [ 98.18 [[ 969+ | 87.59 || |
[aLL CORRECTED || 7231 | 70.65 | 59.17 || 83.80 | 98.I8 [[ 90.50 | 87.59 || |
BIG 80.25 | 79.61 68.81 87.23 99.10 95.59 93.65
PUD 7227 | 71.46 57.80 75.57 94.11 87.51 87.05
SMALL 63.60 | 60.06 46.00 80.68 99.23 90.93 84.91
[ LOW-RESOURCE OFFICIAL [[ 2587 [ 4826 | 5346 [[ 6750 [ 9338 [| 6+07 | 4895 || |
| LOW-RESOURCE CORRECTED || 2533 [ 17.72 | 491 || 6750 | 9338 || 5732 | 4895 || |

Table 2: Results for LAS (+ mono-treebank baseline), MLAS, sentence and word segmentation, UPOS
tagging and morphological features (UFEATS). Treebanks sharing a parsing model grouped together;
substitute and proxy treebanks for segmentation, tagging, parsing far right (SPECIAL models detailed in
the text). Confidence intervals for coloring: | < u—0 < | < pu—SE< u < p+SE< | < pto < |.
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coding. Scores that are significantly higher/lower
than the mean score of the 21 systems that suc-
cessfully parsed all test sets are marked with two
shades of green/red. The lighter shade marks dif-
ferences that are outside the interval defined by the
standard error of the mean (i + SE, SE = a/\/]v)
but within one standard deviation (std dev) from
the mean. The darker shade marks differences that
are more than one std dev above/below the mean
(u=£ o). Finally, scores that are no longer valid be-
cause of the Thai UPOS tagger are crossed out in
yellow cells, and corrected scores are added where
relevant.

Looking first at the LAS scores, we see that our
results are significantly above the mean for all ag-
gregate sets of treebanks (ALL, BIG, PUD, SMALL,
LOW-RESOURCE) with an especially strong result
for the low-resource group (even after setting the
Thai score to 0.00). If we look at specific lan-
guages, we do particularly well on low-resource
languages like Breton, Buryat, Kazakh and Kur-
manji, but also on languages like Arabic, Hebrew,
Japanese and Chinese, where we benefit from hav-
ing better word segmentation than most other sys-
tems. Our results are significantly worse than the
mean only for Afrikaans AfriBooms, Old French
SRCME, Galician CTG, Latin PROIEL, and Por-
tuguese Bosque. For Galician and Portuguese, this
may be the effect of lower word segmentation and
tagging accuracy.

To find out whether our multi-treebank and
multi-lingual models were in fact beneficial for
parsing accuracy, we ran a post-evaluation exper-
iment with one model per test set, each trained
only on a single treebank. We refer to this as the
mono-treebank baseline, and the LAS scores can
be found in the second (uncolored) LAS column in
Table 2. The results show that merging treebanks
and languages did in fact improve parsing accu-
racy in a remarkably consistent fashion. For the
64 test sets that were parsed with a multi-treebank
model, only four had a (marginally) higher score
with the mono-treebank baseline model: Esto-
nian EDT, Russian SynTagRus, Slovenian SSJ,
and Turkish IMST. Looking at the aggregate sets,
we see that, as expected, the pooling of resources
helps most for LOW-RESOURCE (25.33 vs. 17.72)
and SMALL (63.60 vs. 60.06), but even for BIG
there is some improvement (80.21 vs. 79.61). We
find these results very encouraging, as they indi-
cate that our treebank embedding method is a reli-

able method for pooling training data both within
and across languages. It is also worth noting that
this method is easy to use and does not require ex-
tra external resources used in most work on mul-
tilingual parsing, like multilingual word embed-
dings (Ammar et al., 2016) or linguistic re-write
rules (Aufrant et al., 2016) to achieve good results.

Turning to the MLAS scores, we see a very sim-
ilar picture, but our results are relatively speaking
stronger also for PUD and SMALL. There are a few
striking reversals, where we do significantly better
than the mean for LAS but significantly worse for
MLAS, including Buryat BDT, Hebrew HTB and
Ukrainian IU. Buryat and Ukrainian are languages
for which we use a multilingual model for parsing,
but not for UPOS tagging and morphological fea-
tures, so it may be due to sparse data for tags and
morphology, since these languages have very little
training data. This is supported by the observa-
tion that low-resource languages in general have
a larger drop from LAS to MLAS than other lan-
guages.

For sentence segmentation, the Uppsala system
achieved the second best scores overall, and re-
sults are significantly above the mean for all ag-
gregates except SMALL, which perhaps indicates a
sensitivity to data sparseness for the data-driven
joint sentence and word segmenter (we see the
same pattern for word segmentation). However,
there is a much larger variance in the results than
for the parsing scores, with altogether 23 tree-
banks having scores significantly below the mean.

For word segmentation, we obtained the best re-
sults overall, strongly outperforming the mean for
all groups except SMALL. We know from previous
work (Shao et al., 2018) that our word segmenter
performs well on more challenging languages like
Arabic, Hebrew, Japanese, and Chinese (although
we were beaten by the Stanford team for the for-
mer two and by the HIT-SCIR team for the lat-
ter two). By contrast, it sometimes falls below
the mean for the easier languages, but typically
only by a very small fraction (for example 99.99
vs. 100.00 for 3 treebanks). Finally, it is worth
noting that the maximum-matching segmenter de-
veloped specifically for Thai achieved a score of
69.93, which was more than 5 points better than
any other system.

Our results for UPOS tagging indicate that this
may be the strongest component of the system,
although it is clearly helped by getting its input
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from a highly accurate word segmenter. The Upp-
sala system ranks first overall with scores more
than one std dev above the mean for all aggre-
gates. There is also much less variance than in the
segmentation results, and scores are significantly
below the mean only for five treebanks: Galician
CTG, Gothic PROIEL, Hebrew HTB, Upper Sor-
bian UFAL, and Portuguese Bosque. For Galician
and Upper Sorbian, the result can at least partly be
explained by a lower-than-average word segmen-
tation accuracy.

The results for morphological features are sim-
ilar to the ones for UPOS tagging, with the best
overall score but with less substantial improve-
ments over the mean. The four treebanks where
scores are significantly below the mean are all lan-
guages with little or no training data: Upper Sor-
bian UFAL, Hungarian Szeged, Naija NSC and
Ukrainian IU.

All in all, the 2018 edition of the Uppsala parser
can be characterized as a system that is strong
on segmentation (especially word segmentation)
and prediction of UPOS tags and morphological
features, and where the dependency parsing com-
ponent performs well in low-resource scenarios
thanks to the use of multi-treebank models, both
within and across languages. For what it is worth,
we also seem to have the highest ranking single-
parser transition-based system in a task that is oth-
erwise dominated by graph-based models, in par-
ticular variants of the winning Stanford system
from 2017 (Dozat et al., 2017).

8 Extrinsic Parser Evaluation

In addition to the official shared task evaluation,
we also participated in the 2018 edition of the Ex-
trinsic Parser Evaluation Initiative (EPE) (Fares
et al.,, 2018), where parsers developed for the
CoNLL 2018 shared task were evaluated with re-
spect to their contribution to three downstream
systems: biological event extraction, fine-grained
opinion analysis, and negation resolution. The
downstream systems are available for English
only, and we participated with our English model
trained on English EWT, English LinES and En-
glish GUM, using English EWT as the proxy.

In the extrinsic evaluation, the Uppsala system
ranked second for event extraction, first for opin-
ion analysis, and 16th (out of 16 systems) for nega-
tion resolution. Our results for the first two tasks
are better than expected, given that our system
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ranks in the middle with respect to intrinsic eval-
uation on English (9th for LAS, 6th for UPOS).
By contrast, our performance is very low on the
negation resolution task, which we suspect is due
to the fact that our system only predicts universal
part-of-speech tags (UPOS) and not the language
specific PTB tags (XPOS), since the three systems
that only predict UPOS are all ranked at the bot-
tom of the list.

9 Conclusion

We have described the Uppsala submission to the
CoNLL 2018 shared task, consisting of a seg-
menter that jointly extracts words and sentences
from a raw text, a tagger that provides UPOS
tags and morphological features, and a parser that
builds a dependency tree given the words and
tags of each sentence. For the parser we ap-
plied multi-treebank models both monolingually
and multilingually, resulting in only 34 models for
82 treebanks as well as significant improvements
in parsing accuracy especially for low-resource
languages. We ranked 7th for the official LAS and
MLAS scores, and first for the unofficial scores on
word segmentation, UPOS tagging and morpho-
logical features.
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