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Abstract

This paper describes the system of team
LeisureX in the CoNLL 2018 Shared Task:
Multilingual Parsing from Raw Text to
Universal Dependencies. Our system pre-
dicts the part-of-speech tag and depen-
dency tree jointly. For the basic tasks,
including tokenization, lemmatization and
morphology prediction, we employ the of-
ficial baseline model (UDPipe). To train
the low-resource languages, we adopt a
sampling method based on other rich-
resource languages. Our system achieves
a macro-average of 68.31% LAS F1 score,
with an improvement of 2.51% compared
with the UDPipe.

1 Introduction

The goal of Universal Dependencies (UD) (Nivre
et al., 2016; Zeman et al., 2017) is to develop
multilingual treebank, whose annotations of mor-
phology and syntax are cross-linguistically consis-
tent. In this paper, we describe our system for the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies (Zeman
et al., 2018), and we focus only on the subtasks
of part-of-speech (POS) tagging and dependency
parsing. For the intermediate steps, including tok-
enization, lemmatization and morphology predic-
tion, we tackle them by the official baseline model
(UDPipe)1.

∗ These authors made equal contribution.† Correspond-
ing author. This paper was partially supported by National
Key Research and Development Program of China (No.
2017YFB0304100), National Natural Science Foundation of
China (No. 61672343 and No. 61733011), Key Project
of National Society Science Foundation of China (No. 15-
ZDA041), The Art and Science Interdisciplinary Funds of
Shanghai Jiao Tong University (No. 14JCRZ04).

1https://ufal.mff.cuni.cz/udpipe/

Dependency parsing that aims to predict the
existence and type of linguistic dependency rela-
tions between words, is a fundamental part in nat-
ural language processing (NLP) tasks (Li et al.,
2018c; He et al., 2018). Many referential natural
language processing studies (Zhang et al., 2018;
Bai and Zhao, 2018; Cai et al., 2018; Li et al.,
2018b; Wang et al., 2018; Qin et al., 2017) can
also contribute to the universal dependency pars-
ing system. Universal dependency parsing fo-
cuses on learning syntactic dependency structure
over many typologically different languages, even
low-resource languages in a real-world setting.
Within the dependency parsing literature, there are
two dominant techniques, graph-based (McDon-
ald et al., 2005; Ma and Zhao, 2012; Kiperwasser
and Goldberg, 2016; Dozat and Manning, 2017)
and transition-based parsing (Nivre, 2003; Dyer
et al., 2015; Zhang et al., 2017). Graph-based de-
pendency parsers enjoy the advantage of the global
search which learns the scoring functions for all
possible parsing trees to find the globally high-
est scoring one while transition-based dependency
parsers build dependency trees from left to right
incrementally, which makes the series of multiple
choice decisions locally.

In our system, we adopt the transition-based de-
pendency parsing in view of its relatively lower
time complexity. Our system implements univer-
sal dependency parsing based on the stack-pointer
networks (STACKPTR) parser introduced by (Ma
et al., 2018). Furthermore, previous work (Straka
et al., 2016; Nguyen et al., 2017) showed that POS
tags are helpful to dependency parsing. In partic-
ular, (Nguyen et al., 2017) pointed out that pars-
ing performance could be improved by the merit
of accurate POS tags and the context of syntac-
tic parse tree could help resolve POS ambiguities.
Therefore, we seek to jointly learn POS tagging
and dependency parsing.

https://ufal.mff.cuni.cz/udpipe/
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As Long short-term memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997) have shown
significant representational effectiveness to a wide
range of NLP tasks, we leverage bidirectional
LSTMs (BiLSTM) to learn shared representations
for both POS tagging and dependency parsing.
In addition, to train the low-resource languages,
we adopt a sampling method based on other rich-
resource languages.

In terms of all the above model improvement,
compared to the UDPipe baseline, our system
achieves a macro-average of 68.31% LAS F1
score, with an improvement of 2.51% in this task.

2 Our Model

In this section, we describe our joint model2

for POS tagging and dependency parsing in the
CoNLL 2018 Shared Task, which is built on
the STACKPTR parser introduced by (Ma et al.,
2018). Our model is mainly composed of three
components, the representation (Section 2.1), POS
tagger (Section 2.2) and dependency parser (Sec-
tion 2.3). Figure 1 illustrates the overall model.

2.1 Representation

Representation is a key component in various NLP
models, and good representations should ideally
model both complex characteristics and linguis-
tic contexts. In our system, we follow the bi-
directional LSTM-CNN architecture (BiLSTM-
CNNs) (Chiu and Nichols, 2016; Ma and Hovy,
2016), where CNNs encode word information into
character-level representation and BiLSTM mod-
els context information of each word.

Character Level Representation Though word
embedding is popular in many existing parsers,
they are not ideal for languages with high out-of-
vocabulary (OOV) ratios. Hence, our system in-
troduces the character-level (Li et al., 2018a) rep-
resentation to address the challenge. Formally,
given a word w = {BOW, c1, c2, ..., cn, EOW},
where two special BOW (begin-of-word) and
EOW (end-of-word) tags indicate the begin and
end positions respectively, we use the CNN to ex-
tract character-level representation as follows:

ec =MaxPool(Conv(w))

2Our code will be available here: https://github.
com/bcmi220/joint_stackptr.

where the CNN is similar to the one in (Chiu and
Nichols, 2016), but we use only characters as the
inputs to CNN, without character type features.

Word Level Representation Word embedding
is a standard component of most state-of-the-art
NLP architectures. Due to their ability to cap-
ture syntactic and semantic information of words
from large scale unlabeled texts, we pre-train the
word embeddings from the given training dataset
by word2vec (Mikolov et al., 2013) toolkit. For
low-resource languages without available training
data, we sample the training dataset from similar
languages to generate a mixed dataset.

2.2 POS Tagger

To enrich morphological information, we also in-
corporate UPOS tag embeddings into the repre-
sentation. Therefore, we jointly predict the UPOS
tag in our system. The architecture for the POS
tagger in our model is almost identical to that of
the parser (Dozat et al., 2017). The tagger uses a
BiLSTM over the concatenation of word embed-
dings and character embeddings:

sposi = BiLSTMpos(ewi � eci )

Then we calculate the probability of tag for each
type using affine classifiers as follows:

hposi =MLP pos(sposi )

rposi =W poshposi + bpos

yposi = argmax(ri)

The tag classifier is trained jointly using cross-
entropy losses that are summed together with the
dependency parser loss during optimization.

Context-sensitive Representation In order to
integrate contextual information, we concatenate
the character embedding ec, pre-trained word em-
bedding ew and UPOS tag embedding epos, then
feed them into the BiLSTM. We take the bidi-
rectional vectors at the final layer as the context-
sensitive representation:

−→si = LSTMforward(e
w
i � eci � e

pos
i )

←−si = LSTMbackward(e
w
i � eci � e

pos
i )

si =
−→si �←−si

Notably, we use the UPOS tag from the output of
our POS tagging model.

https://github.com/bcmi220/joint_stackptr
https://github.com/bcmi220/joint_stackptr
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Figure 1: The joint model for POS tagging and dependency parsing.

2.3 Dependency Parsing

The universal dependency parsing component of
our system is built on the current state-of-the-art
approach STACKPTR, which combines pointer
networks (Vinyals et al., 2015) with an internal
stack for tracking the status of depth-first search.
It benefits from the global information of the sen-
tence and all previously derived subtree structures,
and removes the left-to-right restriction in classi-
cal transition-based parsers.

The STACKPTR parser mainly consists of two
parts: encoder and decoder. The encoder based on
BiLSTM-CNNs architecture takes the sequence of
tokens and their POS tags as input, then encodes
it into encoder hidden state si. The internal stack
σ is initialized with dummy ROOT. For decoder
(a uni-directional RNN), it receives the input from
last step and outputs decoder hidden state ht. The
pointer neural network takes the top element wh
in the stack σ at each timestep t as current head
to select a specific child wc with biaffine attention

mechanism (Dozat and Manning, 2017) for atten-
tion score function in all possible head-dependent
pairs. Then the child wc will be pushed onto the
stack σ for next step when c 6= h, otherwise it
indicates that all children of the current head h
have been selected, therefore the head wh will be
popped out of the stack σ. The attention scoring
function used is given as follows and the pointer
neural network uses at as pointer to select the child
element:

eti = hTt Wsi + UTht + VT si + b
at = softmax(et)

More specifically, the decoder maintains a list of
available words in test phase. For each head h at
each decoding step, the selected child will be re-
moved from the list to make sure that it cannot be
selected as a child of other head words.

Given a dependency tree, there may be multi-
ple children for a specific head. This results in
more than one valid selection for each time step,
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which might confuse the decoder. To address this
problem, the parser introduces an inside-outside
order to utilize second-order sibling information,
which has been proven to be an important feature
for parsing process (McDonald and Pereira, 2006;
Koo and Collins, 2010). To utilize the second-
order information, the parser replaces the input of
decoder from si as follows:

βi = ss ◦ sh ◦ si

where s and h indicate the sibling and head index
of node i, ◦ is the element-wise sum operation to
ensure no additional model parameters.

2.4 Loss Function
The training objective of pur system is to learn
the probability of UPOS tags Pθpos(ypos|x) and
the dependency trees Pθdep(ydep|x, y

′
pos). Given

a sentence x, the probabilities are factorized as:

Pθpos(ypos|x) =
k∑
i=1

Pθpos(pi|x)

y
′
pos = arg max

ypos∈Ypos
(Pθpos(ypos|x))

Pθdep(ydep|x, y
′
pos) =

k∑
i=1

Pθdep(pi|p<i, x, y
′
pos)

=
k∏
i=1

li∏
j=1

Pθdep(ci,j |ci,<j , p<i, x, y
′
pos)

where θpos and θdep represent the model param-
eters respectively. p<i denotes the preceding de-
pendency paths that have already been generated.
ci,j represents the jth word in pi and ci,j denotes
all the proceeding words on the path pi.

Therefore, the whole loss is the sum of three
objectives:

Loss = Losspos + Lossarc + Losslabel

where the Losspos, Lossarc and Losslabel are the
conditional likehood of their corresponding tar-
get, using the cross-entropy loss. Specifically, we
train a dependency label classifier following Dozat
and Manning (2017), which takes the dependency
head-child pair as input features.

3 System Implements

Our system focuses on three targets: the UPOS
tag, dependency arc and dependency relation.
Therefore, we rely on the UDPipe model (Straka

Treebank Sampling
Breton KEB English, Irish
Czech PUD Czech PDT

English PUD English EWT
Faroese OFT Norwegian, English, Danish,

Swedish, German, Dutch
Finnish PUD Finnish TDT

Japanese Modern Japanese GSD
Naija NSC English

Swedish PUD Swedish Talbanken
Thai PUD English, Chinese,

Hindi, Vietnamese

Table 1: Language substitution for treebanks with-
out training data

et al., 2016) to provide a pipeline from raw text
to basic dependency structures, including a tok-
enizer, tagger and the dependency predictor.

For treebanks with non-empty training dataset
(including treebanks whose training set is very
small), we utilize the baseline model UDPipe
trained on corresponding treebank, which has been
provided by the organizer. For the remaining nine
treebanks without training data, we construct the
train dataset by sampling from the other training
datasets according to the language similarity in-
spired by (Zhao et al., 2009, 2010; Wang et al.,
2015, 2016), as detailed in Table 1.

Our system adopts the hyper-parameter config-
uration in (Ma et al., 2018), with a few exceptions.
We initialize word vectors with 50-dimensional
pretrained word embeddings, 100-dimensional tag
embeddings and 512-dimensional recurrent states
(in each direction). Our system drops embeddings
and hidden states independently with 33% proba-
bility. We optimize with Adam (Kingma and Ba,
2015), setting the learning rate to 1e−3 and β1 =
β2 = 0.9. Moreover, we train models for up to 100
epochs with batch size 32 on 3 NVIDIA GeForce
GTX 1080Ti GPUs with 200 to 500 sentences per
second and occupying 2 to 3 GB graphic memory
each model. A full run over the test datasets on the
TIRA virtual machine (Potthast et al., 2014) takes
about 12 hours.

4 Results

Table 2 reports the official evaluation results of
our system in several metrics of treebanks from
the CoNLL 2018 shared task (?). For depen-
dency parsing, our model outperforms the baseline
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Results Ours Baseline Best
LAS 68.31 65.80 75.84
MLAS 53.70 52.42 61.25
BLEX 58.42 55.80 66.09
UAS 74.03 71.64 80.51
CLAS 63.85 60.77 72.36
UPOS 87.15 87.32 90.91
XPOS 83.91 85.00 86.67
Morphological features 83.46 83.74 87.59
Morphological tags 76.68 77.62 80.30
Lemmas 87.77 87.84 91.24
Sentence segmentation 83.01 83.01 83.87
Word segmentation 96.97 96.97 98.18
Tokenization 97.39 97.39 98.42

Table 2: Results on all treebanks.

with absolute gains (1.28-3.08%) on average LAS,
UAS, MLAS and CLAS. These results show that
our joint model could improve the performance of
universal dependency parsing. Surprisingly, in the
case of POS tagging, our joint model obtains lower
averaged accuracy in both UPOS and XPOS. The
possible reason for performance degradation may
be that we select all hyper-parameters based on
English and do not tune them individually.

Furthermore, we also compare the performance
of our system with the baseline and the best scorer
on big treebanks (Table 3), PUD treebanks (Table
4), low-resource languages (Table 5), respectively.

Since our model applies the baseline model for
tokenization and segmentation, we show all results
of focused metrics on each treebank in Table 6.
In addition, we compare our model with the best
and the average results of top ten models on each
treebank, using LAS F1 for the evaluation metric,
as shown in Figure 2.

5 Conclusion

In this paper, we describe our system in the
CoNLL 2018 shared task on UD parsing. Our sys-
tem uses a transition-based neural network archi-
tecture for dependency parsing, which predicts the
UPOS tag and dependencies jointly. Combining
pointer networks with an internal stack to track
the status of the top-down, depth-first search in
the parsing decoding procedure, the STACKPTR
parser is able to capture information from the
whole sentence and all the previously derived sub-
trees, removing the left-to-right restriction in clas-
sical transition-based parsers, while maintaining

Results Ours Baseline Best
LAS 77.98 74.14 84.37
MLAS 63.79 61.27 72.67
BLEX 68.55 64.67 75.83
UAS 82.27 78.78 87.61
CLAS 73.59 69.13 81.29
UPOS 93.71 93.71 96.23
XPOS 91.81 91.81 95.16
Morphological features 90.85 90.85 94.14
Morphological tags 87.56 87.56 91.50
Lemmas 93.34 93.34 96.08
Sentence segmentation 86.09 86.09 89.52
Word segmentation 98.81 98.81 99.21
Tokenization 99.24 99.24 99.51

Table 3: Results on big treebank only.

Results Ours Baseline Best
LAS 61.05 66.63 74.20
MLAS 41.95 51.75 58.75
BLEX 50.60 54.87 63.25
UAS 67.88 71.22 78.42
CLAS 57.34 61.29 69.86
UPOS 82.45 85.23 87.51
XPOS 35.66 54.27 55.98
Morphological features 78.89 83.41 87.05
Morphological tags 34.68 50.32 51.90
Lemmas 82.24 83.37 85.76
Sentence segmentation 75.53 75.53 76.04
Word segmentation 92.61 92.61 94.57
Tokenization 92.61 92.61 94.57

Table 4: Results on PUD treebank only.

Results Ours Baseline Best
LAS 17.16 17.17 27.89
MLAS 3.43 3.44 6.13
BLEX 7.63 7.63 13.98
UAS 30.07 30.08 39.23
CLAS 13.42 13.42 22.18
UPOS 45.17 45.20 61.07
XPOS 54.68 54.23 54.73
Morphological features 38.03 38.03 48.95
Morphological tags 25.86 25.72 25.91
Lemmas 54.25 54.25 64.42
Sentence segmentation 65.99 65.99 67.50
Word segmentation 84.95 84.95 93.38
Tokenization 85.76 85.76 93.34

Table 5: Results on low-resource languages only.
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Figure 2: LAS F1 score per treebank. For comparison, we include the best official result and the average
of the top ten results on each treebank.

linear parsing steps. Furthermore, our model is
single instead of ensemble, and it does not uti-
lize lemmas or morphological features. Results
show that our system achieves 68.31% in macro-
averaged LAS F1-score on the official blind test.
Further improvements could be obtained by multi-
lingual embeddings and adopting ensemble meth-
ods.
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Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). Portoro,
Slovenia.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems. pages 2692–2700.

Rui Wang, Masao Utiyama, Isao Goto, Eiichiro
Sumita, Hai Zhao, and Bao-Liang Lu. 2016. Con-
verting continuous-space language models into n-
gram language models with efficient bilingual prun-
ing for statistical machine translation. ACM Trans-
actions on Asian and Low-Resource Language In-
formation Processing 15(3):11.

Rui Wang, Hai Zhao, Bao-Liang Lu, Masao Utiyama,
and Eiichiro Sumita. 2015. Bilingual continuous-
space language model growing for statistical ma-
chine translation. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing 23(7):1209–
1220.

Rui Wang, Hai Zhao, Sabine Ploux, Bao-Liang Lu,
Masao Utiyama, and Eiichiro Sumita. 2018. Graph-
based bilingual word embedding for statistical ma-
chine translation. ACM Transactions on Asian
and Low-Resource Language Information Process-
ing (TALLIP) 17(4):31.
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