
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 45–54
Brussels, Belgium, October 31 – November 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/K18-2004

45

Semi-Supervised Neural System for Tagging, Parsing and Lemmatization

Piotr Rybak
Institute of Computer Science,
Polish Academy of Sciences

piotr.cezary.rybak@gmail.com

Alina Wróblewska
Institute of Computer Science,
Polish Academy of Sciences
alina@ipipan.waw.pl

Abstract

This paper describes the ICS PAS system
which took part in CoNLL 2018 shared
task on Multilingual Parsing from Raw
Text to Universal Dependencies. The sys-
tem consists of jointly trained tagger, lem-
matizer, and dependency parser which are
based on features extracted by a biL-
STM network. The system uses both fully
connected and dilated convolutional neu-
ral architectures. The novelty of our ap-
proach is the use of an additional loss
function, which reduces the number of cy-
cles in the predicted dependency graphs,
and the use of self-training to increase
the system performance. The proposed
system, i.e. ICS PAS (Warszawa), ranked
3th/4th in the official evaluation1 obtain-
ing the following overall results: 73.02
(LAS), 60.25 (MLAS) and 64.44 (BLEX).

1 Introduction

Most of contemporary NLP systems for machine
translation, question answering, sentiment analy-
sis, etc. operate on preprocessed texts, i.e. texts
with tokenised, part-of-speech tagged, and pos-
sibly syntactically parsed sentences. Therefore,
the development of high-quality pipelines of NLP
tools or entire systems for language preprocessing
is still an important issue. The vast majority of
language preprocessing frameworks take advan-
tage of the statistical methods, especially the su-
pervised or semi-supervised statistical methods.
Based on training data, language preprocessing
tools learn to analyse sentences and to predict mor-
phosyntactic annotations of these sentences.

1http://universaldependencies.org/
conll18/results.html

The supervised methods require gold-standard
training data whose creation is a time-consuming
and expensive process. Nevertheless, the mor-
phosyntactically annotated data sets are pub-
licly available for many languages, in particu-
lar within Universal Dependencies initiative (UD,
Nivre et al., 2016). The initiators of UD aim at de-
veloping a cross-linguistically consistent annota-
tion schema and at building a large multilingual
collection of sentences annotated according to this
schema with the universal part-of-speech tags and
the universal dependency trees.

UD treebanks are nowadays used for multi-
lingual system development (Nivre et al., 2018).
The history of developing multilingual systems
dates back to 2006 and 2007, when two shared
tasks on multilingual dependency parsing were or-
ganised at the Conference on Computational Nat-
ural Language Learning (CoNLL, Buchholz and
Marsi, 2006; Nivre et al., 2007). After 10 years,
the shared task was organised again in 2017 (Ze-
man et al., 2017), and currently there is its fourth
edition (Zeman et al., 2018).

In this paper we describe our solution submit-
ted to the CoNLL 2018 Universal Dependency
shared task. The system and the trained models
for participating treebanks are publicly available.2

Our system takes a tokenised sentence as input.
The sentence tokenisation is predicted by the base-
line model (Straka and Straková, 2017).

Each word is represented both as an external
word embedding and as a character-based word
embedding estimated by a dilated convolutional
neural network encoder (CNN, Yu and Koltun,
2016). The concatenation of these embeddings is
fed to a bidirectional long short-term memory net-
work (biLSTM, Graves and Schmidhuber, 2005;
Hochreiter and Schmidhuber, 1997) which ex-

2https://github.com/360er0/COMBO

http://universaldependencies.org/conll18/results.html
http://universaldependencies.org/conll18/results.html
https://github.com/360er0/COMBO

46

tracts the final features (see Section 2.1). The tag-
ger takes extracted features and predicts univer-
sal part-of-speech tags, language-specific tags and
morphological features using three separate fully
connected neural networks with one hidden layer
(see Section 2.2). The lemmatizer uses a dilated
CNN to predict lemmas based on characters of
corresponding words and features previously ex-
tracted by a biLSTM encoder (see Section 2.3).
As a scoring function, the graph-based depen-
dency parser uses simple dot product of the vec-
tor representations of a dependent and its gover-
nor. These representations are output by two single
fully connected layers which take feature vectors
extracted by a biLSTM encoder as input. A novel
loss function penalizes cycles, in order to reduce
their number in the predicted dependency graphs
(see Section 2.4.2). Chu-Liu-Edmonds algorithm
(Chu and Liu, 1965; Edmonds, 1967) constructs
the final dependency tree. The dependency labels
are predicted with a fully connected neural net-
work based on the dependent and its governor em-
beddings as well (see Section 2.4 for more details
on the parser’s architecture). The system architec-
ture is schematised in Figure 1.

The whole system is end-to-end trained, sepa-
rately for each treebank provided for the purposes
of the shared task. The technical details of the im-
plemented system are given in Section 3. Ad-
ditionally, for 20 selected treebanks self-training
is used to increase the performance of the mod-
els (see Section 3.4). The proposed technique of
self-training has an impact on the quality of tag-
ging, lemmatisation and parsing (see Section 4.3).
The article ends with the presentation of the results
achieved by our system (see Section 4) and some
conclusions (see Section 5).

2 Architecture Overview

2.1 Feature Extraction

The system accepts an input in the form of to-
kenised sentences that can be annotated with addi-
tional morphosyntactic information: lemmas, part-
of-speech tags, and morphological features. How-
ever, as the goal of the shared task is to predict
not only dependency trees but also parts of speech,
lemmas and morphological features,3 we decide to
use words as the only input.

3Not all treebanks are annotated with lemmas and mor-
phological features.

Character Level
Embedding

Word Level
Embedding

External
embedding UD dataset

Sentence Level
biLSTM

Lemmatizer

Label PredictionMorphological
Features Prediction

Arc PredictionPart-of-Speech
Prediction

Figure 1: The schema of the system architecture.

2.1.1 Word Level Embedding
Each input word is represented as a vector us-
ing the external pre-trained embedding. Words
not present in the external embedding are re-
placed with the “unknown” word and represented
as a random vector drawn from the normal dis-
tribution with the mean and the variance calcu-
lated based on other word embedding vectors.
Both the external embedding itself and the vec-
tor representing “unknown” word are fixed during
the training, but they are transformed by a single
fully connected layer. This transformation serves
similar purpose as a trainable embedding, but
helps with generalization, since it will also trans-
form vectors for words available in the external
embedding, but not in the training set.

2.1.2 Character Level Embedding
Additionally, each word is represented as
the character-based word embedding extracted
with a dilated convolutional neural network
(CNN). We decide to use the dilated CNN instead
of commonly used biLSTM encoder to speed up
the training of the system.

47

First, each word is transformed to a sequence
of the trainable character embeddings. More-
over, the special symbols “beginning-of-word”
and “end-of-word” are added to the sequence to
represent the beginning and the end of the word.
Then the dilated CNN encoder is used. Since
the encoder also outputs a sequence, we use
the global max-pooling operation to obtain the fi-
nal word embedding. This procedure is reasonable
for estimating embeddings of out-of-vocabulary
words, especially in languages with rich morphol-
ogy.

2.1.3 Sentence Level biLSTM
Both word representations are concatenated to-
gether and fed into the sentence level biLSTM net-
work. The network learns contexts for each word
and extracts the final features for each of these
words.

2.2 Tagger

2.2.1 Part-of-Speech Tags
The tagger is implemented as a fully connected
network with one hidden layer and soft-max ac-
tivation function. The tagger takes the features ex-
tracted by the biLSTM as input and predicts a uni-
versal part-of-speech tag and a language-specific
tag for each word.

2.2.2 Morphological Features
Similar approach is used to predict morphologi-
cal features. Each morphological feature is rep-
resented as an attribute-value pair (e.g. Num-
ber=Sing) and each word is annotated with a set of
appropriate attribute-value pairs in training data.
We therefore decide to treat the problem of mor-
phological features prediction as several classifi-
cation problems (see Figure 2).

biLSTM representation

Hidden layers

Probabilities

Case=Nom Gender=Fem Tense=NAIndividual predictions

Case=Nom|Gender=FemFinal prediction

Figure 2: The morphological features prediction.

For each attribute its value is predicted with
a fully connected network with one hidden layer
and soft-max activation function. Various words
are defined by the sets of various morphological
features. Since for each word only some attributes
are present in the set of morphological features,
the possible values are extended with “not applica-
ble” label. It allows the model to learn that an at-
tribute is not present in the set of morphological
features of a particular word.

2.3 Lemmatizer
Lemmatizer takes two different inputs. First, fea-
tures extracted by the biLSTM encoder are used,
however their dimensionality is reduced with
a single fully connected layer. Next, the word,
for which we want to predict a lemma, is con-
verted to a sequence of characters. The special
symbols “beginning-of-word” and “end-of-word”
are added to the sequence to represent the begin-
ning and the end of the word. Each character in
the sequence is represented as a trainable embed-
ding vector. The final input to the lemmatizer is
a sequence of character embeddings concatenated
with the reduced version of features extracted by
the biLSTM encoder. Note that each character em-
bedding is concatenated with exactly the same ex-
tracted feature vector.

Input word

 d o _ <e>

 d i d <e>

Character
embedding

Reduced biLSTM
representation

Dilated
CNN Layers

Character
Probabilities

Prediction

Figure 3: The lemmas prediction.

Then the dilated convolutional neural network
followed by soft-max function converts given in-

48

put to the sequence of probabilities of one-hot en-
coded characters of the predicted lemma (see Fig-
ure 3).

2.4 Parser
2.4.1 Arc Prediction
Two single fully connected layers transform fea-
tures extracted by the biLSTM encoder into head
and dependent vector representations. A fully con-
nected dependency graph is defined with an ad-
jacency matrix. The columns of the matrix cor-
respond to heads represented with heads’ vector
representations and the rows correspond to depen-
dents represented with dependents’ vector repre-
sentations. The elements of the adjacency matrix,
in turn, are dot products of all pairs of the head and
dependent vector representations. Soft-max func-
tion is then applied to each row of the matrix
to predict the adjacent head-dependent pairs (see
Figure 4).

Adjacency matrixDot product

 D
ep

en
de

nt
re

pr
es

en
ta

tio
n

 Head
representation

ROOT The car is red

copdet
nsubj

root

Figure 4: The adjacency matrix and the extracted
dependency tree of the sentence The car is red.

2.4.2 Loss Function
In order to force the network to predict the correct
head for each dependent and thus a correct depen-
dency tree, the cross-entropy loss function is used
for each row in the adjacency matrix. Note how-
ever that such formulation of the problem can lead
the network to predict an adjacency matrix with
cycles.

We aim to get an adjacency matrix for which
a simple greedy algorithm would suffice to con-

struct the correct tree. Therefore, we propose
an additional ‘cycle-penalty’ loss function which
reduces the number of cycles in the predicted ad-
jacency matrix:

loss(A) =
K∑
k=1

tr(Ak)

The non-zero trace of Ak indicates that there
are the paths of the length k in the graph repre-
sented by the adjacency matrixA (Norman, 1965).
Therefore, by minimizing the sum of the traces of
the subsequent powers ofA we reduce the number
of cycles in the predicted graph. In an ideal sce-
nario K should be equal to the length of the sen-
tence, but in practice even K = 3 helps to reduce
the number of cycles. The final loss used to train
the arc prediction model is a sum of cross-entropy
loss and ‘cycle-penalty’ loss.

If the smoothed adjacent matrix still contains
cycles, Chu-Liu-Edmonds algorithm (Chu and
Liu, 1965; Edmonds, 1967) is applied to extract
the properly built dependency tree in the final step
of the prediction procedure.

2.4.3 Label Prediction
In order to predict the label for each arc of the pre-
dicted dependency tree, the vector representations
of the arc’s head and its dependent are calculated.
These representations do not correspond to those
used during the arc prediction, but they are ob-
tained in a similar way. The estimated vector of
the dependent is concatenated with the weighted
average of its predicted head vector. The weights
correspond to probabilities of a word being the de-
pendent’s head predicted by the arc model de-
scribed in the previous section. It is not possible
to take just the vector of a single predicted head,
because it would prevent the model to be trained
together with the rest of the system, as argmax op-
eration is not differentiable. The concatenated vec-
tor representations are then fed to a single fully
connected layer with soft-max activation function.

3 Implementation Details

3.1 Network Hyperparameters

Word Embedding We use 300-dimensional
fastText word embeddings (Grave et al., 2018),4

4https://github.com/facebookresearch/
fastText/blob/master/docs/crawl-vectors.
md

https://github.com/facebookresearch/fastText/blob/master/docs/crawl-vectors.md
https://github.com/facebookresearch/fastText/blob/master/docs/crawl-vectors.md
https://github.com/facebookresearch/fastText/blob/master/docs/crawl-vectors.md

49

which are then converted to 100-dimensional vec-
tors by a single fully connected layer. The em-
bedding is not available for some languages,
i.e. for Old Church Slavonic (‘cu proiel’), Old
French (‘fro srcmf’), Gothic (‘got proiel’), Kur-
manji (‘kmr mg’), North Sámi (‘sme giella’) or it
seems incorrect, i.e. in Slovak (‘sk snk’). There-
fore, we estimate the embedding for these lan-
guages during the training of the whole system.

Character Embedding The character level em-
bedding is calculated with three convolutional lay-
ers with 512, 128 and 64 filters with dilation rates
equal to 1, 2 and 4. All of the filters have the ker-
nel of size 3. The input character embedding has
the size of 64.

Final Word Embedding The final word embed-
ding is the concatenation of the 100-dimensional
word embedding and the 64-dimensional
character-based word embedding. It has thus
164 dimensions.

Feature Extraction Two biLSTM layers with
512 hidden units are used to extract the final fea-
tures.

Tagger The tagger uses a fully connected net-
work with the hidden layer of the size 64.
The model to predict morphological features uses
the hidden layer of 128 neurons.

Lemmatizer The lemmatizer uses three convo-
lutional layers with 256 filters and dilation rates
equal to 1, 2 and 4. All of the filters have the kernel
of size 3. Then the final convolutional layer with
the kernel size equal to 1 is used to predict lem-
mas. The input characters, represented as the em-
beddings with 256 dimensions, are concatenated
with the features extracted with the biLSTM en-
coder and reduced to 32 dimensions with a single
fully connected layer.

Parser The arc model uses heads’ and depen-
dents’ vector representations with 512 dimen-
sions. The labelling model uses 128-dimensional
vectors.

All fully connected layers use tanh activation
function and all convolutional layers use rectified
linear unit (ReLU, Nair and Hinton, 2010).

3.2 Regularization

We apply both Gaussian Dropout (with
the dropout rate of 0.25) and Gaussian Noise

(with the standard deviation on 0.2) to the final
word embedding5 and after processing each
biLSTM layer. All fully connected layers use
the standard dropout (Srivastava et al., 2014)
with the dropout rate of 0.25. The biLSTM layers
use both the standard and recurrent dropout with
the rate of 0.25. Moreover, the biLSTM and
convolutional layers use L2 regularization with
the rate of 1× 10−6 and the trainable embeddings
use L2 regularization with the rate of 1× 10−5.

3.3 Training

We use cross-entropy loss for all parts of the sys-
tem. The loss for the arc prediction model is a sum
of cross-entropy loss and novel loss (see Section
2.4.2). The final loss is the weighted sum of losses
with the following weights for each task:

• 0.05 for part-of-speech tagging,

• 0.2 for morphological features prediction,

• 0.05 for lemmatization,

• 0.2 for arc prediction,

• 0.8 for label prediction.

The whole system is optimized with ADAM
(Kingma and Ba, 2014) with the learning rate
equal to 0.002 and β1 = β2 = 0.9. Typically,
the batch size of approximately 2500 words is
used, however for a few of the smallest tree-
banks the batch size is reduced to 1000 or even
75 words. Each batch consists of sentences with
a similar length, but the ordering of batches is
randomized within each epoch. Each observa-
tion (i.e. sentence) is weighted with the log of
the sentence length that forces the model to focus
on longer (and usually more difficult) sentences.
The model is trained for maximum of 400 epochs
and the learning rate is reduced twice by the factor
of two when the validation score reaches plateau.
For languages with multiple treebanks, first a gen-
eral model is trained on all sentences from these
treebanks and then the model is fine-tuned for each
treebank.

3.4 Self-training

For 20 arbitrarily selected treebanks, mostly
the smallest ones, self-training method (Triguero
et al., 2015) is used to increase the performance of

5https://keras.io/layers/noise/

https://keras.io/layers/noise/

50

the system. First the model is trained in a stan-
dard way, as described in the previous sections.
Then the ‘semi-supervised’ training set is built.
It contains sentences with the total of approxi-
mately 25M words taken from raw data6 provided
by CoNLL 2018 organizers. For Uyghur language
only 3M words are available. The provided data
sets come either from Wikipedia or Commom
Crawl. Where it is possible we choose the sen-
tences from Common Crawl, due to longer (on
average) sentence sizes. The pre-trained model is
then used to predict dependency trees, lemmas and
part-of-speech tags for all sentences in the ‘semi-
supervised’ training set. Finally, the new model
is trained on this ‘semi-supervised’ training set
for only one epoch and fine-tuned on the gold-
standard training data, using the standard training
procedure.

3.5 Languages with No Resources

Our solution for processing treebanks with no
training data is very simple. We choose another
language for which training data is available and
train the model on this data. The estimated model
is used for predictions in the language with no
training data. We use the following treebank pairs:

• ‘br keb’ (Breton)7 – ‘ga idt’ (Irish),

• ‘fo oft’ (Faroese) – ‘no nynorsk’ (Norwe-
gian),

• ‘pcm nsc’ (Naija) – ‘en ewt’ (English),

• ‘th pud’ (Thai) – ‘vi vtb’ (Vietnamese).

The parallel UD treebanks for Czech, English,
Finish, and Swedish, and the treebank for modern
Japanese are processed with the models estimated
on other treebanks for the respective languages:

• ‘cs pud’ – ‘cs pdt’ (Czech),

• ‘en pud’ – ‘en ewt’ (English),

• ‘fi pud’ – ‘fi tdt’ (Finish),

• ‘sv pud’ – ‘sv talbanken’ (Swedish),

• ‘ja modern’ – ‘ja gsd’ (Japanese).
6https://lindat.mff.cuni.cz/

repository/xmlui/handle/11234/1-1989
7The first language in each row has no training data and is

parsed with the model estimated for the second language in
the pair.

4 Results

4.1 Overview

In the official evaluation8 (Zeman et al., 2018) our
system ranks 3th/4th for all three main metrics
(ex aequo with LATTICE and UDPipe Future for
LAS). It performs particularly well on small tree-
banks with no development data, but a reasonable
size of the training set. For example, the system
ranks 1st in terms of all three measures on Russian
‘ru taiga’ treebank, 1st (MLAS and BLEX) and
2nd (LAS) on Latin ‘la perseus’ treebank and spo-
ken Slovenian ‘sl sst’ treebank, and 1st (MLAS
and BLEX) and 3rd (LAS) on spoken Norwegian
‘no nynorsklia’ treebank. It is worth noting that
overall MLAS and BLEX scores obtained by our
system trained on small treebanks are currently
the state of the art (see Table 1). With respect to
LAS score, our system ranks 3rd.

Category LAS MLAS BLEX
All 73.02 60.25 64.44
Big 81.72 70.30 74.42
PUD 72.18 58.07 60.97
Small 66.90 49.24 54.89
Low-resource 19.26 1.89 6.17

Table 1: Official results of our system in CoNLL
shared task. State-of-the-art results are in bold.

Regarding to processing big treebanks, our sys-
tem performs very well on Czech ‘cs fictree’ tree-
bank and English ‘en gum’ treebank (1st place in
MLAS and BLEX, and 2nd place in LAS), and
Latin ‘la ittb’ treebank (1st place in MLAS and
BLEX, and 3rd place in LAS). It is very important
to note that most of the mentioned languages, i.e.
Russian, Latin, Slovenian, Norwegian, and Czech,
are Indo-European languages (fusional). Further-
more, for other fusional languages, e.g. Gali-
cian, Ancient Greek, Polish, Ukrainian, Dutch,
Swedish, French, Italian, Spanish, Basque, our
system provides quite satisfying results as well. It
follows that our system is especially appropriate
for processing fusional languages.

Our last observation concerns the usefulness of
external word embeddings for NLP system with
a neural architecture. The languages without ex-
ternal word embeddings (see Section 3.1) are pro-

8http://universaldependencies.org/
conll18/results.html

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
http://universaldependencies.org/conll18/results.html
http://universaldependencies.org/conll18/results.html

51

cessed by our system significantly below its over-
all performance. Hence, the external word embed-
dings are crucial for a neural NLP system.

4.2 Impact of Loss Function

For 15 arbitrarily selected treebanks we train
the models without the additional loss function
and we compare UAS scores of these models with
UAS scores obtained by the models estimated with
the additional loss function (with K = 3, see Sec-
tion 2.4.2). Moreover for each treebank we calcu-
late what would be the fraction of trees with cycles
if we use the greedy algorithm to construct the pre-
dicted trees.

Note that the following results cannot be di-
rectly compared to the official test results. First
we report the scores on the validation set. Second
we use the gold-standard segmentation instead of
the segmentation predicted by the baseline model.

Treebank UAS % Cycles
without with without with

ar padt 86.23 86.39 7.70 4.51
bg btb 92.32 92.45 1.26 1.52
cu proiel 86.94 86.49 4.19 3.91
da ddt 86.61 86.24 5.14 4.61
de gsd 87.74 87.64 3.50 2.63
es ancora 92.39 92.49 3.08 3.39
fa seraji 90.30 90.44 5.18 4.51
got proiel 83.88 83.57 5.48 4.57
hr set 90.34 90.50 6.71 4.95
hu szeged 81.99 82.48 11.34 9.75
id gsd 84.33 84.47 6.98 6.98
lv lvtb 85.69 85.58 6.28 4.66
pt bosque 92.65 92.63 1.25 1.43
ro rrt 91.04 90.89 2.39 2.53
vi vtb 68.92 69.02 15.00 12.63
Average 86.76 86.75 5.70 4.84

Table 2: Comparison of the models trained with
and without the additional loss function.

The additional loss only slightly decreases UAS
(see the second and the third column in Table
2). However, it also has only a small impact on
the cycles reduction (see the fourth and the fifth
column in Table 2). If there is a lot of cycles in
the graphs predicted without the additional loss,
e.g. 7.7% cycles in ‘ar padt’ (Arabic), the num-
ber of cycles is significantly reduced with the addi-

tional loss function, i.e. the reduction by 3.2 p.p. If
the rate of cycles is lower, e.g. 4.19% in ‘cu proiel’
(Old Church Slavonic), fewer cycles are corrected,
i.e. the reduction by 0.28 p.p. Finally, there are
four treebanks – ‘bg btb’ (Bulgarian), ‘es ancora’
(Spanish), ‘pt bosque’ (Portuguese), and ‘ro rrt’
(Romanian), for which the additional loss function
slightly increases the number of cycles.

4.3 Impact of Self-training

We test the impact of self-training method on
the performance of the system trained on 20 se-
lected treebanks. Again the models are tested on
the validation set with the gold-standard segmen-
tation.

Comparing the results of the models estimated
on training data with the results of the models
estimated with the self-training method (see Ta-
ble 3), we notice that self-training significantly in-
creases the performance of the system. There is
an increase for all metrics for all treebanks except
for ‘zh gsd’ (Chinese). On average there is an in-
crease of 1.2 p.p. for LAS, 2.9 p.p. for MLAS and
1.7 p.p. for BLEX.

5 Conclusion

We described the ICS PAS system which took
part in CoNLL 2018 shared task. Our goal was
to build one system for preprocessing natural lan-
guages, i.e. for part-of-speech tagging, lemmatisa-
tion and dependency parsing. The three system’s
modules – tagger, lemmatizer and parser – are
jointly trained. The proposed neural system ranks
3th/4th in the official evaluation of the shared task.
It is worth nothing that the system is especially
useful for estimating the models on relative sparse
data (small treebanks), as it overcame other sys-
tems in terms of MLAS and BLEX. Furthermore,
our system is especially appropriate for processing
Indo-European fusional languages.

The self-training procedure significantly in-
creases the performance of the system. The pro-
posed loss function, in turn, has only a slight
impact on the cycles reduction and UAS scores.
The external word embeddings are crucial for our
neural-based system.

52

Treebank LAS MLAS BLEX
std self std self std self

bg btb 88.84 89.23 79.39 80.12 78.89 79.21
da ddt 83.24 84.89 72.40 75.76 76.73 78.93
el gdt 87.89 89.19 73.55 76.98 74.06 77.30
eu bdt 81.58 82.85 65.94 68.15 76.29 77.49
fa seraji 86.91 87.22 80.19 81.18 80.86 81.36
ga idt N/A N/A N/A N/A N/A N/A
he htb 84.39 85.60 71.31 73.63 73.87 75.34
hr set 86.06 86.22 71.17 71.61 79.01 79.38
hu szeged 77.39 80.55 60.77 67.28 70.55 74.41
id gsd 77.62 77.97 64.27 66.22 74.03 74.62
kk ktb N/A N/A N/A N/A N/A N/A
lv lvtb 80.52 82.67 65.53 69.11 71.71 74.19
ro rrt 85.88 86.68 76.49 77.57 79.47 80.39
sk snk 83.44 85.52 56.05 66.69 72.77 77.13
tr imst 64.07 64.95 49.26 51.97 57.15 58.87
ug udt 63.89 65.50 38.21 41.83 51.48 53.89
uk iu 85.83 87.91 68.35 73.69 78.35 81.65
ur udtb 80.91 81.34 52.92 53.48 71.09 71.72
vi vtb 58.82 60.52 49.29 51.87 54.85 56.93
zh gsd 77.09 76.71 65.17 64.88 69.68 68.93
Average 79.69 80.86 64.46 67.33 71.71 73.43

Table 3: Comparison of the standard (std) and self-training (self) models on the validation set using
the gold-standard segmentation. Note that ‘kk ktb’ (Kazakh) and ‘ga idt’ (modern Irish) treebanks do
not have validation sets, so we are unable to report any results.

Acknowledgements

The research presented in this paper was founded
by SONATA 8 grant no 2014/15/D/HS2/03486
from the National Science Centre Poland and by
the Polish Ministry of Science and Higher Educa-
tion as part of the investment in the CLARIN-PL
research infrastructure.

References

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on Multilingual Dependency Parsing. In
Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning. pages 149–164.

Yoeng Jin Chu and Tseng Hong Liu. 1965. On the
Shortest Arborescence of a Directed Graph. Science
Sinica 14:1396–1400.

Jack Edmonds. 1967. Optimum Branchings. Jour-
nal of Research of the National Bureau of Standards
71B(4):233–240.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings
of the International Conference on Language Re-
sources and Evaluation (LREC 2018).

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise Phoneme Classification with Bidirectional
LSTM and Other Neural Network Architectures.
Neural Networks 18(5):602–610.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A Method for Stochastic Optimization. CoRR
abs/1412.6980. http://arxiv.org/abs/1412.6980.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
Linear Units Improve Restricted Boltzmann Ma-
chines. In Proceedings of ICML’10, pages 807–814.

Joakim Nivre, Mitchell Abrams, Željko Agić, Lars
Ahrenberg, Lene Antonsen, Maria Jesus Aranzabe,
Gashaw Arutie, Masayuki Asahara, Luma Ateyah,

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

53

Mohammed Attia, Aitziber Atutxa, Liesbeth
Augustinus, Elena Badmaeva, Miguel Balles-
teros, Esha Banerjee, Sebastian Bank, Verginica
Barbu Mititelu, John Bauer, Sandra Bellato, Kepa
Bengoetxea, Riyaz Ahmad Bhat, Erica Biagetti,
Eckhard Bick, Rogier Blokland, Victoria Bobicev,
Carl Börstell, Cristina Bosco, Gosse Bouma, Sam
Bowman, Adriane Boyd, Aljoscha Burchardt, Marie
Candito, Bernard Caron, Gauthier Caron, Gülşen
Cebiroğlu Eryiğit, Giuseppe G. A. Celano, Savas
Cetin, Fabricio Chalub, Jinho Choi, Yongseok Cho,
Jayeol Chun, Silvie Cinková, Aurélie Collomb,
Çağrı Çöltekin, Miriam Connor, Marine Courtin,
Elizabeth Davidson, Marie-Catherine de Marn-
effe, Valeria de Paiva, Arantza Diaz de Ilarraza,
Carly Dickerson, Peter Dirix, Kaja Dobrovoljc,
Timothy Dozat, Kira Droganova, Puneet Dwivedi,
Marhaba Eli, Ali Elkahky, Binyam Ephrem, Tomaž
Erjavec, Aline Etienne, Richárd Farkas, Hector
Fernandez Alcalde, Jennifer Foster, Cláudia Freitas,
Katarı́na Gajdošová, Daniel Galbraith, Marcos
Garcia, Moa Gärdenfors, Kim Gerdes, Filip Gin-
ter, Iakes Goenaga, Koldo Gojenola, Memduh
Gökırmak, Yoav Goldberg, Xavier Gómez Guino-
vart, Berta Gonzáles Saavedra, Matias Grioni,
Normunds Grūzītis, Bruno Guillaume, Céline
Guillot-Barbance, Nizar Habash, Jan Hajič, Jan
Hajič jr., Linh Hà Mỹ, Na-Rae Han, Kim Harris,
Dag Haug, Barbora Hladká, Jaroslava Hlaváčová,
Florinel Hociung, Petter Hohle, Jena Hwang, Radu
Ion, Elena Irimia, Tomáš Jelı́nek, Anders Johannsen,
Fredrik Jørgensen, Hüner Kaşıkara, Sylvain Kahane,
Hiroshi Kanayama, Jenna Kanerva, Tolga Kayade-
len, Václava Kettnerová, Jesse Kirchner, Natalia
Kotsyba, Simon Krek, Sookyoung Kwak, Veronika
Laippala, Lorenzo Lambertino, Tatiana Lando,
Septina Dian Larasati, Alexei Lavrentiev, John
Lee, Phuong Lê Hông, Alessandro Lenci, Saran
Lertpradit, Herman Leung, Cheuk Ying Li, Josie Li,
Keying Li, KyungTae Lim, Nikola Ljubešić, Olga
Loginova, Olga Lyashevskaya, Teresa Lynn, Vivien
Macketanz, Aibek Makazhanov, Michael Mandl,
Christopher Manning, Ruli Manurung, Cătălina
Mărănduc, David Mareček, Katrin Marheinecke,
Héctor Martı́nez Alonso, André Martins, Jan
Mašek, Yuji Matsumoto, Ryan McDonald, Gustavo
Mendonça, Niko Miekka, Anna Missilä, Cătălin
Mititelu, Yusuke Miyao, Simonetta Montemagni,
Amir More, Laura Moreno Romero, Shinsuke
Mori, Bjartur Mortensen, Bohdan Moskalevskyi,
Kadri Muischnek, Yugo Murawaki, Kaili Müürisep,
Pinkey Nainwani, Juan Ignacio Navarro Horñiacek,
Anna Nedoluzhko, Gunta Nešpore-Bērzkalne,
Luong Nguyên Thi., Huyên Nguyên Thi. Minh,
Vitaly Nikolaev, Rattima Nitisaroj, Hanna Nurmi,
Stina Ojala, Adédayò. Olúòkun, Mai Omura,
Petya Osenova, Robert Östling, Lilja Øvrelid,
Niko Partanen, Elena Pascual, Marco Passarotti,
Agnieszka Patejuk, Siyao Peng, Cenel-Augusto
Perez, Guy Perrier, Slav Petrov, Jussi Piitulainen,
Emily Pitler, Barbara Plank, Thierry Poibeau,
Martin Popel, Lauma Pretkalniņa, Sophie Prévost,
Prokopis Prokopidis, Adam Przepiórkowski, Tiina

Puolakainen, Sampo Pyysalo, Andriela Rääbis,
Alexandre Rademaker, Loganathan Ramasamy,
Taraka Rama, Carlos Ramisch, Vinit Ravishankar,
Livy Real, Siva Reddy, Georg Rehm, Michael
Rießler, Larissa Rinaldi, Laura Rituma, Luisa
Rocha, Mykhailo Romanenko, Rudolf Rosa, Da-
vide Rovati, Valentin Ros, ca, Olga Rudina, Shoval
Sadde, Shadi Saleh, Tanja Samardžić, Stephanie
Samson, Manuela Sanguinetti, Baiba Saulı̄te,
Yanin Sawanakunanon, Nathan Schneider, Sebas-
tian Schuster, Djamé Seddah, Wolfgang Seeker,
Mojgan Seraji, Mo Shen, Atsuko Shimada, Muh
Shohibussirri, Dmitry Sichinava, Natalia Silveira,
Maria Simi, Radu Simionescu, Katalin Simkó,
Mária Šimková, Kiril Simov, Aaron Smith, Is-
abela Soares-Bastos, Antonio Stella, Milan Straka,
Jana Strnadová, Alane Suhr, Umut Sulubacak,
Zsolt Szántó, Dima Taji, Yuta Takahashi, Takaaki
Tanaka, Isabelle Tellier, Trond Trosterud, Anna
Trukhina, Reut Tsarfaty, Francis Tyers, Sumire
Uematsu, Zdeňka Urešová, Larraitz Uria, Hans
Uszkoreit, Sowmya Vajjala, Daniel van Niekerk,
Gertjan van Noord, Viktor Varga, Veronika Vincze,
Lars Wallin, Jonathan North Washington, Seyi
Williams, Mats Wirén, Tsegay Woldemariam, Tak-
sum Wong, Chunxiao Yan, Marat M. Yavrumyan,
Zhuoran Yu, Zdeněk Žabokrtský, Amir Zeldes,
Daniel Zeman, Manying Zhang, and Hanzhi
Zhu. 2018. Universal Dependencies 2.2. LIN-
DAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics (ÚFAL), Faculty
of Mathematics and Physics, Charles University.
http://hdl.handle.net/11234/1-2837.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajič, Christopher D.
Manning, Ryan T. McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel
Zeman. 2016. Universal Dependencies v1: A Mul-
tilingual Treebank Collection. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation LREC 2016. pages 1659–
1666.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 Shared Task on De-
pendency Parsing. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007. pages
915–932.

R. L. Norman. 1965. A matrix method
for location of cycles of a directed
graph. AIChE Journal 11(3):450–452.
https://doi.org/10.1002/aic.690110316.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov.
2014. Dropout: A simple way to prevent
neural networks from overfitting. Journal of
Machine Learning Research 15:1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html.

Milan Straka and Jana Straková. 2017. Tokenizing,
POS Tagging, Lemmatizing and Parsing UD 2.0

http://hdl.handle.net/11234/1-2837
http://hdl.handle.net/11234/1-2837
https://doi.org/{10.1002/aic.690110316}
https://doi.org/{10.1002/aic.690110316}
https://doi.org/{10.1002/aic.690110316}
https://doi.org/{10.1002/aic.690110316}
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf

54

with UDPipe. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies. Association for Compu-
tational Linguistics, Vancouver, Canada, pages 88–
99. http://www.aclweb.org/anthology/K/K17/K17-
3009.pdf.

Isaac Triguero, Salvador Garcı́a, and Fran-
cisco Herrera. 2015. Self-labeled tech-
niques for semi-supervised learning: taxon-
omy, software and empirical study. Knowl-
edge and Information Systems 42:245–284.
https://doi.org/https://doi.org/10.1007/s10115-013-
0706-y.

Fisher Yu and Vladlen Koltun. 2016. Multi-Scale Con-
text Aggregation by Dilated Convolutions. CoRR
abs/1511.07122. http://arxiv.org/abs/1511.07122.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal De-
pendencies. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics, Brussels, Belgium, pages 1–20.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdenka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria de-
Paiva, Kira Droganova, Héctor Martı́nez Alonso,
Çağrı Çöltekin, Umut Sulubacak, Hans Uszkor-
eit, Vivien Macketanz, Aljoscha Burchardt, Kim
Harris, Katrin Marheinecke, Georg Rehm, Tolga
Kayadelen, Mohammed Attia, Ali Elkahky, Zhuo-
ran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadová, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Niti-
saroj, and Josie Li. 2017. CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies. In Proceedings of the
CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies. As-
sociation for Computational Linguistics, pages 1–
19. http://www.aclweb.org/anthology/K/K17/K17-
3001.pdf.

http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
https://doi.org/https://doi.org/10.1007/s10115-013-0706-y
https://doi.org/https://doi.org/10.1007/s10115-013-0706-y
https://doi.org/https://doi.org/10.1007/s10115-013-0706-y
https://doi.org/https://doi.org/10.1007/s10115-013-0706-y
https://doi.org/https://doi.org/10.1007/s10115-013-0706-y
http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/1511.07122
http://www.aclweb.org/anthology/K/K17/K17-3001.pdf
http://www.aclweb.org/anthology/K/K17/K17-3001.pdf
http://www.aclweb.org/anthology/K/K17/K17-3001.pdf
http://www.aclweb.org/anthology/K/K17/K17-3001.pdf
http://www.aclweb.org/anthology/K/K17/K17-3001.pdf

