CEA LIST : Processing low-resource languages for
CoNLL 2018 Shared Task

Elie Duthoo

Abstract

In this paper, we describe the first CEA
LIST participation at the CoNLL 2018
shared task. The submitted system is
based on the state of the art parser from
CoNLL 2017, that has been improved
by the addition of morphological features
predictions and the integration of addi-
tional resources to provide accurate mod-
els for low-resource languages. Our ap-
proach ranked 5" of 27 participants in
MLAS for building morphology aware de-
pendency trees, 2™ for morphological fea-
tures only, and 3" for tagging (UPOS) and
parsing (LAS) low-resource languages.

1 Introduction

The CoNLL 2018 Shared Task (Zeman et al.,
2018) is dedicated to developing dependency
parsers on many languages, including low-
resource languages. Our system uses the Stan-
ford team parserl (Dozatetal., 2017) which was at
the state of the art during the CoNLL 2017 shared
task. We will refer to it as ”’stf parser” in this arti-
cle. We also used UDPipe (Straka et al., 2016) for
tokenization, sentence segmentation, word align-
ment, lemmas and XPOS tags. Our main pur-
pose is not to propose a new parser system, our
approach is mainly focused on the adaptation of
existing systems to low-resources languages.

However, we also propose some improvements of
the stf parser on multiple levels: (1) the training
time is shorter and the models are more accurate
for features and XPOS tags predictions (even if
we didn’t use the predicted XPOS tags in the final
submission) (2) we studied the hyper-parameters
in order to find the best configuration (3) we im-

'https://github.com/tdozat/Parser-v2

Olivier Mesnard
CEA, LIST, Laboratory of Vision and Content Engineering
elie.duthoo@protonmail.com
olivier.mesnard@cea. fr

34

plemented an optimal tree construction instead of
a greedy one, based on Stanford team recommen-
dations in their 2017 paper.

We spent five man-month to provide these results,
with two additional man-month dedicated to Bre-
ton corpus.

For low-resource languages, we based our ap-
proach on the following available data : OPUS
corpus, Wikipedia data (Wiktionary) and word
embeddings.

2 Architecture

Our architecture mainly reused the proposed
architecture of the 2017 state of the art system.
Here is a brief reminder to explain what we used
and how we used it. The model uses character
embeddings, pre-trained word embeddings and
post-trained word embeddings.

o Firstly, the raw text is processed by UDPipe.

e Then the stf tagger annotates the data with
UPOS, XPOS and Features tags. Both the tag-
ger and the parser use bi-LSTM layers on word
embeddings. The tagger and the parser are sep-
arately trained models even if the models struc-
tures are really close.

Finally, for each word, the parser concatenates
one word level embedding (which is the sum of
chars + pre-trained + trained embeddings) with
one POS tag level embedding (UPOS + XPOS +
features). POS tag embeddings are also learned
during the training. We didn’t use lemmas. The
stf parser is graph-based.

We only used XPOS tags where they were con-
tributing to the UPOS, XPOS, features trio. We
evaluated this contribution by comparing the num-
ber of unique XPOS tags per corpus to the num-
ber of unique features. Some XPOS tags contains
multiple tag information (which is almost always

Proceedings of the CoONLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 34—44
Brussels, Belgium, October 31 — November 1, 2018. (©2018 Association for Computational Linguistics
https://doi.org/10.18653/v1/K18-2003

the case for the features) and could thus contribute
more to the word embedding. For almost all lan-
guages, the parser is based on three bi-LSTM lay-
ers (300neurons/layer) and the tagger on two bi-
LSTM layers(200neurons/layer). The tagger ends
with a 120 neurons IReLU layer. The parser ends
with a 500 neurons IReLU layer for learning arc
probabilities, and a 170 neurons IReLU layer for
predicting the labels of the dependencies. For lan-
guages with less than 1500 sentences, we used a
parser composed of only one bi-LSTM layer and
smaller IReLLU layers.

We only kept the best system evaluated on dev data
for each language on each of the last two steps.
Our measure for the tagger was the combination of
UPOS and Features annotations (like Alltags with-
out XPOS), if UDPipe was better than stf, we used
UDPipe. Our measure for the parser was the LAS.
For the evaluation, the predicted XPOS tags were
removed from the parsed file and changed to the
UDPipe ones, however the predicted XPOS were
used by the parser when they were predicted by the
tagger. We didn’t evaluate the XPOS tags as we
needed to sort the sub-XPOS tags (these sub-POS
tags are sorted in alphabetical order for features
which is really more convenient). The problem
was only that we had to sort the sub-XPOS tags
in order to have a score on them, but sorting them
is not required to have them used in the parser.

A table has been produced to summarize the con-
figuration (cf table 1).

3 Enhancements

3.1 Features

The initial architecture provided by Stanford team
was restricted to predicting UPOS tags only, or
UPOS tags and XPOS tags. We added a third type
of tagger to predict UPOS tags, XPOS tags and
morphological features at the same time.

As we said earlier, the tagger takes into account
characters by using a LSTM on each character
and using a linear attention layer on the LSTM
outputs, so we did expect great results on features.
However, POS tags are heterogeneously for-
matted: the UPOS tag represents only one
information, but a feature tag generally contains
many sub-tags, and XPOS tags may also contain
sub-tags depending on the treebank. The original
architecture didn’t tackle this problem and was
processing all tags as if they were unary tags.

35

It means, for example, that for Latin-ITTB,
the tagger ended with a IReLU layer that was
choosing the best class between 3129 classes.

We added a IReLU layer for each sub-class at the
end of the network so that the backpropagation
only backpropagates error on a subclass level,
thus being more accurate when building character
embeddings. This architecture was extended to
XPOS tags, as they may also contains subclasses.
Finally the score that was used to stop the training
and keep the best model was the "UPOS and
Features” score, counting a word ok only if it had
the exact UPOS tag and the exact features tags.

To sum up, for each sub-category (for exam-
ple, the tense of a verb), a different IReLU layer
determines if the word corresponds to one of
the sub-category possible values (none, present,
future, past..).

3.2 Hyperparameters

In order to understand the impact of the param-
eters on the architecture, we performed some
random search optimization on hyperparameters,
for a subset of languages (Russian, Hebrew,
French, Uyghur, Vietnamese, Ancient Greek and
Bulgarian) that we considered representative.
We studied the following parameters: dropout
on word embeddings, dropout on character
embeddings, word embeddings merging strategy
(whether to sum or concatenate the word embed-
ding coming from characters and the pre/post
trained word embeddings), case sensitivity,
number of bi-LSTM layers, number of neurons
for bi-LSTM, IReLU layers sizes, IReLU layers
dropout, and some optimizer parameters like the
learning rate.

e number of bi-LSTM The number of bi-LSTM
layers deeply affects the score probably because
of the vanishing gradient problem. Best scores
were achieved for one to three bi-LSTM. With
four layers, some models fail to converge and
with five layers, no converging model is found.
dropout For dropout on character embeddings,
we found that is wasn’t useful (initial value was
0.5 (50%) but optimal value was between 0 and
0.1). Other dropout did not have a clear influ-
ence.
e learning rate The learning rate was tuned based
on the model (tagger / parser) as the optimal
value wasn’t the same depending on the task and

Lang Tokenizer | Tagger | XPOS | Parser Smaller neural network
af-afribooms baseline | stf used | stf yes
br-keb nl-alpino | stf unused | stf no
bxr-bdt baseline | udp unused | udp no
en-lines baseline | stf used | stf no
fo-oft da-ddt stf unused | stf no
fr-spoken baseline | stf unused | stf yes
ga-idt baseline | udp unused | udp yes
gl-ctg baseline | stf used | stf no
gl-treegal baseline | udp unused | udp no
hsb-ufal baseline | udp unused | udp no
hu-szeged baseline | stf unused | stf yes
hy-armtdp baseline | udp unused | stf yes
kk-ktb baseline | udp unused | udp no
kmr-mg baseline | udp unused | udp no
ko-gsd baseline | stf used | stf no
ko-kaist baseline | stf used | stf no
la-ittb baseline | stf used | stf no
la-perseus baseline | udp unused | udp no
nl-alpino baseline | stf used | stf no
nl-lassysmall baseline | stf used | stf no
no-nynorsklia | baseline | udp unused | no-nynorsk no
pcm-nsc en-lines | stf unused | stf no
ru-taiga baseline | udp unused | ru-syntagrus no
sl-sst baseline | udp unused | udp no
sme-giella baseline | udp unused | udp no
th-pud own stf used | stf no
vi-vtb baseline | stf used | stf yes
zh-gsd baseline | stf used | stf no
all others baseline | stf unused | stf no

Other models used

cs-pud & cs-pdt, sv-pud & sv-lines, fi-pud & fi-tdt, ja-modern & ja-gsd (udp), en-pud & en-gum

pcm-nsc

\ en-lines (stf without post-trained embeddings)

Table 1: Summary table of specific configurations per languages. udp = UDPipe architecture

both tasks didn’t have the same optimal archi-
tecture.

o other parameters Other parameters did not
have a clear empirical influence on the score,
such as the number of neurons on each layer
(from 50 to 500) and other parameters of the op-
timizer.

3.3 Stopping criteria

Depending on the model (tagger/parser), the stop-
ping criteria was based on UPOSandFeats score or
LAS. The first thing we did with the parser was to
improve the training time. The previous algorithm
stopped the training only if the model didn’t im-
prove at all for 5000 iterations (which could cor-
respond to 2 hours on our environment), or after a
maximum number of iterations. This means that
the training would go on even for an improvement
of 0.01% each hour. In practice, with this config-

36

uration, the longest model took 24 hours to train.
We added two stopping criteria:

- The first is the time, the training time shouldn’t
exceed 2 hours. The training time depends on the
architecture so we chose the value depending on
our experiments
- The second is the average progression of the sys-
tem per hour during the last 20 validations (we set
one validation each 120 iteration). If the system
was under 0.1% per hour, we stopped the training.

With these criteria, almost all models are con-
verging really fast (in 30 minutes they were al-
ready close by 1% to their best score).

3.4 Optimal directed spanning tree

The graph-based model parser predicts a probabil-
ity of parent for each word of the sentence. The
default algorithm in the stf parser is greedy but the
Stanford team recommended to implement an op-

timal algorithm to provide non-projective depen-
dency trees as a lot of treebanks contains at least
one non-projective tree.

In fact, 99% of all trees are projectives (non-
weighted average across all proportions in all tree-
banks). But building the optimal non-projective
spanning tree based on probabilities should also
help in building projective trees (as projective trees
are a subset of non-projective trees), and some
treebanks contain a lot more of non-projective
trees (10% for Ancient Greek Perseus).

We implemented the Chu-Liu-Edmonds algorithm
(Edmonds, 1967) and evaluated the result. We
didn’t notice a great improvement (less than
0.1%), we suppose that the probabilities were high
enough so that a greedy algorithm doesn’t have
troubles predicting the optimal tree by always
choosing the highest probability.

Empirically, the stf parser does build more nonpro-
jective trees than in the training set, one could con-
sider implementing the Eisner algorithm (Eisner,
1996) and make a compromise between Edmonds
and FEisner algorithms based on the probabilities
in each tree and on the non-projective proportion
wished.

3.5 Including an embedding from the tagger
in the parser

In the stf parser, the tagger and the parser are sepa-
rated. The parser builds its own UPOS tag embed-
dings but do not take into account the probabilities
of each tag proposed by the tagger. The fact that
one word has one tag instead of another could be
subjective in some circumstances and as the tag-
ger doesn’t get 100% in UPOS tag prediction, the
parser should get the information that the tag it is
reading is just a choice over many others, based on
probabilities.

For some languages like French, the tagger could
confuse verbs and auxiliaries. For these tags, the
probability could be something like 70% verb and
30% auxiliary, and the tagger will label the word
as a ’verb”. Making a mistake on which word is a
verb and which one is an auxiliary affects the de-
pendency tree. We therefore extracted these prob-
abilities from the tagger to introduce them in the
parser.

This experiment didn’t show a clear improvement
in the results. We think that the parser has trouble
learning from these probabilities because they are
almost always at one (the tagger rarely makes mis-
takes). Maybe one could improve the system by

37

not adding the probabilities directly but the output
of the layer before the softmax. This improvement
was not included in the final submission.

4 Cross-lingual transfer for low-resource
languages

The rest of our work was focused on cross-lingual
transfer methods and data mining to address the
problem of low-resource languages. The main
idea of our models is to build an artificial treebank
on which we could learn a tagger / parser. As
exposed by (Tiedemann and Agié, 2016), many
techniques may be used to build artificial tree-
banks. They identified mainly 1) model transfer
(for example, building a delexicalized parser from
a rich-resource language and using it directly on
a target language corpus annotated beforehand
with POS tags), 2) direct annotation projection
(relying on word alignments of a bitext to project
POS annotation), 3) treebank translation and 4)
cross-lingual word embeddings. The use of partial
annotations with dictionary may complete these
four techniques. We relied on quality of available
data to choose the best suited technique. Our
analysis started on all low-resource languages
but we applied our process to only 3 languages:
Breton, Faroese and Thai because of the lack of
valuable data for others”. Extending the capacities
of our models is certainly doable but a lot of
regularization on data should be done. We present
a summary of our choices in table 2.

4.1 Breton

Breton treebank has been built with direct an-
notation projection (Tiedemann and Agi¢, 2016).
There were neither training nor evaluation tree-
bank for Breton. Breton is member of Celtic lan-
guage family but no large treebank exists in this
family (Irish_IDT is a 1020 only sentences cor-
pus). We decided to use the most valuable and
available resources for Breton: Wiktionary, word
embeddings from Facebook?, combined as in Wis-
niewski et al. (2014) with cross-lingual projection
from a larger parallel corpus to build our own arti-
ficial learning corpus.

We selected OfisPublik from OPUS (Tiedemann,
2009) site as parallel corpus for cross lingual

2We also had results on Upper Sorbian but failed to submit
the model.
3https://git.io/fbjDv

Role | Breton | Thai | Faroese
Tokenization model transfer dictionary model transfer
POS annotation projection+Wiktionary | annotation projection+Wiktionary | model transfer (*)
Dependencies annotation projection model transfer (*) model transfer (*)

Table 2: choices made to build our artificial treebanks for low-resource languages

(*) with cross-lingual embeddings

transfer. This corpus is composed of more than
60.000 sentences dumped from a bilingual institu-
tional site about Breton language®.

We proceeded as follow:

Statistics on parse tree: We computed some
statistics on Irish treebank: the counts of occur-
rences of all types of arc, indexed by triples (head
UPOS, dependency UPOS, arc label) to setup a
prior distribution probability.

Lexicon: We built a lexicon of form-
category from the most recent brwiktionary dump
(20/05/2018). We obtain 26650 entries with
mostly one category. When there are more than
one category, we preserved the order, assessing
that the most frequent category is the first men-
tioned in Wiktionary. Using links to other Wik-
tionaries we manually translated the 53 categories
into UPOS tag.

Parallel corpus: We filtered the parallel corpus
and excluded some sentences: those with less than
3 words (br or fr), those with more than 30 words
(br or fr) and those whose ratio of size of origi-
nal sentence upon translated sentence is not in the
range [1/3,3].

Tokenization: We used UDPipe with Dutch
model to tokenize the Breton side of the paral-
lel corpus. We chose Dutch because it preserves
”c’h” sequence of character which is the transcript
of a very frequent consonant in Breton.

Word Alignment: We built a word alignment
of the tokenized parallel corpus with efmaral®. We
used forward and reverse alignment and combined
them with atools from fastalign® with grow-diag-
final-and mode.

Annotation: We used UDPipe to annotate the
French side corpus with baseline UDPipe model
for French.

POS tagging: We have performed UPOS anno-
tation within four steps.

1. Use our lexicon to annotate supposedly non
ambiguous tokens with word type: when the

*http://www.fr.brezhoneg.bzh
Shttps://github.com/robertostling/efmaral
Shttps://github.com/clab/fast_align

38

form of a token has an entry with only one cat-
egory, the value is used as UPOS.

Use our lexicon to annotate ambiguous tokens
with hypotheses of word type : when a form
has an entry with more than one category, the
set of values is associated to the token within
the upos_lexicon attribute.

Used bre2fre alignment to collect hypotheses
of token type: when a token is in the bre2fre
mapping, we collect the UPOS of all tokens in
French side within the upos_alignment attribute
Intersect upos_alignment and upos_lexicon to
select most likely UPOS.

At the end of the process, sentences without
complete POS tagging are discarded.

Lemma: We have not built any specific solution
for lemmatisation and we reproduce the form as
value for lemma.

Features: We have projected features from the
French side. Because there is no features in our
lexicon, features comes only from cross-lingual
projection. At the end of first pass we collect all
features annotation and we add this data to our lex-
icon. Then, we use this enhanced lexicon as source
to annotate tokens with features when this infor-
mation exists in the lexicon.

Head and label: We walk through French de-
pendency tree starting from root node, and use
alignment fre2bre to project dependency annota-
tion (arc and label) when structures of French and
Breton seem to be the same. We initialize a stack
with the pair (root of French tree, root of Breton
tree), the second member is chosen as the word
aligned with root of French tree.

As long as the stack is not empty:

e pop a pair (fre_head, bre_head)

e get fre_children from fre_head and get UPOS
from each fre_child

e for each bre_node in fre2bre alignment of each
fre_child

e if many conditions are met (there is only one
bre_node aligned with fre_child, fre_child and
bre_node have same POS, there is only one word
aligned with fre_head) we simply project head

and label, i.e. head of bre_node is bre_head, la-
bel is label of arc (fre_child, fre_head).

when such conditions are not met, we create hy-
pothesis of dependency with most likely pair of
nodes: bre_node with bre_head but also with all
siblings of bre_node. We use statistics to asso-
ciate a probability to each of these hypotheses.
add to stack (fre_child, bre_node)

Finally, we build the parse tree with Chu-Edmonds
algorithm from the set of hypotheses.

Learning and prediction: We use this artificial
treebank to learn the UDPipe tagger and the stf
parser. We use the UDPipe tokenizer with Dutch
model to preprocess the raw test text.

Evaluation: Because no evaluation data ex-
ists, we relied on another language pair (French-
German) to experiment the cross-lingual projec-
tion process. We build a lexicon from dewik-
tionary with a mapping from Wiktionary tags to
UPOS tags. We select the 15.000 most frequent
forms in German based on word embeddings or-
der. We use PUD _French and PUD_German tree-
banks as parallel corpus. We get a F1 measure
of 72% on UPOS on and 28% on LAS which let
us hope similar results with French-Breton pair.
These figures are not far from our official results
75% in UPOS and 38% in LAS.

4.2 Faroese, Thai, and all other low-resource
languages

We started by exploring all the data we had avail-
able for the shared task: Wikipedia, word embed-
dings and parallel corpus, to build a low-resource
language strategy.

We used cross-lingual word representations for
building lexicalized taggers and parsers through
model transfer and annotation projection for tag
disambiguation.

4.2.1 Tokenizing Thai

The Thai language agglutinates a lot of words so it
can’t be tokenized with spaces. Dictionary Based
Longest Matching yielded good enough results
(Haruechaiyasak et al., 2008), so we built a dic-
tionary for Thai based on all words from the em-
beddings and the Wiktionary. Then we tokenized
the opus Thai corpus with dictionary, and learned
an UDPipe model on it to facilitate the integration
of the model in the final submission.

However, we didn’t know how to define the end
of each sentence in Thai, knowing that UD-
Pipe won’t define an end based on words or on

39

sentences lengths. We tried to build our own
tokenizer based on word embeddings, sentence
lengths, word lengths and eventually a dictionary
to improve the “only character embedding based”
model. Even if we lacked the time to finalize
this contribution, we did manage to reach a fl
score close to UDPipe with random forest clas-
sifier on English LinES corpus (-0.2% tokens, -
5% sentences). The tokenization score for Thai is
64.17%.

4.2.2 Building word alignment on sentences
and a bilingual dictionary with OPUS

We used efmaral (Ostling and Tiedemann, 2016)
to get word alignment on OPUS. As we needed
to be extremely confident on the built alignments,
the null-prior parameter was set to 0.95 (it doesn’t
stop the word aligner from making mistakes on
some words).

The dictionary was built based on aligned words.

4.2.3 Tagging Thai

Three sources of information are available for tag-
ging without annotated data:
e OPUS : tagging a rich-resource language and
transferring tags to the low-resource language
e Embeddings alignment : aligning embeddings
from one embedding cloud to another. Then us-
ing the source tagger on the aligned embeddings
e Data mining : parsing the Wiktionary to find the
possible tags of each word
We can combine these methods to do disambigua-
tion. The Thai language was tagged by using the
same method as Breton. We extracted a list of
each possible tags (UPOS) from the Wiktionary.
Then we used annotated parallel corpus from
Korean to disambiguate Thai tags. We weren’t
aware of a close enough language to Thai so we
were only able to transfer from a distant language.

4.2.4 Embeddings alignment : tagging and
parsing Faroese

For Faroese, the Wiktionary data didn’t seem to
be workable (no UPOS tag / not enough words)
and no OPUS data were available. We thus used
the only available source of informations : embed-
dings. We built a supervised cross-lingual embed-
ding mapper that could work in an unsupervised
way by using similar tokens between languages
(when languages are close enough). The mapper
is not limited by the number of word or the size of

the embedding contrary to MUSE (Lample et al.,
2017). We found out that the HIT team had a sim-
ilar approach in 2015 (Guo et al., 2015).

The Faroese language is close to three other lan-
guages : Danish, Norwegian and Swedish. The
strategy was to build a bilingual tagger and a bilin-
gual lexicalized parser for Swedish-Norwegian,
evaluate our approach on Danish and export it on
Faroese. All embeddings (Swedish, Danish and
Faroese) were aligned in the Norwegian embed-
ding cloud. The architecture used was the Stan-
ford one, we only used gold and aligned embed-
dings (pretrained) and character embeddings (no
post-trained embeddings as they are highly lan-
guage dependent and based on word’s form and
not word’s embedding position in the cloud).

The algorithm of the mapper is described in Al-
gorithm 1: it uses the built bilingual dictionary
(1,n) to (1,n) and all tokens of common form in
embeddings as input, as well as the embeddings
of the two languages.

Then, each embedding of the source language is
aligned with the embeddings of the target lan-
guage. The general case is the 1 to n relation, for
which the source token is assigned an average of
each of the n tokens in the target language. So if
we have a 1 to 1 relation, the source token embed-
ding is equal to the target token embedding. The
dictionary was filtered by removing entries with
cardinality above 4.

For words that are not in the dictionary, we use the
n-closest embeddings in the source cloud which
are in the dictionary. Each of these tokens has an
alignment in the target cloud, so we do a weighted
average of their aligned embeddings in the target
cloud based on their distance in the source cloud
to find the embedding of the token which is not in
the dictionary.

This approach could be enhanced by taking into
account the direction to go from each of the word
in the source cloud to the target cloud, and averag-
ing these informations to locate the unknown point
in the target cloud (algorithm 1).

At this point we have cross-lingual embeddings.
Building a bilingual corpus should help to reduce
the bias of a monolingual model as well as learn-
ing with both original (Norwegian) and potentially
biased aligned (Swedish) embeddings. We built
a corpus based on UD ones (Nivre et al., 2017),
merging the same number of sentences from Nor-
wegian and Swedish into one file. We then trained a

40

Data: Source embeddings;

target embeddings;

dictionaries (opus + similar words)

Result: source aligned with target

init: define n closest words parameter;

for each source embedding s of token ts do

let e be the embedding of ts in target;

if ts in dictionary then

ss = target words for ts in dic;

es = embeddings of ss;

e = avg(es);

else

cs = closest n word embeddings to s
which are in dic;

es = embeddings of the n closest word
in target;

e = weighted_avg(es, dist(cs,s));

Algjorithm 1: Close-points embedding align-
ment algorithm; the n parameter was set to 5

bilingual tagger and parser on this corpus without
post-trained embeddings and evaluated it (cf table
3). SVNO : Swedish+Norwegian. DA : Danish.
FO : Faroese.

We then used this bilingual model on Faroese
Wikipedia sentences to have a treebank, annotat-
ing it by using aligned Faroese embeddings, and
we trained a Faroese model on this treebank with
original embeddings, hoping it could fix some in-
consistencies coming from the alignment as the
final model will use regularizations on original
Facebook embeddings. In the end, we have a
Faroese tagger and a Faroese parser.

4.2.5 Other languages

The method described in the previous section has
been tested on other languages but did not pro-
duce results significantly better than the baseline.
Not counting Thai, Faroese and Breton, there are
6 low-resource languages:

e For Buryat and Kurmanji we didn’t find a close
enough language to do unsupervised embedding
alignment as no parallel corpus / Wiktionary
were available.

For Kazakh, we tried to build a Turkish-Russian
model, ending with around 50% in UPOS.

For Armenian, we tried a Persian-Greek model
but we had troubles handling the character
embeddings (Armenian characters aren’t the
same), ending with 23% in UPOS (and if you

Scores SVNO score | No-transfer score
UPOS SV 93% 96%
UPOS DA 74% 97%
Feats SV 85% 92%
Feats DA 50% 97%
LAS SV 74% 83%
LAS DA 48% 84%
LAS SVNO 85%

UPOS FO 64%

Feats FO 34%

LAS FO 47%

Table 3: SVNO models results, compared to stf model trained on monolingual gold data.

don’t include character embeddings, you can’t
distinguish some proper noun from numbers).
For Naijja, no data
(OPUS/embedding/Wiktionary) found,
so we used English models.

Finally for Upper Sorbian we had better results
with a Polish-Czech model, ending with 75%
UPOS and 37% LAS (evaluated on the 23 avail-
able sentences as we don’t need training sen-
tences), but we lacked of time to upload the
model and finalize our contribution to the task.
We tried to use embeddings alignment from
MUSE on Upper Sorbian, but it didn’t provide
results as there wasn’t enough Upper Sorbian
embeddings.

was

5 Training

For the final submission, we trained around 190
models (including bilingual ones) which took 3
days on 3 GPU NVIDIA 1080 Ti. We did this
full training 4 times, each time changing a pa-
rameter: whether to include language specific de-
pendency annotation in the training, case-sensitive
parser or to change the tokenization used (refer-
ence tokenization or UDPipe tokenization as val-
idation set). The submitted result was the best
model out of the four runs.

6 Results

We’ll only detail some results. A summary ta-
ble for low-resource languages we worked on has
been produced (cf table 4).

We got some good ranks on the total average, but
these scores were deeply affected by our rank in
low-resource languages. For example, getting +64
points in Thai (with just a dictionary approach
based on known words) is the same as getting 0.8

41

points on each other treebanks which is far more
harder.

Still, we ranked 2"? in morphological features,
showing that the stf architecture was able to han-
dle morphological informations.

We ranked 2% in tokenization (low-resource and
global) because of our work on the Thai language
(the 5 teams that got more than the baseline in Thai
ended up in the top 5 on the global tokenization
score). However our score for Thai tokenization
(64%) is far more bellow other scores for tokeniz-
ing Thai in literature, based on other corpus which
weren’t available for this shared task.

We also ranked 3rd in UPOS (low-resource and
global). We think that learning morphological fea-
tures during the training help a model to get bet-
ter results in UPOS as it could use the embed-
dings learned with morphological features to pre-
dict UPOS tags as well.

For big treebanks, we ranked 5¢" in UPOS prob-
ably because we took the SOTA and improved it.
We also stand below TurkuNLP for morphological
features on big treebanks (93.68% for 93.82%),
they also used the biLSTM architecture but they
inferred tags without sub-categories.

Finally we ranked 5" in MLAS which seems to be
the more representative score overall as it evalu-
ates morphology and dependency as a whole, and
it doesn’t give much importance to low-resource
languages because a cumulative low score in
UPOS and LAS results in a close to 0 MLAS.

A summary table can be found at the end of the
article.

7 Conclusion
Our multilingual model seems to produce great

results by enabling the production of a lexicalized
parser for low-resource languages. This could

Tokens UPOS LAS
Lang Base | Our | Best || Base | Our | Best || Base | Our | Best
Thai 8.56 | 64.17 | 6993 || 586 | 31.46 | 3942 || 0.70 | 0.47 | 13.70
Faroese || 99.51 | 99.03 | 99.51 || 44.66 | 63.53 | 65.54 || 25.19 | 47.17 | 49.43
Breton 92.26 | 92.50 | 94.49 || 30.74 | 75.39 | 85.01 || 10.25 | 38.64 | 38.64

Table 4: Summary score table for 3 low-resource languages

open the road to an universal parser (as long as we
have embeddings and a dictionary for a language)
with improved performance over the mixed model
provided for the shared task.

However, multiple steps are required in order to
achieve a unique model. First, one should merge
the tagger and the parser into one unique model,
by learning the parser with representation learned
by the tagger, and by eventually allowing the
tagger to complete POS tags based on dependency
learned embeddings.

Our transfer methods should be evaluated more
carefully. Because we didn’t have much time,
we didn’t find a way to evaluate our embeddings
mapper in an other way than through the UPOS
and dependency scores of our bilingual models.
Multiple strategies are still available from our
work: how to select the best languages for
transfer? How much languages should be used?
How does these parameters change from one
low-resource language to another ? etc.

Finally, to build an universal parser, we should
distinguish multiple embeddings. The post-
trained embeddings should be divided in two
categories, the universal post-trained embeddings
which changes the pretrained embeddings values
based on their position into the embeddings cloud;
and the language specific post-trained embed-
dings which should be based on the form and
the language of the token. Including pretrained
character embeddings and post-trained character
embeddings could also help for languages with
specific characters, for which we could at least
map punctuations and numbers characters for

tagging.

References

Timothy Dozat, Peng Qi, and Christoper Manning.
2017. Stanford’s graph-based neural dependency
parser at the conll 2017 shared task pages 20-30.

Jack Edmonds. 1967. Optimum branching. In Jour-

42

nal of Research of the national Bureau of Standards
B71(4). pages 233-240.
Jason Eisner. 1996. Three new probabilistic
models for dependency parsing: An explo-
ration. In Proceedings of the 16th Interna-
tional Conference on Computational Linguistics.
http://aclweb.org/anthology/C96-1058.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2015. Cross-lingual depen-
dency parsing based on distributed representations.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, pages 1234—
1244. https://doi.org/10.3115/v1/P15-1119.

Choochart Haruechaiyasak, Sarawoot Kongyoung, and
Matthew Dailey. 2008. A comparative study on thai
word segmentation approaches 1:125 — 128.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2017. Unsupervised
machine translation using monolingual corpora only.
arXiv preprint arXiv:1711.00043 .

Joakim Nivre et al. 2017. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

Robert Ostling and Jorg Tiedemann. 2016. Effi-
cient word alignment with Markov Chain Monte
Carlo. Prague Bulletin of Mathematical Linguistics
106:125-146. http://ufal.mff.cuni.cz/pbml/106/art-
ostling-tiedemann.pdf.

Milan Straka, Jan Haji¢, and Jana Strakova. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

Jorg Tiedemann. 2009. News from OPUS - A collec-
tion of multilingual parallel corpora with tools and
interfaces. In N. Nicolov, K. Bontcheva, G. An-
gelova, and R. Mitkov, editors, Recent Advances
in Natural Language Processing, John Benjamins,
Amsterdam/Philadelphia, Borovets, Bulgaria, vol-
ume V, pages 237-248.

http://aclweb.org/anthology/C96-1058
http://aclweb.org/anthology/C96-1058
http://aclweb.org/anthology/C96-1058
http://aclweb.org/anthology/C96-1058
https://doi.org/10.3115/v1/P15-1119
https://doi.org/10.3115/v1/P15-1119
https://doi.org/10.3115/v1/P15-1119
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf

Jorg Tiedemann and Zeljko Agi¢. 2016. Synthetic tree-
banking for cross-lingual dependency parsing. Jour-
nal of Artificial Intelligence Research 55:209-248.

Guillaume Wisniewski, Nicolas Pcheux, Souhir
Gahbiche-braham, Frangois Yvon, and Univer-
sité Paris Sud. 2014. Cross-lingual part-of-speech
tagging through ambiguous learning. In In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing. pages 1779-1785.

Daniel Zeman, Jan Haji¢, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal De-
pendencies. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics, Brussels, Belgium, pages 1-20.

tokens upos ufeats las mlas
af_afribooms 99.75 (5) 97.24 (7) 9691 3) 84.16 (7) 73.15 (4)
ar_padt 9998 (2) 90.35(7) 86.93 (6) 71.84 (8) 62.17 (5)
bg btb 99.92 (4) 98.72 (4) 97.38 (4) 89.59 (5) 82.55 (3)
brkeb 92.5(2) 75.39 (2) 43.55 (3) 38.64 (1) 4.15 (3)
bxr_bdt 97.07 (4) 41.66 (8) 38.34(3) 12.61(11) 2.09(5)
ca_ancora 99.97 (5) 98.49 (7) 97.75 (7) 90.22 (6) 82.09 (6)
cs.cac 99.97 (7) 98.83 (9) 93.8 (6) 89.55 (10) 79.92 (6)
cs_fictree 99.97 (6) 98.4 (6) 95.57 (4) 91.22 (4) 81.87 (3)
cspdt 9993 (5) 98.44(12) 92.75(8) 89.06 (11) 78.63 (10)
cs.pud 99.28 (4) 96.86 (4) 90.43 (7) 84.89 (3) 71.65(7)
cu_proiel 100 (1) 96.09 (3) 89.98 (1) 73.13 (5) 61.79 (4)
da_ddt 99.87 (4) 97.38 (4) 96.7 (5) 83.69 (3) 75.27 (4)
de_gsd 99.58 (4) 93.42(10) 89.3(4) 78.19 (4) 56.18 (4)
el.gdt 99.86 (4) 97.64 (4) 94.56 (2) 88.18 (6) 76.44 (3)
enewt 99.03(5) 95.01 (7) 95.55 (6) 82.88 (4) 74.46 (4)
en_gum 99.75(3) 95.07 (7) 9597 (4) 81.47 (6) 70.59 (5)
enlines 99.95(3) 96.47 (8) 96.49 (5) 78.61 (7) 70.05 (8)
enpud 98.79(24) 9328 (24) 9527(3) 79.84(15) 69.97 (13)
es_ancora 99.97 (4) 98.61 (7) 98.08 (4) 89.58 (5) 82.33 (5)
etedt 9991 (5) 97 (5) 95.19 (4) 83.52 (4) 75.87 (4)
eu_bdt 99.96 (6) 95.97 (5) 92.19 (3) 83.13 (2) 71.7 (2)
fa_seraji 100 (2) 97.05 (6) 97.13 (3) 86.18 (2) 80.38 (5)
fiftb 100 (2) 95.83 (6) 96.23 (4) 87.14 (3) 79.09 (2)
fiipud 99.63 (4) 97.32(5) 96.29 (6) 88.59 (5) 82.42 (3)
fitdt 99.69(4) 96.53 (7) 94.78 (6) 85.99 (4) 78.59 (5)
fooft 99.03 (23) 63.53(2) 33.52 (5) 47.17 (2) 0.8 (2)
frgsd 99.66 (7) 96.1 (9) 95.85(4) 85.03(8) 76.41 (8)
frsequoia 99.79 (5) 974 (9) 96.77 (6) 87.66 (7) 80.2 (4)
fr_spoken 100 (2) 95.91 (6) 100 (2) 69.83 (9) 57.88 (8)
fro_sremf 100 (2) 95.87 (3) 97.59 (2) 86.78 (3) 79.62 (2)
gaidt 99.3 (5) 89.21 (9) 78.79 (5) 6293 (14) 37.66 (8)
glctg 99.84 (4) 96.98 (3) 99.01 (4) 81.6 (5) 69.28 (5)
gl_treegal 99.69(2) 91.09(10) 89.59(5) 66.16(12) 49.13 (11)
got_proiel 100 (2) 95.71 (3) 88.87 (3) 68.32 (4) 54.8 (3)
grc_perseus 99.96 (5) 91.94 (5) 89.71 (6) 73.41 (4) 52.14 (5)
grc_proiel 100 (2) 96.87 (7) 9133 (4) 75.02(6) 58.36 (6)
he_htb 99.98 (2) 82.6 (4) 80.82 (4) 63.66 (6) 51.3 (5)
hi_hdtb 100 (2) 97.38 (7) 93.56 (4) 91.72 (3) 77.59 (4)
hrset 99.92(4) 97.8(7) 89.81 (7) 86.18 (5) 70.11 (6)
hsb_ufal 98.6 (3) 65.75 (6) 49.8 (2) 23.64 (16) 3.55(14)
hu_szeged 99.81 (3) 95.4 (3) 92.75 (1) 76.96 (6) 65.68 (4)
hy_armtdp 97.21 (4) 65.4(8) 57.07 (2) 28.41(7) 7.58 (7)
id_gsd 100 (2) 93.94 (1) 95.35(6) 78.84 (3) 67.81 (3)
itisdt 99.75(5) 9791 (6) 97.61 (3) 90.01 (7) 82.44 (5)
it_postwita 99.73 (3) 95.9 (4) 96 (3) 71.77 (11) 59.12(7)
ja_gsd 90.46 (6) 88.9 (6) 90.45 (6) 74.55 (8) 61.74 (9)
jamodern 6598 (5) 48.44 (8) 64.11 (9) 22.71 (9) 8.1(9)
kk ktb 93.11 (6) 48.94 (11) 46.86 (4) 24.21 (4) 7.62 (5)
kmromg 9433 (4) 59.31(6) 4839 (2) 23929 5.47 (7)
ko_gsd 99.81 (6) 96.12 (4) 99.62 (5) 83.61 (3) 79.21 (3)
ko kaist 100 (2) 95.37 (4) 100 (2) 86.41 (3) 80.48 (3)
laittb 99.94(5) 97.82(13) 9593(4) 85.17(7) 77.97 (5)
la_perseus 100 (2) 83.34 (11) 72.07 (8) 47.61 (12) 30.16 (11)
la_proiel ~ 99.99 (5) 96.69 (3) 90.7 (4) 71.07 (4) 58.79 (3)
Ivivtb 99.4 (6) 95.17 (2) 91.29 (3) 80.29 (5) 67.27 (2)
nl_alpino 99.83 (5) 95.84 (7) 95.66 (7) 85.79 (7) 73.38 (6)
nl_lassysmall 99.82 (6) 95.93 (7) 95.59(5) 82.17(7) 70.9 (5)
no_bokmaal 99.78 (6) 97.85 (6) 96.19 (5) 89.73 (4) 81.96 (5)
no_nynorsk 99.93 (5) 97.72 (4) 96.3 (4) 88.97 (5) 80.55 (5)
no_nynorsklia ~ 99.99 (2) 85.15(12) 86.54 (6) 56.87 (10) 41.73 (9)
pcmnsc 99.71 (1) 57.21 (2) 43.09 (2) 16.06 (9) 2.35 (20)
pllfg 99.86 (7) 98.54 (4) 94.67 (6) 94.62 (3) 86.26 (4)
plsz 99.99 (3) 98.05 (4) 92.24 (4) 91.31 (4) 80.44 (3)
pt-bosque 99.71 (2) 96.61 (3) 95.85 (2) 87.72 (2) 75.72 (2)
roart 99.67 (6) 97.47 (5) 96.75 (6) 85.9 (4) 77.7 (4)
ru_syntagrus 99.6 (7) 98.2 (9) 95.69 (6) 89.96 (11) 83.27 (6)
ru_taiga 98.14(2) 86.53(11) 76.01 (7) 63.85 (7) 40.9 (8)
sk_snk 100 (2) 96.61 (4) 90.89 (2) 86.38 (4) 73.44 (2)
sl_ssj 98.29 (6) 96.85 (5) 93.11 (4) 86.72 (6) 78.65 (2)
slsst 100 (2) 88.5 (12) 80.15 (7) 46.95 (13) 34.19 (12)
sme_giella 99.84 (3) 87.69 (7) 82.41(5) 56.98(14) 46.05(10)
srset 99.97 (2) 98.04 (3) 93.63 (5) 87.92 (5) 76.95 (4)
sv_lines 99.96 (3) 96.74 (2) 89.18 (5) 81.46 (4) 65.84 (5)
sv_pud 98.52 (6) 92.98 (9) 7332 (21) 7623 (11) 42.8(13)
sv_talbanken 99.78 (7) 97.5 (3) 96.48 (5) 85.69 (6) 78.19 (5)
thopud 64.17 (2) 31.46 (3) 60.22 (2) 047 (17) 0.16 (5)
trimst 99.86 (3) 93.42 (5) 91.94 (1) 63.78 (4) 55(3)
ugudt 99.22 (7) 89.43 (1) 87.07(2) 62.75(8) 43.82 (4)
ukiu 99.67 (5) 97.03 (5) 90.71 (3) 83.64 (6) 71.12 (4)
ur_udtb 100 (2) 94.12 (4) 83.53 (3) 81.89 (4) 56.85 (3)
vivtb 84.26 (7) 77.38 (6) 83.99 (6) 44.35 (6) 37.98 (5)
zh_gsd 89.55 (7) 85.06 (9) 88.57 (8) 65.34 (9) 55.2 (8)

Table 5: Summary table for main scores. Green: top 1, yellow: top 3, orange: top 5

