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Abstract
We summarize empirical results and tenta-
tive conclusions from the Second Extrin-
sic Parser Evaluation Initiative (EPE 2018).
We review the basic task setup, downstream
applications involved, and end-to-end re-
sults for seventeen participating parsers.
Based on both quantitative and qualita-
tive analysis, we correlate intrinsic eval-
uation results at different layers of morph-
syntactic analysis with observed down-
stream behavior.

1 Background and Motivation

The Second Extrinsic Parser Evaluation Initiative
(EPE 2018) was organized as an optional track of
the 2018 Shared Task on Multilingual Parsing from
Raw Text to Universal Dependencies (Zeman et al.,
2018) at the Conference on Computational Natural
Language Learning (CoNLL 2018). In the follow-
ing, we distinguish the tracks as the EPE vs. the
‘core’ UD parsing tasks, respectively. One focus
of the UD parsing task in 2018 was on different in-
trinsic evaluation metrics, such that the connection
to the EPE framework provides new opportunities
for correlating intrinsic metrics with downstream
utility to three relevant applications, viz. biologi-
cal event extraction, fine-grained opinion analysis,
and negation resolution. Unlike the strongly multi-
lingual core task, the EPE framework for the time
being is limited to English.

A previous instance of the EPE initiative (see
§ 2 below) embraced diversity and accepted sub-
missions of parser outputs that varied along several
dimensions, including different types of syntac-
tic or semantic dependency representations, vari-
able parser training data in type and volume, and
of course diverse approaches to input segmenta-
tion and parsing. In contrast, the association of

EPE 2018 with the UD parsing task ‘fixes’ two
of these dimensions: All submitted systems out-
put basic Universal Dependency (UD; McDonald
et al., 2013; Nivre et al., 2016) trees (following the
conventions of UD version 2.x) and parser train-
ing data was limited to the English UD treebanks
provided for the core task.

2 History: The EPE 2017 Infrastructure

What we somewhat interchangeably refer to as
the EPE framework or the EPE infrastructure
was originally assembled in mid-2017, to enable
the First Shared Task on Extrinsic Parser Eval-
uation (EPE 2017; Oepen et al., 2017), which
was organized as a joint event by the Fourth In-
ternational Conference on Dependency Linguistics
(DepLing 2017) and the 15th International Con-
ference on Parsing Technologies (IWPT 2017).
The framework is characterized by a collection
of ‘downstream’ natural language ‘understanding’
applications that are assumed to depend on the
analysis of grammatical structure. For each down-
stream application, there are commonly used ref-
erence data sets (often from past shared tasks) and
evaluation metrics. In the EPE context, state-of-
the-art systems for these applications have been
generalized to accept as inputs a broad variety
of syntactico-semantic dependency representations
(i.e. parser outputs submitted for extrinsic evalu-
ation) and to automatically retrain (and tune, to
some degree) for each specific parser. The fol-
lowing paragraphs briefly summarize each of the
downstream systems and main results from the EPE
2017 competition.

Dependency Representations For compatibil-
ity with different linguistic schools in syntactico-
semantic analysis, the EPE framework assumes a
comparatively broad definition of suitable interface
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representations to grammatical analysis (Oepen
et al., 2017; p. 6):

The term (bi-lexical) dependency representation
in the context of EPE 2017 is interpreted as a
graph whose nodes are anchored in surface lex-
ical units, and whose edges represent labeled
directed relations between two nodes. Each
node corresponds to a sub-string of the under-
lying linguistic signal (input string), identified
by character stand-off pointers. Node labels can
comprise a non-recursive attribute–value matrix
(or ‘feature structure’), for example to encode
lemma and part of speech information. Each
graph can optionally designate one or more
‘top’ nodes, broadly interpreted as the root-level
head or highest-scoping predicate (Kuhlmann
and Oepen, 2016).

In principle, this notion of dependency represen-
tations is broad in that it allows nodes that do not
correspond to (full) surface tokens, partial or full
overlap of nodes, as well as graphs that transcend
fully connected rooted trees. Participating teams
in the original EPE 2017 initiative did in fact take
advantage of all these degrees of freedom, whereas
in connection to the 2018 UD parsing task such
variation is excluded by design.

Biological Event Extraction The Turku Event
Extraction System (TEES) (Björne, 2014) is a pro-
gram developed for the automated extraction of
events, complex relations used to define the seman-
tic structure of a sentence. These events differ from
pairwise binary relations in that they have a defined
trigger node, usually a verb, they can have multiple
arguments, and other events can be used as event ar-
guments, forming complex nested relations. Events
can be seen as graphs, where named entities and
triggers are the nodes and the arguments linking
these are the edges. In this graph model, an event
is implicitly defined as a trigger node and its set of
outgoing edges.

The TEES system approaches event extraction
as a task of graph generation, modelling it as a
pipeline of consecutive, atomic classification tasks.
The first step is entity detection where each token
in the sentence is predicted as an entity node or
as negative. In the second step of edge detection,
argument edges are predicted for all valid, directed
pairs of nodes. In the third, unmerging step, over-
lapping events are ‘pulled apart’ by duplicating trig-
ger nodes. In the optional fourth step of modifier
detection, binary modifiers (such as speculation or
negation) can be predicted for the detected events.
All of the classification steps in the TEES system

rely on rich feature representations generated to
a large degree from syntactic dependency parses.
All classification tasks are implemented using the
SVMmulticlass classifier (Joachims, 1999).

TEES has been developed using corpora from
the Biomedical Natural Language Processing
(BioNLP) domain, in particular the event corpora
from the BioNLP Shared Tasks. These tasks define
their own annotation schemes and provide standard-
ized evaluation services. In the context of the EPE
challenge we use the BioNLP 2009 GENIA corpus
and its associated evaluation program to measure
the impact of different parses on event extraction
performance (Kim et al., 2009). The metric used
for comparing the EPE submissions is the primary
‘approximate span and recursive mode’ metric of
the original Shared Task, a micro-averaged F1 score
for the nine event classes of the corpus.

The specialized domain language presents
unique challenges for parsers not specifically op-
timized for this domain, so using this data set to
evaluate open-domain parses may result in overall
lower performance than with parsers specifically
trained on e.g. the GENIA treebank (Tateisi et al.,
2005). When using the EPE parse data, TEES
features encompass the type and direction for the
dependencies combined wit the text span and a sin-
gle part of speech for the tokens; lemmas are not
used.

Negation Resolution The EPE negation resolu-
tion system is called Sherlock (Lapponi et al., 2012,
2017) and implements the perspective on nega-
tion defined by Morante and Daelemans (2012)
through the creation of the Conan Doyle Negation
Corpus for the Shared Task of the 2012 Joint Con-
ference on Lexical and Computational Semantics
(*SEM 2012). Negation instances are annotated
as tri-partite structures: Negation cues can be full
tokens (e.g. not), multi-word expressions (by no
means), or sub-tokens (un in unfortunate); for each
cue, its scope is defined as the possibly discon-
tinuous sequence of (sub-)tokens affected by the
negation. Additionally, a subset of in-scope tokens
can be marked as negated events or states, pro-
vided that the sentence is factual and the events in
question did not take place. In the EPE context,
gold-standard negation cues are provided, because
this sub-task has been found relatively insensitive
to grammatical structure (Velldal et al., 2012).

Sherlock approaches negation resolution as a se-
quence labeling problem, using a Conditional Ran-
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dom Field (CRF) classifier (Lavergne et al., 2010).
The token-wise negation annotations contain multi-
ple layers of information. Tokens may or may not
be negation cues and they can be either in or out
of scope for a specific cue; in-scope tokens may
or may not be negated events. Moreover, multiple
negation instances may be (partially or fully) over-
lapping. Before presenting the CRF with the anno-
tations, Sherlock ‘flattens’ all negation instances in
a sentence, assigning a six-valued extended ‘begin–
inside–outside’ labeling scheme. After classifica-
tion, hierarchical (overlapping) negation structures
are reconstructed using a set of post-processing
heuristics.

The features of the classifier include different
combinations of token-level observations, such as
surface forms, part-of-speech tags, lemmas, and
dependency labels. In addition, we extract both
token and dependency distance to the nearest cue,
together with the full shortest dependency path.
Standard evaluation measures from the original
shared task include scope tokens (ST), scope match
(SM), event tokens (ET), and full negation (FN) F1

scores. ST and ET are token-level scores for in-
scope and negated event tokens, respectively, where
a true positive is a correctly retrieved token of the
relevant class (Morante and Blanco, 2012). FN
is the strictest of these measures and the primary
negation metric used in the EPE context—counting
as true positives only perfectly retrieved full scopes,
including an exact match on negated events.

Opinion Analysis The system by Johansson and
Moschitti (2013) marks up expressions of opin-
ion and emotion in a pipeline comprised of three
separate classification steps, combined with end-
to-end reranking; it was previously generalized
and adapted for the EPE framework by Johans-
son (2017). The system is based on the annotation
model and the annotated corpus developed in the
MPQA project (Wiebe et al., 2005). The main com-
ponent in this annotation scheme is the opinion
expression; examples include case such as dislike,
praise, horrible, or one of a kind. Each expression
is associated with an opinion holder: an entity that
expresses the opinion or experiences the emotion.
Furthermore, every non-objective opinion expres-
sion is assigned a polarity: positive, negative, or
neutral.

The opinion expression and polarity classifiers
rely near-exclusively on token-level information,
viz. n-grams comprising surface forms, lemmas,

and PoS tags. Conversely, the opinion holder ex-
traction and reranking modules make central use
of structural information, i.e. paths and topologi-
cal properties in one or more syntactico-semantic
dependency graph(s).

In the EPE context, we evaluated how well the
participating systems extract the three types of
structures mentioned above: expressions, holders,
and polarities. In each case, soft-boundary preci-
sion and recall measures were computed (Johans-
son and Moschitti, 2013; Johansson, 2017). Fur-
thermore, for the detailed analysis we evaluated
the opinion holder extractor separately, using gold-
standard opinion expressions. We refer to this task
as in-vitro holder extraction, and this score is used
for the overall ranking of submissions when aver-
aging F1 scores across the three EPE downstream
applications. The reason for highlighting this score
is that it is the one most strongly affected by the
design of the dependency representation.

Participating Teams Nine teams participated in
EPE 2017, in the order of overall rank: Stanford–
Paris (Schuster et al., 2017), Szeged (Szántó and
Farkas, 2017), Paris–Stanford (Schuster et al.,
2017), Universitat Pompeu Fabra (Mille et al.,
2017), East China Normal University (Ji et al.,
2017), Peking (Chen et al., 2017), Prague (Straka
et al., 2017), and the University of Washington
(Peng et al., 2017). These teams submitted 49 dis-
tinct runs that encompassed many different families
of dependency representations, various approaches
to preprocessing and parsing, and variable types
and volumes of training data. The dependency
representations employed by the participants var-
ied from more syntactically oriented schemes—e.g.
Stanford Basic (de Marneffe et al., 2006), CoNLL
2008–style (Surdeanu et al., 2008), and UD—to
more semantically oriented representations, such
as the Deep Syntactic Structures of Ballesteros
et al. (2015), DELPH-IN MRS Dependencies (DM;
Ivanova et al., 2012), or Enju Predicate–Argument
Structures (PAS; Miyao, 2006). The teams also
employed wildly variable volumes of training data,
ranging from around 200,000 tokens (the English
UD treebanks) to 1,7 million tokens (combining the
venerable Wall Street Journal, Brown, and GENIA
treebanks).

Results The team with the overall best result was
the Stanford–Paris system with an overall score of
60.51, followed by the Szeged (58.57) and Paris–



25

Stanford (56.81) teams. The Stanford–Paris system
obtained the best results for event extraction (when
using the Stanford Basic representation), as well as
for negation resolution (with enhanced Universal
Dependencies). The Szeged system was the top
performer in the opinion analysis subtask and em-
ployed the ‘classic’ CoNLL 2008 representation.
The results further showed that a larger training set
had a positive impact on results for the Stanford–
Paris and Prague teams, who systematically varied
the amount of training data in their experimental
runs. In general however, it proved difficult to com-
pare results across different teams due to the fact
that these varied along multiple dimensions: the
parser (and its output quality), the representation,
input preprocessing, and the volume and type of
training data. In this respect, EPE 2018 controls for
several of these factors (dependency representation
and amount of training data) and thus enables a
more straightforward comparison across teams and
analysis of the relationship between intrinsic and
extrinsic parser performance.

3 Refinements: Towards EPE 2018

To integrate the EPE infrastructure with the 2018
UD parsing task, a number of extensions and re-
visions have been realized. These included provi-
sioning the EPE data and a basic validation tool
for parser outputs on the TIRA platform (Potthast
et al., 2014) as well as technical improvements in
two of the downstream systems (the opinion anal-
ysis system remains unchanged from EPE 2017).
In the following paragraphs, we survey some of
these adaptations for the EPE 2018 setup and com-
ment on how these revisions limit comparability to
end-to-end results from the 2017 campaign.

Document Collections The EPE parser inputs
are comprised of training, development, and eval-
uation data for the three downstream applications,
in total some 1900 documents, or around 850,000
tokens of running text. Reading and parsing thou-
sands of small files (for the opinion analysis and
event extraction tasks) proved to be a bottleneck
for several systems in the EPE 2017 shared task,
as parsers had to reload for each input file. For the
convenience of 2018 participants, we have ‘packed’
the original large collections of small documents
into three large files—one for each downstream
application. The packing scheme inserts special
‘delimiter paragraphs’ at document boundaries, us-
ing the following general format:

Document 0020030 ends.

To not interfere with the grammatical analysis of
immediate context, each delimiter is preceded and
followed by three consecutive newlines—seeking
to ensure that it is treated as a four-token utterance
of its own in sentence splitting and tokenization.

When preparing submitted parser outputs for
end-to-end evaluation, the delimiters allowed re-
constructing the original document collections and
data splits for each of the three EPE data sets. Over-
all, we did not observe unwanted side effects of
the delimiters; there are, however, a few instances
where the delimiter string itself can be tokenized
(and sometimes sentence-split) in unexpected ways,
including by the CoNLL 2018 baseline parser, such
as splitting the numerical identifier into two tokens
and breaking up the delimiter string as two sen-
tences. The EPE 2018 unpacker robustly handles
such cases, effectively ignoring sentence and token
boundaries in scanning parser outputs for delim-
iter strings, and we have no reason to believe that
the delimiters have negatively affected the parsing
systems of participants.

Biological Event Extraction The TEES system
used in the EPE 2018 task is largely unchanged
from the 2017 version. However, the training
and evaluation setup has been revised in order to
achieve optimal performance when evaluating the
submitted parses.

The BioNLP 2009 Shared Task, which serves
as the EPE event extraction application, consists
of three subtasks (Kim et al., 2009). Subtask 1
is the core task which defines a number of event
types to extract. Subtask 2 extends the first with
the addition of non-protein entities and secondary
event arguments. Subtask 3 adds speculation and
negation modifiers in the form of binary attributes
to be predicted for each event. Thus, subtasks 1 and
2 define the event graph, and subtask 1 annotations
can be seen as subgraphs of subtask 2.

In earlier versions of the TEES system, subtask
evaluation was linked to subtask training, so that
when the system was trained using subtask 1 anno-
tations it was also evaluated for the same subtask.
However, TEES generally achieves better perfor-
mance on subtask 1 when trained on subtask 2 (or
3) annotations. We speculate this might be caused
by the machine learning system trying to predict at
least some edges for the ‘gaps’ left by not including
subtask 2 annotations.

In the version of TEES updated for EPE 2018,
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evaluation has been decoupled from training data
selection, so it is now possible to evaluate the sys-
tem for the primary subtask 1 while still training
on the full subtask 2 graphs. The end result is
higher (and hopefully more stable) performance
when evaluating the submitted parses, but unfortu-
nately the EPE 2018 event extraction downstream
task results are therefore not fully comparable with
the 2017 ones.

Negation Resolution The Sherlock system used
in the EPE 2018 task differs from the one used in
EPE 2017 in two ways. First, we fixed a bug in
the 2017 system related to a limited, but important,
‘leak’ of gold-standard annotations into system pre-
dictions. This leak was a side effect of the (legit-
imate) use of gold-standard information for nega-
tion cues, where the presence of multi-word cues
(such as neither ... nor or by no means) could lead
to the injection of gold-standard scope and event
annotations in post-processing after classification,
effectively overwriting actual system predictions
under certain conditions.

The second difference between the 2017 and
2018 versions of Sherlock pertains to automated
hyper-parameter tuning. The two main components
in the Sherlock pipeline are two CRF classifiers,
one for scope and one for event tokens. Sherlock
in 2017 used the default hyper-parameters in the
Wapiti implementation, i.e. unlike the other two
EPE downstream systems it lacked the ability to au-
tomatically tune for each specific set of parser out-
puts. In EPE 2018, we introduced a comprehensive
hyper-parameter grid search over the development
set to identify the best-performing values for each
system individually. Specifically, we optimized the
L1 and L2 regularization hyper-parameters as well
as the stopping threshold in Wapiti for both the
scope and negated event classifiers. Briefly, the
grid search starts with training Sherlock using all
possible combinations of a broad range of candi-
date values along these six dimensions, leading to
a total of some 6400 configurations trained using
different hyper-parameter settings. These systems
are then sorted in two consecutive steps that reflect
the pipelined architecture of Sherlock: First, we
rank the configurations based on their scope reso-
lution scores on the development set and choose
the best-performing hyper-parameters for the scope
classifier among the n systems whose score falls
within an experimentally defined range below the
top-ranking system. Then, we re-rank this subset

of n systems based on their full negation score
on the development set and again select the best-
performing hyper-parameters from among an exper-
imentally defined range below the the best system.
To mitigate the risk of overfitting, in both stages,
the choice of the best-performing hyper-parameters
is based a simple ‘voting’ scheme, picking hyper-
parameter values that are most common in the top
n configurations. This tuning process was applied
separately to all parser outputs submitted to EPE
2018.

Overall, the corrected version of Sherlock com-
bined with automated hyper-parameter tuning leads
to a more robust and systematic evaluation on
the downstream application of negation resolution.
While this also means that the EPE 2018 results on
negation resolution are not strictly compatible to
the earlier 2017 campaign, it appears that the two
Sherlock revisions offset each other at least when
averaging over all submissions: the bug fix caused
a drop in full negation scores of close to two F1

points, but hyper-parameter tuning regained that
performance loss to an accuracy of one decimal
point (on average).

4 Task Overview

To minimize technical barriers to entry, the EPE
parser inputs were installed on the TIRA platform
alongside the data sets for the core UD parsing
task, using the exact same general formats. The
EPE document collections were provided as either
‘raw’, running text, or in pre-segmented form, with
sentence and token boundaries predicted by the
UDPipe baseline system of the core task. Parser
outputs were collected in CoNLL-U format (again,
for parallelism with the core task) and were then
transferred from TIRA to the cluster that actually
runs the EPE infrastructure. Here, all submissions
were ‘unpacked’ (see § 3 above) and converted to
the general EPE dependency graph format. Fur-
ther details on the task schedule, technical infras-
tructure, submitted parser outputs, and end-to-end
results are available from the task web site:�



�
	http://epe.nlpl.eu

Participating Teams Sixteen teams participated
in the EPE 2018 campaign, in addition to the base-
line parser provided by the core UD parsing task;
we refer to the summary paper for the core task
for a high-level characterization of participating

http://epe.nlpl.eu


27

Team
Words Sentences Lemmas UPOS XPOS LAS MLAS BLEX Intrinsic

〈 〉 # 〈 〉 # 〈 〉 # 〈 〉 # 〈 〉 # 〈 〉 # 〈 〉 # 〈 〉 # #

AntNLP 99.62 3 84.44 6 95.39 5 93.93 10 92.86 5 81.93 5 70.61 8 73.38 7 8
ArmParser 99.58 14 18.71 16 89.93 13 90.30 16 57.42 13 60.52 16 44.89 16 52.17 13 16
Baseline 99.62 3 84.44 6 95.39 5 93.93 10 92.86 5 76.33 13 65.86 13 67.43 11 11
IBM-NY 99.44 16 84.44 6 75.24 16 93.37 15 22.51 15 77.72 12 46.68 15 47.83 15 15
ICS-PAS 99.62 3 84.44 6 96.13 3 95.50 5 92.86 5 83.00 2 73.45 1 75.63 2 3
LATTICE-18 99.62 3 84.44 6 95.39 5 96.41 1 92.86 5 84.67 1 72.93 3 76.57 1 2
NLP-Cube 99.64 1 85.49 2 93.61 12 95.37 7 94.535 3 81.67 6 71.02 7 70.77 8 7
ONLP-lab 99.62 3 84.44 6 76.61 14 93.93 10 0.0525 16 65.92 15 57.01 14 46.32 16 13
ParisNLP-18 99.62 3 84.44 6 95.39 5 93.93 10 92.86 5 78.70 11 67.31 10 70.59 10 10
Phoenix 99.46 15 84.69 5 95.15 11 93.90 14 92.825 12 76.28 14 66.47 12 67.41 12 14
SLT-Interactions 99.62 3 84.44 6 95.39 5 95.86 2 92.86 5 81.51 8 69.91 9 73.44 6 5
SParse 0.00 17 0.00 17 0.00 17 0.00 17 0.00 17 0.00 17 0.00 17 0.00 17 17
Stanford-18 99.64 2 87.77 1 95.96 4 95.82 4 95.13 2 82.06 4 73.04 2 74.99 4 1
TurkuNLP-18 99.62 3 84.44 6 96.50 1 94.91 8 94.3 4 82.44 3 72.52 5 75.26 3 4
UDPipe-Future 99.59 13 84.81 4 96.43 2 95.86 3 95.195 1 81.64 7 72.56 4 74.81 5 6
Uppsala-18 99.62 12 85.44 3 75.40 15 95.41 6 22.52 14 81.37 9 71.34 6 50.46 14 12
UniMelb 99.62 3 84.44 6 95.39 5 94.68 9 92.86 5 79.19 10 66.95 11 70.77 9 9

Table 1: Summary of a selection of intrinsic evaluation scores from the core UD parsing task on English treebanks only. Columns
labeled 〈 〉 and # indicate the macro-averaged F1 of each metric over the four English treebanks and the corresponding ranking
of each team, respectively. The metrics are, from left to right: word and sentence segmentation; lemmatization; coarse and
fine-grained parts of speech (UPOS and XPOS, respectively); labeled attachment score (LAS); morphology-aware labeled
attachment score (MLAS); bi-lexical dependency score (BLEX); and finally an aggregate ‘intrinsic’ score, reflecting the average
of ranks of each team. Teams shown in bold are included in the correlation analysis to intrinsic measures in § 5.

approaches and bibliographic references to indi-
vidual system descriptions (Zeman et al., 2018).
The names of all participants are shown in Table 1.
Most teams submitted only one run with the excep-
tion of NLP-Cube (three runs) and SParse (four); in
these cases, all runs have been scored, but only the
most recent submission was considered for the final
evaluation and comparison with intrinsic measures.

We conducted a post-submission survey among
participants, to gauge the comparability of the pars-
ing systems submitted to the core UD parsing task
vs. those used for parsing the EPE data, e.g. soft-
ware versions, training regimes, or other configura-
tion options.1 Twelve teams responded to the sur-
vey, and hence the following details only apply to
those who responded. Almost all participants used
(parts of) the English training data provided by the
UD parsing shared task (which is the only training
data allowed in EPE 2018), except for the UniMelb
team who accidentally used their own UD conver-
sions of the WSJ and GENIA treebanks. Therefore,
UniMelb was excluded from the competition, but
we report their scores as an additional point of com-
parison. Of all the systems that used ‘legitimate’

1To not interfere with the busy final weeks of the core task,
the EPE submission deadline was two weeks later. Hence,
we could not technically enforce that the exact same software
configurations were used in both component tasks, and in fact
at least two teams had to resort to revising their parsers in
order to complete processing of the comparatively large EPE
input files.

training data, only LATTICE used different train-
ing data for their EPE submission than in their core
task system. Two of the survey respondents—NLP-
Cube and SParse—indicated that they had made
changes to their systems that render the EPE and
core task results incomparable. The four teams that
did not respond to the survey and the four teams
for which the survey revealed limited comparabil-
ity to core task results (i.e. UniMelb, LATTICE,
NLP-Cube, and SParse; shown in italics in Tables 1
and 2) were not considered in our quantitative cor-
relation analysis between intrinsic and extrinsic
metrics (see § 5 below). Finally, only four of the
survey respondents (NLP-Cube, Phoenix, UDPipe-
Future, and Uppsala-18) indicated that their parsers
had used raw texts as inputs, i.e. applied their own
sentence and token segmentation. The other eight
respondents, in contrast, had availed themselves of
the pre-segmented inputs provided as an alternative
form of the EPE parser inputs.

Intrinsic Metrics In our view, one of the most
intriguing opportunities of aligning EPE 2018 with
the core UD parsing task lies in the comparison of
intrinsic and extrinsic evaluation results. In other
words, we seek to shed light on the degrees to
which observations made in intrinsic evaluation
allow one to predict downstream success for a spe-
cific application, as well as on which (intrinsically
measurable) layers of grammatical analysis most
directly impact end-to-end performance. For these
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reasons, we extracted a comprehensive array of in-
trinsic evaluation results for parsers represented in
EPE 2018 from the in-depth result summary for the
core UD parsing task.2

Table 1 summarizes our selection of intrinsic ob-
servations, where the first six metrics seek to isolate
performance at all relevant layers of grammatical
analysis, viz. word and sentence segmentation, lex-
ical analysis (lemmatization and tagging), and syn-
tactic structure (labeled attachment scores, or LAS).
The table further includes the other two official
metrics of the core task, which by design blend to-
gether some of these layers, i.e. morphology-aware
labeled attachment score and bi-lexical dependency
score, which evaluate LAS plus tagging and mor-
phological features3 and LAS plus lemmatization,
respectively.

In all cases, the results in Table 1 reflect (macro-
averaged) performance over the English UD tree-
banks only. Several of the best-performing systems
across all languages of the core task also submitted
to EPE 2018, including ICS-PAS, LATTICE, Stan-
ford, TurkuNLP-18, and UDPipe-Future. These
systems also populate the top ranks in the aggre-
gate English-only intrinsic evaluation, even though
there is some ‘jitter’ in their relative ranks across
individual metrics. In a few cases, the results in
Table 1 actually reveal system idiosyncrasies: IBM-
NY and Uppsala-18 do not predict XPOS values,
whereas the XPOS field in the ONLP-lab parser out-
puts merely contains a copy of the coarse-grained
UPOS predictions. The nine parsers that started
from pre-segmented EPE documents all tie for third
and sixth rank in sentence splitting and tokeniza-
tion, respectively.

5 Official Results

End-to-end extrinsic evaluation results for the EPE
2018 campaign are summarized in Table 2.4 For
each of the three downstream applications, the ta-
ble shows precision, recall, and F1 scores on the
corresponding EPE evaluation set. Additionally,
we indicate for each application whether coarse- or
fine-grained parts of speech were used (see below)

2Intrinsic results were automatically scraped from
the official http://universaldependencies.org/
conll18/results.html page.

3None of the current EPE downstream systems actually
considers morphological features, although the EPE interface
format does in principle provide for their representation.

4A multitude of additional scores, including against the
development sections for each downstream application, are
available from the task web site at http://epe.nlpl.eu.

and provide an aggregate ranking of participating
teams based on macro-averaged F1 scores.

The parser that gives rise to overall best down-
stream results across the three EPE applications is
UDPipe-Future, even though it is not the top per-
former for any of the individual applications. Dif-
ferences in average scores for the best-performing
systems are small, however, with less than 0.4 F1

points between the first and the fifth overall rank.
Many of the best-performing systems when judged
in terms of extrinsic results correspond to what
one might have predicted from our summary of
English-only intrinsic results (see § 4 above): in
addition to UDPipe-Future, also SLT-Interactions,
Stanford, and TurkuNLP-18 are in the intersection
of the top-five intrinsic and extrinsic ranks. The
system that ranks second in the extrinsic perspec-
tive (NLP-Cube), on the other hand, indicated in
our participant survey that they had made changes
to the parser inbetween their submissions to the
core vs. the EPE tasks.

If one ranks systems individually for each down-
stream application and compares across each row,
the majority of teams appear to obtain broadly com-
parable rankings on different applications. Never-
theless, there are a few notable exceptions. Arm-
Parser achieves the best results on negation reso-
lution but otherwise ranks in the bottom segment
on event extraction and opinion analysis. Manual
inspection of the parser outputs submitted reveals
that ArmParser zealously over-segments (as is also
evident in its low intrinsic score on sentence split-
ting in Table 1): it breaks the 1089 sentences of the
gold-standard negation evaluation data into a little
more than two thousand isolated token sequences.
While the EPE infrastructure deals robustly with
segmentation mismatches, this discrepancy uncov-
ers a technical issue in our way of interfacing to the
original *SEM 2012 scorer: the ‘annotation projec-
tion’ described by Lapponi et al. (2017) will present
the scorer with shortened and, hence, simplified
gold standards to compare to. In other words, the
high negation scores for ArmParser indicate an un-
warranted reward for its dealing in artificially short
‘sentences’.

Another stark asymmetry in per-application
ranks pertains to TurkuNLP-18, which shows top
results on negation resolution and opinion analy-
sis but ranks in the bottom quarter on the event
extraction application (which happens to be devel-
oped at the same site). While the unexpectedly

http://universaldependencies.org/conll18/results.html
http://universaldependencies.org/conll18/results.html
http://epe.nlpl.eu
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Team
Event Extraction Negation Resolution Opinion Analysis

PoS P R F1 PoS P R F1 PoS P R F1 〈 〉 #

AntNLP U 54.00 44.97 49.07 X 100 39.54 56.67 X 64.37 55.76 59.76 55.17 10
ArmParser U 53.76 39.28 45.39 X 99.12 42.75 59.74 X 60.13 51.65 55.57 53.57 15
Baseline U 39.63 53.43 45.51 X 100 40.30 57.45 X 61.67 55.95 58.67 53.88 13
IBM-NY U 53.08 43.81 48.00 U 100 39.16 56.28 U 62.03 56.03 58.88 54.39 12
ICS-PAS U 56.41 43.97 49.42 X 100 39.54 56.67 X 63.73 57.67 60.55 55.55 6
LATTICE-18 X 58.93 43.12 49.80 X 100 39.16 56.28 X 63.91 56.88 60.19 55.42 9
NLP-Cube U 56.54 42.65 48.62 X 100 40.15 57.30 X 64.95 59.24 61.96 55.96 3
ONLP-lab U 54.08 41.67 47.07 U 100 36.88 53.89 U 62.94 56.37 59.47 53.48 16
ParisNLP-18 X 55.66 43.56 48.87 X 100 40.68 57.83 X 63.01 56.78 59.73 55.48 8
Phoenix U 47.23 40.98 43.88 X 100 41.06 58.22 X 63.16 55.87 59.29 53.80 14
SLT-Interactions X 56.32 43.97 49.38 X 100 41.06 58.22 U 65.47 56.56 60.69 56.10 2
SParse X 50.62 41.04 45.33 X 100 40.30 57.45 X 63.44 57.94 60.57 54.45 11
Stanford-18 U 59.26 41.14 48.56 X 100 41.29 58.45 X 63.33 57.68 60.37 55.80 5
TurkuNLP-18 U 52.64 42.05 46.75 X 100 42.59 59.74 X 64.23 58.26 61.10 55.86 4
UDPipe-Future U 53.97 45.98 49.66 X 100 41.29 58.45 X 63.47 57.72 60.46 56.19 1
Uppsala-18 U 58.04 43.43 49.68 U 100 36.74 53.74 U 64.67 61.68 63.14 55.52 7

UniMelb X 58.52 49.43 53.59 X 100 41.83 58.99 X 66.67 62.88 64.72 59.10

Table 2: Summary of EPE 2018 results. The columns show, from left to right: team name, PoS tags used (UPOS or XPOS),
precision, recall, and F1 across the three downstream applications, average F1 across applications, and finally the overall rank of
each team. The best F1 score for each downstream task is indicated in bold. The UniMelb submission is considered outside the
competition due to the use of additional training data; teams shown in bold are included in the correlation analysis to intrinsic
measures in § 5.

low performance in the combination of the Turku
parser with the Turku event extraction system re-
assuringly indicates that there was no collusion in
Finland, we have so far been unable to form a hy-
pothesis about what might be the cause for this
performance discrepancy. Conversely, Uppsala-18
is among the top performers for event extraction
and opinion analysis but obtains the lowest F1 re-
sults on negation resolution in the EPE 2018 field.
The Uppsala parser is one of the few that does
not predict fine-grained parts of speech, which the
Sherlock negation system appears to strongly pre-
fer over the far more coarse-grained UPOS tags
(see below). We conjecture that the lack of XPOS
predictions in the Uppsala-18 parser outputs is at
least an important factor in the uncharacteristically
poor negation results for this system.

UPOS vs. XPOS Recall that the EPE 2018 in-
frastructure automatically retrains and tunes each
downstream system for each system submission.
An additional aspect in which the downstream sys-
tems could be optimized towards a particular parser
is, of course, feature engineering and selection. For
full generality and applicability across different
types of syntactico-semantic dependency represen-
tations, the current EPE applications restrict them-
selves to a range of broad token-level and structural
features that do not invoke individual linguistic
configurations (e.g. indicators of passive voice)—
including conjunctions of individual features that

have been clearly observed to be beneficial (see
§ 2 above and references there). All three down-
stream systems employ ‘vintage’ classifiers (CRFs
and SVMs) for which regularization techniques and
best practices are well established, such that one
can hope for a certain degree of feature selection
during training.

Reflecting availability of two distinct assign-
ments of parts of speech in all but a few of the
EPE 2018 submissions, we conducted one round of
feature adaptation in the downstream systems, viz.
determining whether to use the coarse-grained, uni-
versal UPOS or the finer-grained, English-specific
XPOS values for each combination of parser out-
puts and downstream system. This selection was
based on optimizing the primary metric for each ap-
plication on the development data, and the results
are indicated in the three PoS columns in Table 2.

XPOS appears to work better in general, possibly
reflecting that it makes available additional distinc-
tions, including some inflectional morphology.5

There are a few notable exceptions to this gener-
alization, however, and they appear application-
dependent to some degree. In particular the
event extraction system often obtains better results
when using UPOS, whereas for negation resolution

5Reflecting the above design constraints and desire for
cross-framework applicability, the EPE downstream systems
do not currently consider the morphological features that are
increasingly an integral part of the Universal Dependencies
framework.
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XPOS (where available) universally yields higher
end-to-end scores, and UPOS is only used with
the three systems that do not predict fine-grained
tags. Almost the same holds for the opinion analy-
sis application, with the one exception of the SLT-
Interactions submission, whose UPOS predictions
actually yield better results (though the actual dif-
ferences are small). Based on these observations,
one might expect Uppsala-18 (which only predicts
UPOS) to be at a disadvantage for opinion analysis
too, but other factors in this combination appear
more important (as Uppsala-18 actually obtains the
best overall opinion results).

Correlation Analysis To obtain a better under-
standing of the relationships between intrinsic and
extrinsic perspectives on parser performance, we
perform a quantitative correlation analysis over
pairs of evaluation metrics. We compute a rank
correlation matrix of intrinsic and extrinsic mea-
sures, limited to the sub-set of nine systems which
are known to be fully comparable across intrinsic
and extrinsic evaluation, i.e. where there were no
substantive changes to the parsers following the
completion of the core UD parsing task. We further
limit our analysis to the intrinsic evaluation metrics
pertaining to English (see Table 1), combined with
the downstream per-application F1 scores and an
average rank score called extrinsic in the following,
which aggregates the average rank of each system
across the three downstream applications. Figure 1
shows a heatmap of Spearman’s rank correlation
coefficients (ρ) for all pairs of intrinsic and extrin-
sic metrics.

In general, we observe high degrees of correla-
tion among intrinsic measures, albeit less so for the
segmentation metrics, in particular sentence seg-
mentation.6 We find the strongest correlations be-
tween the intrinsic average and the BLEX measure
(0.98), XPOS and lemmas (0.96), BLEX and lem-
mas (0.93), and UPOS and MLAS (0.92). Further,
BLEX correlates stronger with the average intrin-
sic metric than LAS and MLAS, so if one were
to search for a single, indicative intrinsic measure,
BLEX might offer a combined indicator across
analysis layers. We note that the correlation scores
pertaining to XPOS must be interpreted with some
care, given that two of the systems involved (IBM-

6Only one third of the systems considered in the correla-
tion matrix actually apply their own sentence splitting and
tokenization (see § 4 above). Accordingly, the corresponding
metrics are bound to exhibit far less interesting variation in
the correlation analysis.
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Figure 1: Correlation matrix of intrinsic and extrinsic metrics.

NY and Uppsala-18) do not predict XPOS, so that
their ranks according to this metric will not corre-
spond to their performance on other metrics.

If we examine the correlation between intrinsic
and extrinsic metrics, we also observe some strong
correlations—which is of course a very welcome
observation. In particular, we find a strong correla-
tion between the average extrinsic metric and the
intrinsic UPOS and MLAS metrics (0.88). The cor-
relation with UPOS is perhaps somewhat surprising
as UPOS is not used by the majority of systems.
Still, it appears that the ability to correctly predict
universal PoS tags provides a useful indicator of
downstream parser performance. We further ob-
serve strong to moderate correlations between the
individual intrinsic metrics and the overall extrinsic
average.

When examining per-application correlations to
intrinsic performance we find that each of the in-
dividual downstream metrics shows a correlation
with the intrinsic average, but for all three less
so than the extrinsic average. While seemingly
counter-intuitive, maybe, we interpret this as in-
dicative of a certain degree of complementarity
among the three downstream applications. Taken
together, they lead to better correspondences with
intrinsic metrics, an observation which holds also
true for several of the individual intrinsic metrics,
viz. UPOS, MLAS, and BLEX. This is in accor-
dance with the observation in the results overview
above: there is no parser to suit all needs, such that
in principle at least it would make sense to pick a
different parser for each of the three downstream
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applications.
Downstream results obtained by the different

parsers for the event extraction application, corre-
late most strongly with the UPOS metric (0.71),
followed by LAS (0.63) and MLAS (0.57). This
fits well with the observation that most of the top-
scoring systems in the event task actually make use
of UPOS (see above). The event extraction applica-
tion does not use lemmas among its features, hence
it shows no observable correlation to this particular
intrinsic metric. For the negation application, on
the other hand, the strongest correlation is with the
XPOS metric (0.75), followed by lemmas (0.71)
and BLEX (0.51). XPOS seems to be the favoured
PoS choice for this task (see Table 2), so this again
is in line with the most effective type of PoS for
the majority of systems.

When it comes to the opinion analysis applica-
tion, its rankings correlate most strongly with the
intrinsic ranking of parsers by MLAS (0.83), fol-
lowed by LAS and UPOS (both 0.75). It thus seems
that this application depends more strongly on a
syntactic or structural metric such as MLAS, in
comparison to the other downstream applications.
We also find that the opinion scores somewhat sur-
prisingly correlate more with UPOS (0.75) than
XPOS (0.27), which does not obviously follow
from the best-performing choice of tag set. We
leave further investigation of the relative impor-
tance of PoS tagging to the EPE opinion analysis
system to future work (see § 6 below).

Comparison to 2017 Owing to the updates in
downstream systems summarized in § 3 above, the
end-to-end scores in Table 2 are not strictly com-
parable to results from the EPE 2017 campaign
(Oepen et al., 2017). Nevertheless, we believe
that a ‘ballpark’ comparison can be informative.7

The best-performing parser in 2017 enabled end-
to-end scores of 50.23, 66.16, and 65.14 F1 points
on event extraction, negation resolution, and opin-
ion analysis, respectively. This was the Stanford–
Paris submission (run #06), outputting enhanced
UD graphs and trained on about 1.7 million tokens
of annotated text from the Brown, WSJ, and GE-

7In addition to the parameters suggested for such compari-
son in § 3 above, we find this belief supported by alignment of
results for the one system that participated in both EPE cam-
paigns in very similar configurations: the Prague submission
(run #00) in 2017 (Straka et al., 2017) corresponds closely
to the 2018 UDPipe baseline. F1 results for the three down-
stream applications in 2017 were 43.58, 58.83, and 59.79—
compared to 2018 scores of 45.51, 57.45, and 58.67.

NIA corpora (Schuster et al., 2017). In contrast,
the overall best parser in the EPE 2018 field deliv-
ers F1 results of 49.66, 58.45, and 56.19 (UDPipe-
Future). Taking into account that event scores
in 2017 may have been slightly under-estimated,
negation scores moderately inflated, and opinion
scores fully comparable—it seems fair to say that
the ‘pure’ English UD parsers from the EPE 2018
campaign do not facilitate the same high levels of
downstream performance. In the 2017 campaign,
end-to-end results for the event extraction applica-
tion were very competitive, and those for negation
resolution advanced the state of the art. This is
not the case in the 2018 field, which we tentatively
attribute to the limited volume of English training
data, the strict ‘treeness’ assumptions in most cur-
rent dependency parsers, and quite possibly the
inability of the EPE downstream applications to
take advantage of the UD morphological features.

6 Reflections and Outlook

In our view, the considerable effort for both par-
ticipants and organizers of running an additional
track at the 2018 CoNLL Shared Task on Universal
Dependency Parsing is rewarded through (a) a valu-
able, complementary perspective on the contrastive
evaluation of different parsing systems, as well as
through (b) a window of comparison to the state
of the art in three representative language ‘under-
standing’ applications. From a sufficiently high
level of abstraction, we see many reassuring cor-
respondences between intrinsic parser evaluation
and actual downstream utility. At the same time,
we find that not even a comprehensive ‘battery’ of
layered intrinsic metrics can fully inform the rela-
tive comparison of different parsers with regard to
their contributions to downstream performance.

In hindsight, we would have liked to obtain an
even tigher experimental setup, without any remain-
ing uncertainty about comparability of participat-
ing systems across the two tracks. If we were to
run another EPE campaign (unlikely as that may
feel just now), the EPE data bundles should also
include relevant test data for intrinsic evaluation.
In more immediate follow-up work, we plan to
re-compute and publish end-to-end results for the
submissions from the EPE 2017 campaign, for full
comparability, as well as further investigate the rel-
ative contributions of individual analysis layers to
the various downstream applications through addi-
tional control experiments and ablation studies.
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