CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

Daniel Zeman¹, Jan Hajič¹, Martin Popel¹, Martin Potthast², Milan Straka¹, Filip Ginter³, Joakim Nivre⁴, and Slav Petrov⁵

¹Charles University, Faculty of Mathematics and Physics ²Universität Leipzig, ³University of Turku ⁴Uppsala University, ⁵Google AI Language

{zeman|hajic|popel|straka}@ufal.mff.cuni.cz, martin.potthast@uni-leipzig.de, figint@utu.fi, joakim.nivre@lingfil.uu.se, slav@google.com

Abstract

Every year, the Conference on Computational Natural Language Learning (CoNLL) features a shared task, in which participants train and test their learning systems on the same data sets. In 2018, one of two tasks was devoted to learning dependency parsers for a large number of languages, in a real-world setting without any gold-standard annotation on the input. All test sets followed the unified annotation scheme of Universal Dependencies (Nivre et al., 2016). This shared task constitutes a 2^{nd} edition—the first one took place in 2017 (Zeman et al., 2017); the main metric from 2017 was kept, allowing for easy comparison, and two new main metrics were introduced. New datasets added to the Universal Dependencies collection between mid-2017 and the spring of 2018 contributed to the increased difficulty of the task this year. In this overview paper, we define the task and the updated evaluation methodology, describe data preparation, report and analyze the main results, and provide a brief categorization of the different approaches of the participating systems.

1 Introduction

The 2017 CoNLL shared task on universal dependency parsing (Zeman et al., 2017) picked up the thread from the influential shared tasks in 2006 and 2007 (Buchholz and Marsi, 2006; Nivre et al., 2007) and evolved it in two ways: (1) the parsing process started from raw text rather than gold standard tokenization and part-of-speech tagging, and (2) the syntactic representations were consistent across languages thanks to the Universal Dependencies framework (Nivre et al., 2016). The 2018 CoNLL shared task on universal dependency parsing starts from the same premises but adds a focus on morphological analysis as well as data from new languages.

Like last year, participating systems minimally had to find labeled syntactic dependencies between words, i.e., a syntactic head for each word, and a label classifying the type of the dependency relation. In addition, this year's task featured new metrics that also scored a system's capacity to predict a morphological analysis of each word, including a part-of-speech tag, morphological features, and a lemma. Regardless of metric, the assumption was that the input should be raw text, with no gold-standard word or sentence segmentation, and no gold-standard morphological annotation. However, for teams who wanted to concentrate on one or more subtasks, segmentation and morphology predicted by the baseline UDPipe system (Straka et al., 2016) was made available just like last year.

There are eight new languages this year: Afrikaans, Armenian, Breton, Faroese, Naija, Old French, Serbian, and Thai; see Section 2 for more details. The two new evaluation metrics are described in Section 3.

2 Data

In general, we wanted the participating systems to be able to use any data that is available free of charge for research and educational purposes (so that follow-up research is not obstructed). We deliberately did not place upper bounds on data sizes (in contrast to e.g. Nivre et al. (2007)), despite the fact that processing large amounts of data may be difficult for some teams. Our primary objective was to determine the capability of current parsers provided with large amounts of freely available data.

In practice, the task was formally closed, i.e., we listed the approved data resources so that all participants were aware of their options. However, the selection was rather broad, ranging from Wikipedia dumps over the OPUS parallel corpora (Tiedemann, 2012) to morphological transducers. Some of the resources were proposed by the participating teams.

We provided dependency-annotated training and test data, and also large quantities of crawled raw texts. Other language resources are available from third-party servers and we only referred to the respective download sites.

2.1 Training Data: UD 2.2

Training and development data came from the Universal Dependencies (UD) 2.2 collection (Nivre et al., 2018). This year, the official UD release immediately followed the test phase of the shared task. The training and development data were available to the participating teams as a pre-release; these treebanks were then released exactly in the state in which they appeared in the task.¹ The participants were instructed to only use the UD data from the package released for the shared task. In theory, they could locate the (yet unreleased) test data in the development repositories on GitHub, but they were trusted that they would not attempt to do so.

82 UD treebanks in 57 languages were included in the shared task;² however, nine of the smaller treebanks consisted solely of test data, with no data at all or just a few sentences available for training. 16 languages had two or more treebanks from different sources, often also from different domains.³ See Table 1 for an overview.

61 treebanks contain designated development data. Participants were asked not to use it for training proper but only for evaluation, development, tuning hyperparameters, doing error analysis etc. Seven treebanks have reasonablysized training data but no development data; only two of them, Irish and North Sámi, are the sole treebanks of their respective languages. For those treebanks cross-validation had to be used during development, but the entire dataset could be used for training once hyperparameters were determined. Five treebanks consist of extra test sets: they have no training or development data of their own, but large training data exist in other treebanks of the same languages (Czech-PUD, English-PUD, Finnish-PUD, Japanese-Modern and Swedish-PUD, respectively). The remaining nine treebanks are low-resource languages. Their "training data" was either a tiny sample of a few dozen sentences (Armenian, Buryat, Kazakh, Kurmanji, Upper Sorbian), or there was no training data at all (Breton, Faroese, Naija, Thai). Unlike in the 2017 task, these languages were not "surprise languages", that is, the participants knew well in advance what languages to expect. The last two languages are particularly difficult: Naija is a pidgin spoken in Nigeria; while it can be expected to bear some similarity to English, its spelling is significantly different from standard English, and no resources were available to learn it. Even harder was Thai with a writing system that does not separate words by spaces; the Facebook word vectors were probably the only resource among the approved additional data where participants could learn something about words in Thai (Rosa and Mareček, 2018; Smith et al., 2018). It was also possible to exploit the fact that there is a 1-1 sentence mapping between the Thai test set and the other four PUD test sets.⁴

Participants received the training and development data with gold-standard tokenization, sentence segmentation, POS tags and dependency re-

¹UD 2.2 also contains other treebanks that were not included in the task for various reasons, and that may have been further developed even during the duration of the task.

²Compare with the 81 treebanks and 49 languages in the 2017 task.

³We distinguish treebanks of the same language by their short names or acronyms. Hence, the two treebanks of Ancient Greek are identified as Perseus and PROIEL, the three treebanks of Latin are ITTB, Perseus and PROIEL, etc.

⁴While the test datasets were not available to the teams when they developed their systems, the documentation of the treebanks was supplied together with the training data, hence the teams could learn that the PUD treebanks were parallel.

Language	Tbk Code	2017	TrWrds	Language	Tbk Code	2017	
Afrikaans	af_afribooms	NA	34 K	Italian	it_isdt	it	
Ancient Greek	grc_perseus	grc	160 K	Italian	it_postwita	NA	
Ancient Greek	grc_proiel	grc_proiel	187 K	Japanese	ja_gsd	ja	
Arabic	ar_padt	ar	224 K	Japanese	ja_modern	NA	
Armenian	hy_armtdp	NA	1 K	Kazakh	kk_ktb	kk	
Basque	eu_bdt	eu	73 K	Korean	ko_gsd	ko	
Breton	br_keb	NA	0 K	Korean	ko_kaist	NA	
Bulgarian	bg_btb	bg	124 K	Kurmanji	kmr_mg	kmr	
Buryat	bxr_bdt	bxr	0 K	Latin	la_ittb	la_ittb	
Catalan	ca_ancora	ca	418 K	Latin	la_perseus	la	
Chinese	zh_gsd	zh	97 K	Latin	la_proiel	la_proiel	
Croatian	hr_set	hr	154 K	Latvian	lv_lvtb	lv	
Czech	cs_cac	cs_cac	473 K	Naija	pcm_nsc	NA	
Czech	cs_fictree	NA	134 K	North Sámi	sme_giella	sme	
Czech	cs_pdt	cs	1,173 K	Norwegian	no_bokmaal	no_bokmaal	
Czech	cs_pud	cs_pud	0 K	Norwegian	no_nynorsk	no_nynorsk	
Danish	da_ddt	da	80 K	Norwegian	no_nynorsklia	NA	
Dutch	nl_alpino	nl	186 K	Old Church Slavonic	cu_proiel	cu	
Dutch	nl_lassysmall	nl_lassysmall	75 K	Old French	fro_srcmf	NA	
English	en_ewt	en	205 K	Persian	fa_seraji	fa	
English	en_gum	NA	54 K	Polish	pl_lfg	NA	
English	en_lines	en_lines	50 K	Polish	pl_sz	pl	
English	en_pud	en_pud	0 K	Portuguese	pt_bosque	pt	
Estonian	et_edt	et	288 K	Romanian	ro_rrt	ro	
Faroese	fo_oft	NA	0 K	Russian	ru_syntagrus	ru_syntagrus	
Finnish	fi_ftb	fi_ftb	128 K	Russian	ru_taiga	NA	
Finnish	fi_pud	fi_pud	0 K	Serbian	sr_set	NA	
Finnish	fi_tdt	fi	163 K	Slovak	sk_snk	sk	
French	fr_gsd	fr	357 K	Slovenian	sl_ssj	sl	
French	fr_sequoia	fr_sequoia	51 K	Slovenian	sl_sst	sl_sst	
French	fr_spoken	NA	15 K	Spanish	es_ancora	es_ancora	
Galician	gl_ctg	gl	79 K	Swedish	sv_lines	sv_lines	
Galician	gl_treegal	gl_treegal	15 K	Swedish	sv_pud	sv_pud	
German	de_gsd	de	264 K	Swedish	sv_talbanken	sv	
Gothic	got_proiel	got	35 K	Thai	th_pud	NA	
Greek	el_gdt	el	42 K	Turkish	tr_imst	tr	
Hebrew	he_htb	he	138 K	Ukrainian	uk_iu	uk	
Hindi	hi_hdtb	hi	281 K	Upper Sorbian	hsb_ufal	hsb	
Hungarian	hu_szeged	hu	20 K	Urdu	ur_udtb	ur	
Indonesian	id_gsd	id	98 K	Uyghur	ug_udt	ug	
Irish	ga_idt	ga	14 K	Vietnamese	vi_vtb	vi	

Table 1: Overview of the 82 test treebanks. **TbkCode** = Treebank identifier, consisting of the ISO 639 language code followed by a treebank-specific code. **2017** = Code of the corresponding treebank in the 2017 task if applicable ("NA" otherwise). **TrWrds** = Size of training data, rounded to the nearest thousand words.

lations; and for most languages also lemmas and morphological features.

Cross-domain and cross-language training was allowed and encouraged. Participants were free to train models on any combination of the training treebanks and apply it to any test set.

2.2 Supporting Data

To enable the induction of custom embeddings and the use of semi-supervised methods in general, the participants were provided with supporting resources primarily consisting of large text corpora for many languages in the task, as well as embeddings pre-trained on these corpora. In total, 5.9 M sentences and 90 G words in 45 languages are available in CoNLL-U format (Ginter et al., 2017); the per-language sizes of the corpus are listed in Table 2.

See Zeman et al. (2017) for more details on how the raw texts and embeddings were processed. Note that the resource was originally prepared for the 2017 task and it was not extended to include the eight new languages; however, some of the new languages are covered by the word vectors provided by Facebook (Bojanowski et al., 2016) and approved for the shared task.

Language	Words
English (en)	9,441 M
German (de)	6,003 M
Portuguese (pt)	5,900 M
Spanish (es)	5,721 M
French (fr)	5,242 M
Polish (pl)	5,208 M
Indonesian (id)	5,205 M
Japanese (ja)	5,179 M
Italian (it)	5,136 M
Vietnamese (vi)	4,066 M
Turkish (tr)	3,477 M
Russian (ru)	3,201 M
Swedish (sv)	2,932 M
Dutch (nl)	2,914 M
Romanian (ro)	2,776 M
Czech (cs)	2,005 M
Hungarian (hu)	1,624 M
Danish (da)	1,564 M
Chinese (zh)	1,530 M
Norwegian-Bokmål (no)	1,305 M
Persian (fa)	1,120 M
Finnish (fi)	1,008 M
Arabic (ar)	963 M
Catalan (ca)	860 M
Slovak (sk)	811 M
Greek (el)	731 M
Hebrew (he)	615 M
Croatian (hr)	583 M
Ukrainian (uk)	538 M
Korean (ko)	527 M
Slovenian (sl)	527 M
Bulgarian (bg)	370 M
Estonian (et)	328 M
Latvian (lv)	276 M
Galician (gl)	262 M
Latin (la)	244 M
Basque (eu)	155 M
Hindi (hi)	91 M
Norwegian-Nynorsk (no)	76 M
Kazakh (kk)	54 M
Urdu (ur)	46 M
Irish (ga)	24 M
Ancient Greek (grc)	7 M
Uyghur (ug)	3 M
Kurdish (kmr)	3 M
Upper Sorbian (hsb)	2 M
Buryat (bxr)	413 K
North Sámi (sme)	413 K 331 K
Old Church Slavonic (cu)	28 K
Total	20 K 90,669 M
10(4)	70,007 IVI

Table 2: Supporting data overview: Number of words (M = million; K = thousand) for each language.

2.3 Test Data: UD 2.2

Each of the 82 treebanks mentioned in Section 2.1 has a test set. Test sets from two different treebanks of one language were evaluated separately as if they were different languages. Every test set contains at least 10,000 words (including punctuation marks). UD 2.2 treebanks that were smaller than 10,000 words were excluded from the shared task. There was no upper limit on the test data; the largest treebank had a test set comprising 170K words. The test sets were officially released as a part of UD 2.2 immediately after the shared task.⁵

3 Evaluation Metrics

There are three main evaluation scores, dubbed LAS, MLAS and BLEX. All three metrics reflect word segmentation and relations between content words. LAS is identical to the main metric of the 2017 task, allowing for easy comparison; the other two metrics include part-of-speech tags, morphological features and lemmas. Participants who wanted to decrease task complexity could concentrate on improvements in just one metric; however, all systems were evaluated with all three metrics, and participants were strongly encouraged to output all relevant annotation, even if they just copy values predicted by the baseline model.

When parsers are applied to raw text, the metric must be adjusted to the possibility that the number of nodes in gold-standard annotation and in the system output vary. Therefore, the evaluation starts with aligning system nodes and gold nodes. A dependency relation cannot be counted as correct if one of the nodes could not be aligned to a gold node. See Section 3.4 and onward for more details on alignment.

The evaluation software is a Python script that computes the three main metrics and a number of additional statistics. It is freely available for download from the shared task website.⁶

3.1 LAS: Labeled Attachment Score

The standard evaluation metric of dependency parsing is the *labeled attachment score* (LAS), i.e., the percentage of nodes with correctly assigned reference to the parent node, including the label (type) of the relation. For scoring purposes, only

⁵http://hdl.handle.net/11234/1-2837 ⁶http://universaldependencies.org/ conll18/conll18_ud_eval.py

Content	nsubj, obj, iobj, csubj, ccomp, xcomp, obl, vocative, expl,
	dislocated, advcl, advmod, discourse, nmod, appos, nummod,
	acl, amod, conj, fixed, flat, compound, list, parataxis,
	orphan, goeswith, reparandum, root, dep
Function	aux, cop, mark, det, clf, case, cc
Ignored	punct

Table 3: Universal dependency relations considered as pertaining to content words and function words, respectively, in MLAS. Content word relations are evaluated directly; words attached via functional relations are treated as features of their parent nodes.

Features	PronType, NumType, Poss, Reflex, Foreign, Abbr, Gender,
	Animacy, Number, Case, Definite, Degree, VerbForm, Mood, Tense, Aspect, Voice, Evident, Polarity, Person, Polite
	Tense, Aspect, Voice, Evident, Polarity, Person, Polite

Table 4: Universal features whose values are evaluated in MLAS. Any other features are ignored.

universal dependency labels were taken into account, which means that language-specific subtypes such as expl:pv (pronoun of a pronominal verb), a subtype of the universal relation expl (expletive), were truncated to expl both in the gold standard and in the system output before comparing them.

In the end-to-end evaluation of our task, LAS is re-defined as the harmonic mean (F_1) of precision P and recall R, where

$$P = \frac{\#correctRelations}{\#systemNodes} \tag{1}$$

$$R = \frac{\#correctRelations}{\#goldNodes}$$
(2)

$$LAS = \frac{2PR}{P+R} \tag{3}$$

Note that attachment of all nodes including punctuation is evaluated. LAS is computed separately for each of the 82 test files and a macro-average of all these scores is used to rank the systems.

3.2 MLAS: Morphology-Aware Labeled Attachment Score

MLAS aims at cross-linguistic comparability of the scores. It is an extension of CLAS (Nivre and Fang, 2017), which was tested experimentally in the 2017 task. CLAS focuses on dependencies between content words and disregards attachment of function words; in MLAS, function words are not ignored, but they are treated as features of content words. In addition, part-of-speech tags and morphological features are evaluated, too. The idea behind MLAS is that function words often correspond to morphological features in other languages. Furthermore, languages with many function words (e.g., English) have longer sentences than morphologically rich languages (e.g., Finnish), hence a single error in Finnish costs the parser significantly more than an error in English according to LAS.

The core part is identical to LAS (Section 3.1): for aligned system and gold nodes, their respective parent nodes are considered; if the system parent is not aligned with the gold parent, or if the universal relation label differs, the word is not counted as correctly attached. Unlike LAS, certain types of relations (Table 3) are not evaluated directly. Words attached via such relations (in either system or gold data) are not counted as independent words. Instead, they are treated as features of the content words they belong to. Therefore, a system-produced word counts as correct if it is aligned and attached correctly, its universal POS tag and selected morphological features (Table 4) are correct, all its function words are attached correctly, and their POS tags and features are also correct. Punctuation nodes are neither content nor function words; their attachment is ignored in MLAS.

3.3 BLEX: Bilexical Dependency Score

BLEX is similar to MLAS in that it focuses on relations between content words. Instead of morphological features, it incorporates lemmatization in the evaluation. It is thus closer to semantic content and evaluates two aspects of UD annotation that are important for language understanding: dependencies and lexemes. The inclusion of this metric should motivate the competing teams to model lemmas, the last important piece of annotation that is not captured by the other metrics. A system that scores high in all three metrics will thus be a general-purpose language-analysis tool that tackles segmentation, morphology and surface syntax.

Computation of BLEX is analogous to LAS and MLAS. Precision and recall of correct attachments is calculated, attachment of function words and punctuation is ignored (Table 3). An attachment is correct if the parent and child nodes are aligned to the corresponding nodes in gold standard, if the universal dependency label is correct, and if the lemma of the child node is correct.

A few UD treebanks lack lemmatization (or, as in Uyghur, have lemmas only for some words and not for others). A system may still be able to predict the lemmas if it learns them in other treebanks. Such system should not be penalized just because no gold standard is available; therefore, if the gold lemma is a single underscore character ("_"), any system-produced lemma is considered correct.

3.4 Token Alignment

UD defines two levels of token/word segmentation. The lower level corresponds to what is usually understood as tokenization. However, unlike some popular tokenization schemes, it does not include any normalization of the non-whitespace characters. We can safely assume that any two tokenizations of a text differ only in whitespace while the remaining characters are identical. There is thus a 1-1 mapping between gold and system nonwhitespace characters, and two tokens are aligned if all their characters match.

3.5 Syntactic Word Alignment

The higher segmentation level is based on the notion of *syntactic word*. Some languages contain *multi-word tokens* (MWT) that are regarded as contractions of multiple syntactic words. For example, the German token *zum* is a contraction of the preposition *zu* "to" and the article *dem* "the".

Syntactic words constitute independent nodes in dependency trees. As shown by the example, it is not required that the MWT is a pure concatenation of the participating words; the simple token alignment thus does not work when MWTs are involved. Fortunately, the CoNLL-U file format used in UD clearly marks all MWTs so we can detect them both in system output and in gold data. Whenever one or more MWTs have overlapping spans of surface character offsets, the longest common subsequence algorithm is used to align syntactic words within these spans.

3.6 Sentence Segmentation

Words are aligned and dependencies are evaluated in the entire file without considering sentence segmentation. Still, the accuracy of sentence boundaries has an indirect impact on attachment scores: any missing or extra sentence boundary necessarily makes one or more dependency relations incorrect.

3.7 Invalid Output

If a system fails to produce one of the 82 files or if the file is not valid CoNLL-U format, the score of that file (counting towards the system's macroaverage) is zero.

Formal validity is defined more leniently than for UD-released treebanks. For example, a nonexistent dependency type does not render the whole file invalid, it only costs the system one incorrect relation. However, cycles and multi-root sentences are disallowed. A file is also invalid if there are character mismatches that could make the token-alignment algorithm fail.

3.8 Extrinsic Parser Evaluation

The metrics described above are all *intrinsic* measures: they evaluate the grammatical analysis task per se, with the hope that better scores correspond to output that is more useful for downstream NLP applications. Nevertheless, such correlations are not automatically granted. We thus seek to complement our task with an *extrinsic* evaluation, where the output of parsing systems is exploited by applications like biological event extraction, opinion analysis and negation scope resolution.

This optional track involves English only. It is organized in collaboration with the EPE initiative;⁷ for details see Fares et al. (2018).

4 TIRA: The System Submission Platform

Similarly to our 2017 task and to some other recent CoNLL shared tasks, we employed the cloud-

⁷http://epe.nlpl.eu/

based evaluation platform TIRA (Potthast et al., 2014),⁸ which implements the *evaluation as a service* paradigm (Hanbury et al., 2015). Instead of processing test data on their own hardware and submitting the outputs, participants submit working software. Naturally, software submissions bring about additional overhead for both organizers and participants, whereas the goal of an evaluation platform like TIRA is to reduce this overhead to a bearable level.

4.1 Blind Evaluation

Traditionally, evaluations in shared tasks are halfblind (the test data are shared with participants while the ground truth is withheld). TIRA enables fully blind evaluation, where the software is locked in a datalock together with the test data, its output is recorded but all communication channels to the outside are closed or tightly moderated. The participants do not even see the input to their software. This feature of TIRA was not too important in the present task, as UD data is not secret, and the participants were simply trusted that they would not exploit any knowledge of the test data they might have access to.

However, closing down all communication channels also has its downsides, since participants cannot check their running software; before the system run completes, even the task moderator does not see whether the system is really producing output and not just sitting in an endless loop. In order to alleviate this extra burden, we made two modifications compared to the previous year: 1. Participants were explicitly advised to invoke shorter runs that process only a subset of the test files. The organizers would then stitch the partial runs into one set of results. 2. Participants were able to see their scores on the test set rounded to the nearest multiple of 5%. This way they could spot anomalies possibly caused by illselected models. The exact scores remained hidden because we did not want the participants to fine-tune their systems against the test data.

4.2 Replicability

It is desirable that published experiments can be re-run yielding the same results, and that the algorithms can be tested on alternative test data in the future. Ensuring both requires that a to-beevaluated software is preserved in working condition for as long as possible. TIRA supplies participants with a virtual machine, offering a range of commonly used operating systems. Once deployed and tested, the virtual machines are archived to preserve the software within.

In addition, some participants agreed to share their code so that we decided to collect the respective projects in an open source repository hosted on GitHub.⁹

5 Baseline System

We prepared a set of baseline models using UD-Pipe 1.2 (Straka and Straková, 2017).

The baseline models were released together with the UD 2.2 training data. For each of the 73 treebanks with non-empty training data we trained one UDPipe model, utilizing training data for training and development data for hyperparameter tuning. If a treebank had no development data, we cut 10% of the training sentences and considered it as development data for the purpose of tuning hyperparameters of the baseline model (employing only the remainder of the original training data for the actual training in that case).

In addition to the treebank-specific models, we also trained a "mixed model" on samples from all treebanks. Specifically, we utilized the first 200 training sentences of each treebank (or less in case of small treebanks) as training data, and at most 20 sentences from each treebank's development set as development data.

The baseline models, together with all information needed to replicate them (hyperparameters, the modified train-dev split where applicable, and pre-computed word embeddings for the parser) are available from http://hdl.handle.net/11234/ 1-2859.

Additionally, the released archive also contains the training and development data with predicted morphology. Morphology in development data was predicted using the baseline models, morphology in training data via "jack-knifing" (split the training set into 10 parts, train a model on 9 parts, use it to predict morphology in the tenth part, repeat for all 10 target parts). The same hyperparameters were used as those used to train the baseline model on the entire training set.

The UDPipe baseline models are able to reconstruct nearly all annotation from CoNLL-U files – they can generate segmentation, tokenization,

⁸http://www.tira.io/

⁹https://github.com/CoNLL-UD-2018

Treebank without	Substitution
training data	model
Breton KEB	mixed model
Czech PUD	Czech PDT
English PUD	English EWT
Faroese OFT	mixed model
Finnish PUD	Finnish TDT
Japanese Modern	Japanese GSD
Naija NSC	mixed model
Swedish PUD	Swedish Talbanken
Thai PUD	mixed model

Table 5: Substitution models of the baseline systems for treebanks without training data.

multi-word token splitting, morphological annotation (lemmas, UPOS, XPOS and FEATS) and dependency trees. Participants were free to use any part of the model in their systems – for all test sets, we provided UDPipe processed variants in addition to raw text inputs.

Baseline UDPipe Shared Task System The shared task baseline system employs the UDPipe 1.2 baseline models. For the nine treebanks without their own training data, a substitution model according to Table 5 was used.

6 Results

6.1 Official Parsing Results

Table 6 gives the main ranking of participating systems by the LAS F_1 score macro-averaged over all 82 test files. The table also shows the performance of the baseline UDPipe system; 17 of the 25 systems managed to outperform it. The baseline is comparatively weaker than in the 2017 task (only 12 out of 32 systems beat the baseline there). The ranking of the baseline system by MLAS is similar (Table 7) but in BLEX, the baseline jumps to rank 13 (Table 8). Besides the simple explanation that UDPipe 1.2 is good at lemmatization, we could also hypothesize that some teams put less effort in building lemmatization models (see also the last column in Table 10).

Each ranking has a different winning system, although the other two winners are typically closely following. The same 8–10 systems occupy best positions in all three tables, though with variable mutual ranking. Some teams seem to have deliberately neglected some of the evaluated attributes: Uppsala is rank 7 in LAS and MLAS, but 24 in

	Team	LAS
1.	HIT-SCIR (Che et al.)	75.84
2.	TurkuNLP (Kanerva et al.)	73.28
3.	UDPipe Future (Straka)	73.11
	LATTICE (Lim et al.)	73.02
	ICS PAS (Rybak and Wróblewska)	73.02
6.	CEA LIST (Duthoo and Mesnard)	72.56
7.	Uppsala (Smith et al.)	72.37
	Stanford (Qi et al.)	72.29
9.	AntNLP (Ji et al.)	70.90
	NLP-Cube (Boroș et al.)	70.82
11.	ParisNLP (Jawahar et al.)	70.64
12.	SLT-Interactions (Bhat et al.)	69.98
13.	IBM NY (Wan et al.)	69.11
14.	UniMelb (Nguyen and Verspoor)	68.66
15.	LeisureX (Li et al.)	68.31
16.	KParse (Kırnap et al.)	66.58
17.	Fudan (Chen et al.)	66.34
18.	BASELINE UDPipe 1.2	65.80
19.	Phoenix (Wu et al.)	65.61
20.	CUNI x-ling (Rosa and Mareček)	64.87
21.	BOUN (Özateş et al.)	63.54
22.	ONLP lab (Seker et al.)	58.35
23.	iParse (no paper)	55.83
24.	HUJI (Hershcovich et al.)	53.69
25.	ArmParser (Arakelyan et al.)	47.02
26.	SParse (Önder et al.)	1.95

Table 6: Ranking of the participating systems by the labeled attachment F_1 -score (LAS), macroaveraged over 82 test sets. Pairs of systems with significantly (p < 0.05) different LAS are separated by a line. Citations refer to the corresponding system-description papers in this volume.

BLEX; IBM NY is rank 13 in LAS but 24 in MLAS and 23 in BLEX.

While the LAS scores on individual treebanks are comparable to the 2017 task, the macro average is not, because the set of treebanks is different, and the impact of low-resource languages seems to be higher in the present task.

We used bootstrap resampling to compute 95% confidence intervals: they are in the range ± 0.11 to ± 0.16 (% LAS/MLAS/BLEX) for all systems except SParse (where it is ± 0.00).

	Team	MLAS
1.	UDPipe Future (Praha)	61.25
2.	TurkuNLP (Turku)	60.99
	Stanford (Stanford)	60.92
4.	ICS PAS (Warszawa)	60.25
5.	CEA LIST (Paris)	59.92
6.	HIT-SCIR (Harbin)	59.78
7.	Uppsala (Uppsala)	59.20
8.	NLP-Cube (București)	57.32
9.	LATTICE (Paris)	57.01
10.	AntNLP (Shanghai)	55.92
11.	ParisNLP (Paris)	55.74
12.	SLT-Interactions (Bengaluru)	54.52
13.	LeisureX (Shanghai)	53.70
	UniMelb (Melbourne)	53.62
15.	KParse (İstanbul)	53.25
16.	Fudan (Shanghai)	52.69
17.	BASELINE UDPipe 1.2	52.42
	Phoenix (Shanghai)	52.26
19.	BOUN (İstanbul)	50.40
	CUNI x-ling (Praha)	50.35
21.	ONLP lab (Ra'anana)	46.09
22.	iParse (Pittsburgh)	45.65
23.	HUJI (Yerushalayim)	44.60
24.	IBM NY (Yorktown Heights)	40.61
25.	ArmParser (Yerevan)	36.28
26.	SParse (İstanbul)	1.68

Table 7: Ranking of the participating systems by **MLAS**, macro-averaged over 82 test sets. Pairs of systems with significantly (p < 0.05) different MLAS are separated by a line.

We used paired bootstrap resampling to compute whether the difference between two neighboring systems is significant (p < 0.05).¹⁰

6.2 Secondary Metrics

In addition to the main LAS ranking, we evaluated the systems along multiple other axes, which may shed more light on their strengths and weaknesses. This section provides an overview of selected secondary metrics for systems matching or surpassing the baseline; a large number of additional results are available at the shared task website.¹¹

The website also features a LAS ranking of unofficial system runs, i.e. those that were not

	Team	BLEX
1.	TurkuNLP (Turku)	66.09
2.	HIT-SCIR (Harbin)	65.33
3.	UDPipe Future (Praha)	64.49
	ICS PAS (Warszawa)	64.44
5.	Stanford (Stanford)	64.04
6.	LATTICE (Paris)	62.39
	CEA LIST (Paris)	62.23
8.	AntNLP (Shanghai)	60.91
9.	ParisNLP (Paris)	60.70
10.	SLT-Interactions (Bengaluru)	59.68
11.	UniMelb (Melbourne)	58.67
12.	LeisureX (Shanghai)	58.42
13.	BASELINE UDPipe 1.2	55.80
	Phoenix (Shanghai)	55.71
15.	NLP-Cube (Bucureşti)	55.52
16.	KParse (İstanbul)	55.26
17.	CUNI x-ling (Praha)	54.07
	Fudan (Shanghai)	54.03
19.	BOUN (İstanbul)	53.45
20.	iParse (Pittsburgh)	48.71
21.	HUJI (Yerushalayim)	48.05
22.	ArmParser (Yerevan)	39.18
23.	IBM NY (Yorktown Heights)	32.55
24.	Uppsala (Uppsala)	32.09
25.	ONLP lab (Ra'anana)	28.29
26.	SParse (İstanbul)	1.71

Table 8: Ranking of the participating systems by **BLEX**, macro-averaged over 82 test sets. Pairs of systems with significantly (p < 0.05) different BLEX are separated by a line.

marked by their teams as primary runs, or were even run after the official evaluation phase closed and test data were unblinded. The difference from the official results is much less dramatic than in 2017, with the exception of the team SParse, who managed to fix their software and produce more valid output files.

As an experiment, we also applied the 2017 system submissions to the 2018 test data. This allows us to test how many systems can actually be used to produce new data without a glitch, as well as to see to what extent the results change over one year and two releases of UD. Here it should be noted that not all of the 2018 task languages and treebanks were present in the 2017 task, therefore causing many systems fail due to an unknown language or treebank code. The full results of this

¹⁰Using Udapi (Popel et al., 2017) eval.Conll18, marked by the presence or absence of horizontal lines in Tables 6–8.

¹¹http://universaldependencies.org/ conll18/results.html

Team	Toks	Wrds	Sents
1. Uppsala	97.60	98.18	83.80
2. HIT-SCIR	98.42	98.12	83.87
3. CEA LIST	98.16	97.78	82.79
4. CUNI x-ling	98.09	97.74	82.80
5. TurkuNLP	97.83	97.42	83.03
6. SLT-Interactions	97.51	97.09	83.01
7. UDPipe Future	97.46	97.04	83.64
8. Phoenix	97.46	97.03	82.91
9. BASELINE UDPipe	97.39	96.97	83.01
ParisNLP	97.39	96.97	83.01
AntNLP	97.39	96.97	83.01
UniMelb	97.39	96.97	83.01
BOUN	97.39	96.97	83.01
ICS PAS	97.39	96.97	83.01
LATTICE	97.39	96.97	83.01
LeisureX	97.39	96.97	83.01
KParse	97.39	96.97	83.01
18. Fudan	97.38	96.96	82.85
19. IBM NY	97.30	96.92	83.51
20. ONLP lab	97.28	96.86	83.00
21. NLP-Cube	97.36	96.80	82.55
22. Stanford	96.19	95.99	76.55
23. HUJI	94.95	94.61	80.84
24. ArmParser	79.75	79.41	13.33
25. iParse	78.45	78.11	68.37
26. SParse	2.32	2.32	2.34

Table 9: Tokenization, word segmentation and sentence segmentation (ordered by word F_1 scores; out-of-order scores in the other two columns are bold).

experiment are available on the shared task website.¹²

Table 9 evaluates detection of tokens, syntactic words and sentences. About a third of the systems trusted the baseline segmentation; this is less than in 2017. For most languages and in aggregate, the segmentation scores are very high and their impact on parsing scores is not easy to prove; but it likely played a role in languages where segmentation is hard. For example, HIT-SCIR's word segmentation in Vietnamese surpasses the second system by a margin of 6 percent points; likewise, the system's advantage in LAS and MLAS (but not in BLEX!) amounts to 7–8 points. Similarly, Uppsala and ParisNLP achieved good segmenta-

Team	UPOS	Feats	Lemm
1. Uppsala	90.91	87.59	58.50
2. HIT-SCIR	90.19	84.24	88.82
3. CEA LIST	89.97	86.83	88.90
4. TurkuNLP	89.81	86.70	91.24
5. LATTICE	89.53	83.74	87.84
6. UDPipe Future	89.37	86.67	89.32
7. Stanford	89.01	85.47	88.32
8. ICS PAS	88.70	85.14	87.99
9. CUNI x-ling	88.68	84.56	88.96
10. NLP-Cube	88.50	85.08	81.21
11. SLT-Interactions	88.12	83.72	87.51
12. IBM NY	88.02	59.11	59.51
13. UniMelb	87.90	83.74	87.84
14. KParse	87.62	84.32	86.26
15. Phoenix	87.49	83.87	87.69
16. ParisNLP	87.35	83.74	87.84
17. BASELINE UDPipe	87.32	83.74	87.84
AntNLP	87.32	83.74	87.84
19. ONLP lab	87.25	83.67	57.10
20. Fudan	87.25	83.47	85.91
21. BOUN	87.19	83.73	87.68
22. LeisureX	87.15	83.46	87.77
23. HUJI	85.06	81.51	85.61
24. ArmParser	72.99	69.91	72.22
25. iParse	71.38	68.64	71.68
26. SParse	2.25	2.29	2.28

Table 10: Universal POS tags, features and lemmas (ordered by UPOS F_1 scores; out-of-order scores in the other two columns are bold).

tion scores (better than their respective macroaverages) on Arabic. They were able to translate it into better LAS, but not MLAS and BLEX, where there were too many other chances to make an error.

The complexity of the new metrics, especially MLAS, is further underlined by Table 10: Uppsala is the clear winner in both UPOS tags and morphological features, but 6 other teams had better dependency relations and better MLAS. Note that as with segmentation, morphology predicted by the baseline system was available, though only a few systems seem to have used it without attempting to improve it.

6.3 Partial Results

Table 11 gives the three main scores averaged over the 61 "big" treebanks (training data larger than

¹²http://universaldependencies.org/ conll18/results-2017-systems.html

Team	LAS	MLAS	BLEX
1. HIT-SCIR	84.37	70.12	75.05
2. Stanford	83.03	72.67	75.46
3. TurkuNLP	81.85	71.27	75.83
4. UDPipe Future	81.83	71.71	74.67
5. ICS PAS	81.72	70.30	74.42
6. CEA LIST	81.66	70.89	72.32
7. LATTICE	80.97	66.27	71.50
8. NLP-Cube	80.48	67.79	64.76
9. ParisNLP	80.29	65.88	70.95
10. Uppsala	80.25	68.81	36.02
11. SLT-Interactions	79.67	64.95	69.77
12. AntNLP	79.61	65.43	70.34
13. LeisureX	77.98	63.79	68.55
14. UniMelb	77.69	63.17	68.25
15. IBM NY	77.55	47.34	36.68
16. Fudan	75.42	62.28	62.90
17. KParse	74.84	62.40	63.84
18. BASELINE UDPipe	74.14	61.27	64.67
19. Phoenix	73.93	61.12	64.47
20. BOUN	72.85	60.00	62.99
21. CUNI x-ling	71.54	58.33	61.63
22. ONLP lab	67.08	55.20	33.08
23. iParse	66.55	55.37	58.80
24. HUJI	62.07	53.20	56.90
25. ArmParser	58.14	45.87	49.25
26. SParse	2.63	2.26	2.30

Table 11: Average LAS on the 61 "big" treebanks (ordered by LAS F_1 scores; out-of-order scores in the other two columns are bold).

test data, development data available). Higher scores reflect the fact that models for these test sets are easier to learn: enough data is available, no cross-lingual or cross-domain learning is necessary (the extra test sets are not included here). Regarding ranking, the Stanford system makes a remarkable jump when it does not have to carry the load of underresourced languages: from rank 8 to 2 in LAS, from 3 to 1 in MLAS and from 5 to 2 in BLEX.

Table 12 gives the LAS F_1 score on the nine low-resource languages only. Here we have a true specialist: The team CUNI x-ling lives up to its name and wins in all three scores, although in the overall ranking they fall even slightly behind the baseline. On the other hand, the scores are extremely low and the outputs are hardly useful for any downstream application. Especially morphol-

Team	LAS	MLAS	BLEX
1. CUNI x-ling	27.89	6.13	13.98
2. Uppsala	25.87	5.16	9.03
3. CEA LIST	23.90	3.75	10.99
4. HIT-SCIR	23.88	2.88	10.50
5. LATTICE	23.39	4.38	10.01
6. TurkuNLP	22.91	3.59	11.40
7. IBM NY	21.88	2.62	7.17
8. UDPipe Future	21.75	2.82	8.80
9. ICS PAS	19.26	1.89	6.17
10. AntNLP	18.59	3.43	8.61
11. KParse	17.84	3.32	6.58
12. SLT-Interactions	17.47	1.79	6.95
13. Stanford	17.45	2.76	7.63
14. BASELINE UDPipe	17.17	3.44	7.63
UniMelb	17.17	3.44	7.63
16. LeisureX	17.16	3.43	7.63
17. Phoenix	16.99	3.02	8.00
18. NLP-Cube	16.85	3.39	7.05
19. ParisNLP	16.52	2.53	6.75
20. ONLP lab	15.98	3.58	4.96
21. Fudan	15.45	2.98	6.61
22. BOUN	14.78	2.59	6.43
23. HUJI	8.53	0.92	2.77
24. ArmParser	7.47	1.86	3.54
25. iParse	2.82	0.23	0.97
26. SParse	0.00	0.00	0.00

Table 12: Average LAS, MLAS and BLEX on the 9 low-resource languages: Armenian (hy), Breton (br), Buryat (bxr), Faroese (fo), Kazakh (kk), Kurmanji (kmr), Naija (pcm), Thai (th) and Upper Sorbian (hsb) (ordered by LAS F₁ scores; out-oforder scores in the other two columns are bold).

ogy is almost impossible to learn from foreign languages, hence the much lower values of MLAS and BLEX. BLEX is a bit better than MLAS, which could be explained by cases where a word form is identical to its lemma. However, there are significant language-by-language differences; the best LAS on Faroese and Upper Sorbian surpassing 45%. This probably owes to the presence of many Germanic and Slavic treebanks in training data, including some of the largest datasets in UD. Three languages, Buryat, Kurmanji and Upper Sorbian, were introduced in the 2017 task as

Team	LAS	MLAS	BLEX		Team	LAS	MLAS	BLEX
1. HIT-SCIR	69.53	45.94	53.30	1.	HIT-SCIR	74.20	55.52	62.34
2. LATTICE	68.12	45.03	51.71	2.	Stanford	73.14	58.75	61.96
3. ICS PAS	66.90	49.24	54.89	3.	LATTICE	72.34	55.60	60.42
4. TurkuNLP	64.48	47.63	53.54	4.	Uppsala	72.27	57.80	29.73
5. UDPipe Future	64.21	47.53	49.53	5.	ICS PAS	72.18	58.07	60.97
6. AntNLP	63.73	42.24	48.31	6.	TurkuNLP	71.78	57.54	63.25
7. Uppsala	63.60	46.00	29.25	7.	UDPipe Future	71.57	57.93	61.52
8. ParisNLP	60.84	40.71	46.08	8.	CEA LIST	70.45	54.99	57.83
9. CEA LIST	57.34	39.97	43.39	9.	NLP-Cube	69.83	55.01	54.15
10. KParse	57.32	39.20	43.61	10.	IBM NY	69.40	46.59	38.12
11. NLP-Cube	56.78	37.13	38.30	11.	AntNLP	68.87	53.47	57.71
12. SLT-Interactions	56.74	35.73	42.90	12.	UniMelb	68.72	52.05	56.77
13. IBM NY	56.13	26.51	25.23	13.	Phoenix	66.97	52.26	55.69
14. UniMelb	56.12	36.09	42.09	14.	BASELINE UDPipe	66.63	51.75	54.87
15. BASELINE UDPipe	55.01	38.80	41.06	15.	KParse	66.55	51.29	54.45
LeisureX	55.01	38.80	41.06	16.	SLT-Interactions	64.73	48.47	54.90
17. Phoenix	54.63	38.38	40.72	17.	CUNI x-ling	64.70	49.71	52.72
Fudan	54.63	38.15	40.07	18.	ParisNLP	64.09	48.79	53.16
19. CUNI x-ling	54.33	38.10	40.70	19.	Fudan	63.54	45.54	50.73
20. BOUN	50.18	34.29	36.75	20.	LeisureX	61.05	41.95	50.60
21. Stanford	48.56	34.86	38.55	21.	BOUN	56.46	41.91	45.12
22. ONLP lab	47.49	32.74	22.39	22.	HUJI	56.35	46.52	50.10
23. iParse	38.79	28.03	29.62	23.	iParse	44.20	33.43	38.18
24. HUJI	36.74	24.47	27.70	24.	ONLP lab	43.33	30.20	20.08
25. ArmParser	34.54	22.94	25.26	25.	ArmParser	0.00	0.00	0.00
26. SParse	0.00	0.00	0.00		SParse	0.00	0.00	0.00

Table 13: Average attachment score on the 7 small treebanks: Galician TreeGal, Irish, Latin Perseus, North Sámi, Norwegian Nynorsk LIA, Russian Taiga and Slovenian SST (ordered by LAS F_1 scores; out-of-order scores in the other two columns are bold).

surprise languages and had higher scores there.¹³ This is because in 2017, the segmentation, POS tags and morphology UDPipe models were trained on the test data, applied to it via cross-validation, and made available to the systems. Such an approach makes the conditions unrealistic, therefore it was not repeated this year. Consequently, parsing these languages is now much harder.

In contrast, the results on the 7 treebanks with "small" training data and no development data (Table 13) are higher on average, but again the variance is significant. The smallest treebank

12

Table 14: Average attachment score on the 5 additional test sets for high-resource languages: Czech PUD, English PUD, Finnish PUD, Japanese Modern and Swedish PUD (ordered by LAS F_1 scores; out-of-order scores in the other two columns are bold).

in the group, Norwegian Nynorsk LIA, has only 3583 training words. There are two larger Norwegian treebanks that could be used as additional training sources. However, the LIA treebank consists of spoken dialects and is probably quite dissimilar to the other treebanks. The same can be said about Slovenian SST and the other Slovenian treebank; SST is the most difficult dataset in the group, despite of having almost 20K of its own training words. Other treebanks, like Russian Taiga and Galician TreeGal, have much better scores (74% LAS, about 61% MLAS and 64% BLEX). There are also two treebanks that are the sole representatives of their languages: Irish and North Sámi. Their best LAS is around 70%: com-

¹³The fourth surprise language, North Sámi, has now additional training data and does not fall in the low-resource category.

parable to Nynorsk LIA but much better than SST. ICS PAS is the most successful system in the domain of small treebanks, especially when judged by MLAS and BLEX.

Table 14 gives the average LAS on the 5 extra test sets (no own training data, but other treebanks of the same language exist). Four of them come from the Parallel UD (PUD) collection introduced in the 2017 task (Zeman et al., 2017). The fifth, Japanese Modern, turned out to be one of the toughest test sets in this shared task. There is another Japanese treebank, GSD, with over 160K training tokens, but the Modern dataset seems almost inapproachable with models trained on GSD. A closer inspection reveals why: despite its name, it is actually a corpus of historical Japanese, although from the relatively recent Meiji and Taishō periods (1868-1926). An average sentence in GSD is about $1.3 \times$ longer than in Modern. GSD has significantly more tokens tagged as auxiliaries, but more importantly, the top ten AUX lemmas in the two treebanks are completely disjoint sets. Some other words are out-of-vocabulary because their preferred spelling changed. For instance, the demonstrative pronoun sore is written using hiragana in GSD, but a kanji character is used in Modern. Striking differences can be observed also in dependency relations: in GSD, 3.7% relations are nsubj (subject), and 1.2% are cop (copula). In Modern, there is just 0.13% of subjects, and not a single occurrence of a copula.

See Tables 15, 16 and 17 for a ranking of all test sets by the best scores achieved on them by any parser. Note that this cannot be directly interpreted as a ranking of languages by their parsing difficulty: many treebanks have high ranks simply because the corresponding training data is large. Table 18 compares average LAS and MLAS for each treebank.

Finally, Tables 19 and 20 show the treebanks where word and sentence segmentation was extremely difficult (judged by the average parser score). Not surprisingly, word segmentation is difficult for the low-resource languages and for languages like Chinese, Vietnamese, Japanese and Thai, where spaces do not separate words. Notably the Japanese GSD set is not as difficult, but whoever trusted it, crashed on the "Modern" set. Sentence segmentation was particularly hard for treebanks without punctuation, i.e., most of the classical languages and spoken data.

	Treebank		Best system	Avg	StDev
	pl_lfg		HIT-SCIR	85.89	± 6.97
	ru_syntagrus		HIT-SCIR	79.68	± 9.09
	hi_hdtb	92.41	HIT-SCIR	85.16	± 5.32
	pl_sz		HIT-SCIR	81.47	± 7.27
5.	cs_fictree	92.02	HIT-SCIR	82.10	± 7.26
6.	it_isdt	92.00	HIT-SCIR	87.61	± 4.12
7.	cs_pdt		HIT-SCIR	82.18	± 6.91
8.	ca_ancora	91.61	HIT-SCIR	83.61	± 6.01
9.	cs_cac	91.61	HIT-SCIR	82.69	± 6.93
	sl_ssj	91.47	HIT-SCIR	75.00	± 9.13
11.	no_bokmaal	91.23	HIT-SCIR	79.80	\pm 7.29
12.	bg_btb	91.22	HIT-SCIR	82.52	± 5.88
13.	no_nynorsk		HIT-SCIR	78.55	± 7.88
	es_ancora	90.93	HIT-SCIR	82.84	± 6.17
15.	fi_pud	90.23	HIT-SCIR	68.87	± 15.61
	fr_sequoia	89.89	LATTICE	80.55	± 5.91
	el_gdt	89.65	HIT-SCIR	80.65	± 6.05
	nl_alpino	89.56	HIT-SCIR	77.76	± 7.42
19.	sk_snk	88.85	HIT-SCIR	76.53	± 7.24
20.	fi_tdt	88.73	HIT-SCIR	73.55	± 9.39
21.	sr_set	88.66	Stanford	79.84	± 6.57
22.	sv_talbanken	88.63	HIT-SCIR	77.71	± 6.50
23.	fi_ftb	88.53	HIT-SCIR	76.89	\pm 7.60
24.	uk_iu		HIT-SCIR	72.47	± 8.25
25.	fa_seraji	88.11	HIT-SCIR	78.71	± 6.04
26.	en_pud	87.89	LATTICE	74.51	± 8.28
27.	pt_bosque	87.81	Stanford	80.49	± 5.46
28.	hr_set	87.36	HIT-SCIR	78.37	± 6.42
29.	fro_srcmf	87.12	UDPipe Future	74.38	± 16.74
30.	la_ittb	87.08	HIT-SCIR	77.00	\pm 7.42
31.	ko_kaist	86.91	HIT-SCIR	77.10	\pm 8.72
32.	fr_gsd	86.89	HIT-SCIR	79.43	± 5.47
33.	ro_rrt	86.87	HIT-SCIR	75.77	± 7.66
34.	nl_lassysmall	86.84	HIT-SCIR	75.08	± 6.59
35.	da_ddt	86.28	HIT-SCIR	75.02	± 6.47
36.	cs_pud	86.13	HIT-SCIR	73.24	± 9.97
37.	af_afribooms	85.47	HIT-SCIR	76.61	± 6.17
38.	et_edt	85.35	HIT-SCIR	72.08	± 8.71
39.	ko_gsd	85.14	HIT-SCIR	71.88	± 10.53
40.	en_gum	85.05	LATTICE	74.20	± 6.27
	en_ewt	84.57	HIT-SCIR	75.99	± 5.40
	eu_bdt	84.22	HIT-SCIR	72.08	± 8.83
	sv_lines	84.08	HIT-SCIR	73.76	± 5.98
	lv_lvtb	83.97	HIT-SCIR	67.76	± 9.01
	ur_udtb		HIT-SCIR	75.89	± 4.69
	ja_gsd	83.11	HIT-SCIR	73.68	± 4.55
47.	gl_ctg	82.76	Stanford	72.46	± 7.13
	hu_szeged	82.66	HIT-SCIR	67.05	\pm 8.63
	en_lines	81.97	HIT-SCIR	72.28	± 5.59
	de_gsd	80.36	HIT-SCIR	70.13	± 7.14
	sv_pud	80.35	HIT-SCIR	67.02	± 9.23
52.	id_gsd	80.05	HIT-SCIR	73.05	± 4.69
	it_postwita	79.39	HIT-SCIR	64.95	± 6.88
	grc_perseus		HIT-SCIR	59.01	± 15.56
	grc_proiel	79.25	HIT-SCIR	65.02	± 14.58
	ar_padt	77.06	Stanford	64.07	± 6.41
	zh_gsd	76.77		60.32	± 6.14
	he_htb	76.09	Stanford	58.73	± 5.29
	fr_spoken	75.78	HIT-SCIR	64.66	± 5.35
	cu_proiel	75.73	Stanford	62.64	± 6.98
	gl_treegal	74.25	UDPipe Future	64.65	± 5.61
	ru_taiga	74.24	ICS PAS	56.27	± 9.16
	la_proiel	73.61	HIT-SCIR	61.25	± 6.87
	la_perseus		HIT-SCIR	46.91	± 11.12
	ga_idt	70.88		58.37	± 7.05
	no_nynorsklia		HIT-SCIR	50.33	± 9.28
	sme_giella	69.87	LATTICE	51.10	± 14.32
	got_proiel		Stanford	60.55	± 4.93
	ug_udt		HIT-SCIR	54.27	± 6.90
	tr_imst	66.44	HIT-SCIR	55.61	± 6.49
	sl_sst		HIT-SCIR	47.07	± 5.84
	vi_vtb		HIT-SCIR	40.40	± 4.43
	fo_oft		CUNI x-ling	27.87	± 9.75
	hsb_ufal	46.42	SLT-Interactions		± 8.90
	br_keb		CEA LIST	13.27	± 8.77
	hy_armtdp	37.01	LATTICE	22.39	± 7.91
	kk_ktb		Uppsala	19.11	± 6.34
	kmr_mg	30.41	IBM NY	20.27	± 6.14
	pcm_nsc	30.07	CUNI x-ling	13.19	± 5.76
1 ðU.	ja_modern		Stanford AntNLP	18.92 11.45	± 5.14
81.	bxr_bdt th_pud	19.53 13.70		1.38	$\pm 4.28 \\ \pm 2.83$

Table 15: Treebank ranking by best parser LAS (Avg=average LAS over all systems, out-of-order scores in bold).

1. p.1. B6.93 UDPipe Future 71.63 ± 9.36 3. cs.pdt 85.10 UDPipe Future 71.61 ± 6.32 4. cs.fictree 84.23 ICS PAS 69.91 ± 7.77 5. cs.accora 83.93 Stanford 74.61 ± 7.43 7. it.js.dt 83.89 Stanford 71.41 ± 8.89 10. cs.cac 83.42 UDPipe Future 71.39 ± 6.89 11. bg.bb 83.12 UDPipe Future 71.81 ± 7.15 12. cs.cac 83.08 Stanford 63.22 ± 9.48 13. sl.ssj 82.28 Stanford 63.27 ± 9.22 16. ko.gsd 80.85 HTT-SCIR 70.8 ± 8.49 16. ko.gsd 80.85 HTT-SCIR 64.80 ± 8.49 17. f.td 80.83 UDPipe Future 61.11 ± 8.48 14. no.nynorsk 81.6 Stanford 64.29 ± 8.29 12. f.td		Treebank	MLAS	Best system	Avg	StDev
3. cs.pdt 85.10 UDPipe Future 74.21 4. cs.fittree 4. cs.fittree 84.23 ICS PAS. 69.91 ±7.73 5. ca.ancora 83.93 Stanford 74.61 ±7.43 7. it.jisdt 83.93 Stanford 76.11 ±8.89 9. no.bokmaal 83.68 UDPipe Future 71.89 ±6.89 10. cs.cac 83.42 UDPipe Future 71.81 ±7.15 11. bg.bb 83.12 UDPipe Future 71.81 ±9.18 14. no.nynorsk 81.86 UDPipe Future 71.81 ±9.16 15. ko.kaist 81.29 HIT-SCIR 71.81 ±9.23 16. ko.gsd 80.83 IUDPipe Future 71.23 ±7.77 19. pl.sz 80.73 Yanford 64.80 ±8.49 21. fa.ith 79.84 ICS PAS 67.77 ±8.37 22. f.fth 76.63 TurkuNLP 67.33 ±5.96 23. sv.talbanken 79.21 Stanford 66.22 ±6.76	1.	1 0	86.93	UDPipe Future	73.73	± 7.29
4. cs.fictree 84.23 ICS PAS 69.91 $\pm .7.77$ 5. ca.ancora 84.07 UDPipe Future 74.61 $\pm .7.43$ 7. iLisdt 83.78 Stanford 7.14 $\pm .8.99$ 9. no.bokmaal 83.78 UDPipe Future 71.89 $\pm .8.92$ 10. cs.cac 83.42 UDPipe Future 71.39 $\pm .6.92$ 12. fr.sequoia 82.55 Stanford 70.42 $\pm .9.04$ 13. sl.ssj 82.35 Stanford 70.42 $\pm .9.04$ 15. ko.kait 81.29 HTS-CIR 70.81 $\pm .9.56$ 15. ko.kait 81.08 IUDPipe Future 71.23 $\pm .7.77$ 15. ko.kait 80.83 IUDPipe Future 71.23 $\pm .7.77$ 15. ko.kait 80.83 IUDPipe Future 71.23 $\pm .7.77$ 15. ko.kait 80.83 IUDPipe Future 61.93 $\pm .8.72$ 17. i.h.th 79.83 Yant Yant Yant Yant 12. l.a.ititb 79.84 YantAse						
5. ca.ancora 84.07 UDPipe Future 74.61 ±7.43 7. it.isdt 83.93 Stanford 74.61 ±7.83 8. fi.pud 83.78 Stanford 62.38 ±14.83 9. no.bokmaal 83.68 UDPipe Future 70.75 ±8.92 11. bg.btb 83.12 UDPipe Future 70.42 ±9.04 13. sl.ssj 82.38 Stanford 62.41 ±9.18 14. no.nynorsk 81.86 UDPipe Future 63.72 ±9.22 16. ko.gsd 80.83 HTS-CIR 63.73 ±8.77 10. ko.gsd 80.84 ISanford 64.80 ±8.49 20. fro.srcmf 80.28 UDPipe Future 67.77 ±8.87 21. la.itb 79.46 Stanford 64.23 ±8.43 21. ro.rt 78.68 TurkuNLP 63.15 ±8.89 22. el.gdt 78.64 Stanford 64.22 ±9.83 23. stalbanken 79.23 Stanford 62.22 ±9.84				1		
6. es_ancora 83.93 Stanford 7.44 ± 8.79 7. it.isdt 83.89 Stanford 7.714 ± 8.89 9. no.bokmaal 83.68 UDPipe Future 7.139 ± 6.89 10. es_cac 83.42 UDPipe Future 7.139 ± 6.89 11. bg.bb 83.12 UDPipe Future 7.163 ± 9.45 14. no.nynorsk 81.86 UDPipe Future 63.62 ± 9.45 15. ko.kaist 81.29 HIT-SCIR 63.73 ± 16.02 17. f.i.dt 80.83 UDPipe Future 65.19 ± 9.22 18. fa.seraji 80.83 UDPipe Future 65.19 ± 8.73 21. fa.ittb 79.84 ISCPAS 67.77 ± 8.83 23. sv.talbanken 79.32 Stanford 68.48 ± 5.86 23. sv.talbanken 79.32 Stanford 68.48 ± 5.86 23. sv.talbanken 77.33 UDPipe Future 67.33 ± 5.96 24. dr.gt 7.73 UDPipe Future 67.43						
8.fpud83.78Stanford62.38±14.839.no.bokmaal83.68UDPipe Future71.39±8.0811.bg.bb83.12UDPipe Future71.30±6.8913.sl.ssj82.38Stanford62.41±9.1814.no.nynorsk81.86UDPipe Future68.62±9.1815.ko.kaist81.29HIT-SCIR70.18±9.2316.ko.gast80.85UDPipe Future71.23±7.7719.pl.sz80.77Stanford64.80±8.4920.fro.srcmf80.28UDPipe Future67.13±8.7921.laitb79.84ICS PAS67.77±8.3722.fr.tb79.84Stanford64.80±8.4923.sv.talbanken79.32Stanford64.84±5.8623.sv.talbanken77.31Stanford64.84±5.8625.e.gdt78.66Stanford64.22±6.7624.ro.gdt77.31Stanford66.22±6.7625.stanford76.52Stanford66.22±6.7633.a.chapu75.81UDPipe Future63.76±7.7134.stanford61.95±7.12±7.7335.stanford65.82±8.32±8.3436.11.61Stanford65.22±6.7634.stanford75.91UDPipe Future63.76±7.7035.stanford				-		
9. no.bokmaal 83.68 UDPipe Future 70.75 ± 8.92 10. sc.ace 83.42 UDPipe Future 70.39 ± 6.89 11. bg.bb 83.25 Stanford 62.41 ± 9.45 13. sl.ssj 82.38 Stanford 62.41 ± 9.45 15. ko.gad 80.85 HIT-SCIR 70.81 ± 9.45 15. ko.gad 80.83 UDPipe Future 71.23 ± 7.77 19. pl.sz 80.77 Stanford 68.05 ± 8.49 21. nort 78.68 TurkNLP 67.13 ± 7.24 22. f.r.gdt 78.66 Stanford 64.29 ± 8.28 23. sv.talbanken 79.23 Stanford 66.24 ± 8.83 23. sv.talbanken 77.31 UDPipe Future 67.33 ± 5.86 24. ro.rt 78.64 TurkNLP 63.50 ± 8.34 21. n.iub 78.31 UDPipe	7.	it_isdt	83.89	Stanford	77.14	± 8.89
10. cs.cac 83.42 UDPipe Future 71.39 ± 6.89 11. bg.btb 83.12 UDPipe Future 70.42 ± 9.04 13. sl.ssy 82.38 Stanford 62.41 ± 9.04 13. sl.ssy 82.38 Stanford 63.62 ± 9.45 16. ko.gsd 80.85 HITS-CIR 63.73 ± 16.02 17. fi.dut 80.84 Stanford 64.80 ± 8.479 20. fro.srcmf 80.28 UDPipe Future 67.77 ± 8.87 21. laitub 79.84 Stanford 64.80 ± 8.49 23. sv.talbanken 79.32 Stanford 64.81 ± 7.74 25. el.gdt 78.46 Stanford 64.82 ± 8.28 25. el.gdt 78.66 Stanford 64.84 ± 5.86 20. a.ddt 77.31 Stanford 66.84 ± 5.86 33. pl.bosque 75.94 Stanford 66.82 ± 8.23 21. eeu 76.25 Stanford 61.95 ± 7.80			83.78	Stanford	62.38	± 14.83
11. bg.btb 83.12 UDPipe Future 73.18 ± 7.15 12. fr.sequora 82.55 Stanford 70.42 ± 9.08 13. sl.scj 82.35 Stanford 62.41 ± 9.18 14. no.nynorsk 81.86 UDPipe Future 63.62 ± 9.18 15. ko.kaist 81.80 UDPipe Future 63.02 ± 9.22 17. fi.dt 80.83 UDPipe Future 63.01 ± 8.49 20. for.srcmf 80.23 UDPipe Future 65.11 ± 8.49 21. la.ittb 79.83 Stanford 68.05 ± 8.49 24. ro.rt 78.68 TurkuNLP 66.11 ± 8.86 25. sy.talbanken 79.32 Stanford 68.33 ± 5.96 27. hi.hdtb 78.03 UDPipe Future 67.33 ± 5.96 29. da.dt 77.31 UDPipe Future 63.42 ± 5.86 31. nl.abino 76.52 Stanford 6.42 ± 5.86 32. en_ewt 76.33 Stanford 6.105 ± 9.12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
12. fr.sequoia 82.55 Stanford 70.42 ±9.46 13. slasj 82.38 Stanford 62.41 ±9.45 14. no.nynorsk 81.86 UDPipe Future 68.62 ±9.45 15. ko.kaist 81.29 HIT-SCIR 63.73 ±16.02 17. fi.1dt 80.84 Stanford 64.03 ±8.49 18. fa.seraji 80.83 UDPipe Future 61.01 ±8.83 21. la.itb 79.65 TurkuNLP 66.11 ±8.86 23. sytalbanen 79.32 Stanford 64.29 ±8.28 24. ro.rt 78.66 Stanford 64.29 ±8.83 24. ro.rt 78.66 Stanford 62.22 ±9.81 25. el.gdt 78.44 Stanford 62.22 ±9.81 31. nl.abin 76.52 Stanford 62.22 ±9.71 26. dr.gdt 75.67 UDPipe Future 60.47 ±1.13 32. en_ewt 75.61 UDPipe Future 60.42 ±1.13 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
13. sl.ssj82.38Stanford62.41±9.1814. no.nynorsk81.86UDPipe Future68.62±9.4515. ko.kaist81.29HIT-SCIR63.73±16.0217. fi.dt80.84Stanford65.27±9.2218. faseraji80.83UDPipe Future71.23±7.7719. pl.sz80.77Stanford64.80±8.4920. fro.srcmf80.28UDPipe Future67.13±8.8621. laitb79.84ICS PAS67.77±8.3722. fi.fb79.84Stanford69.33±8.7923. sv.talbanken79.32Stanford69.33±8.7924. ro.rt78.68Stanford69.33±5.9625. el.gdt78.44Stanford65.09±8.8426. fr.gs78.44Stanford66.22±9.8129. da.dt77.31UDPipe Future67.33±5.9620. da.dt77.31Stanford66.22±9.8131. nl.apino76.52Stanford66.22±9.8132. en.ewt75.61UDPipe Future67.64±5.8633. pl.bosque75.61UDPipe Future67.62±9.1234. cs.pud75.81UDPipe Future67.62±9.1235. afriboors75.61UDPipe Future67.62±9.8236. sl.askr75.01UDPipe Future67.84±5.8637. en.pud74.86Stanford61.95±9.1238. nl.assysmall74.11Stanford<				-		
14. no.nynorsk. 81.86 UDPipe Future 68.62 ± 9.35 15. ko.kaist 81.29 HIT-SCIR 60.73 ± 16.02 17. fi.dt 80.85 HIT-SCIR 63.73 ± 16.02 17. fi.dt 80.83 UDPipe Future 71.23 ± 7.77 19. pl.sz 80.73 Vantor 65.19 ± 16.58 20. for.sremf 80.23 UDPipe Future 65.19 ± 8.49 21. la.itb 79.84 Stanford 68.05 ± 8.49 23. sv.talbanken 79.32 Stanford 68.48 ± 5.88 23. sv.talbanke 75.63 TurkuRLP 63.31 ± 5.89 27. hi.hdtb 78.30 UDPipe Future 66.48 ± 5.84 23. sr.set 77.73 UDPipe Future 63.76 ± 7.06 34. stanford 66.22 ± 8.34 3.11 1.31607d 63.52 ± 7.02 35.						
15. ko.kaist 81.29 HIT-SCIR 70.18 ± 9.36 16. ko.gsd 80.85 HIT-SCIR 63.73 ±16.02 17. f.tdt 80.84 Stanford 65.77 ± 9.22 18. fa.seraji 80.83 UDPipe Future 65.19 ± 6.58 21. la.ittb 79.84 ICS PAS 67.77 ± 8.87 22. f.ftb 79.65 TurkuNLP 66.11 ± 8.86 23. sv.talbanken 79.23 Stanford 64.29 ± 8.849 24. ro.yrt 78.66 Stanford 64.31 ± 7.82 24. ro.yrt 78.66 Stanford 65.09 ± 8.83 25. el.gdt 76.33 Stanford 65.24 ± 9.81 28. sr.set 77.73 IDPipe Future 63.76 ± 7.06 29. da.dt 7.63 Stanford 66.24 ± 9.83 31. n.alpino 75.67 IDPipe Future </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
17. f.i.tit 80.84 Stanford 65.27 ± 9.22 18. fa.seraji 80.83 UDPipe Future 71.23 ± 7.77 19. pl.sz 80.77 Stanford 66.01 ± 8.87 20. fro.scremf 80.28 UDPipe Future 66.11 ± 8.86 21. la.ittb 79.65 TurkuNLP 66.11 ± 8.86 23. sv.talbanken 79.23 Stanford 64.29 ± 8.28 25. el.gdt 78.64 Stanford 69.33 ± 5.96 27. hi.hdtb 78.30 UDPipe Future 67.33 ± 5.96 20. a.ddt 77.31 Stanford 66.44 ± 5.86 30. et.edt 76.52 Stanford 66.22 ± 9.81 31. n.lalpino 75.52 Stanford 63.05 ± 7.82 32. en.ewt 75.33 Stanford 63.05 ± 7.82 33. pl.bosque 75.41 Stanford 63.05 ± 7.77 35. a.fafriboo						
18. fa.seraji 80.83 UDPipe Future 71.23 ±7.77 19. Ja.zt 80.77 Stanford 64.80 ±8.49 20. fro.srcmf 80.28 UDPipe Future 65.19 ±16.58 21. la.ith 79.84 ICS PAS 67.77 ±8.87 22. fi.ftb 79.65 TurkuNLP 66.11 ±8.86 23. sv_talbanken 79.32 Stanford 64.29 ±8.22 26. fr.gsd 78.46 Stanford 69.33 ±5.85 27. hi.hdtb 77.31 UDPipe Future 63.33 ±5.86 28. sr_set 77.73 UDPipe Future 63.33 ±5.87 21. en_ewt 76.53 Stanford 66.22 ±6.76 32. en_ewt 75.67 UDPipe Future 63.76 ±7.89 33. pt.bosque 75.67 UDPipe Future 63.76 ±7.89 35. af.afribooms 75.67 UDPipe Future 63.76 ±7.89 36. ak_snk 75.01 Stanford 61.92 ±9.12 39. hr.set 73.44 Stanford 61.92 ±9.12 <td>16.</td> <td>ko_gsd</td> <td>80.85</td> <td>HIT-SCIR</td> <td>63.73</td> <td>± 16.02</td>	16.	ko_gsd	80.85	HIT-SCIR	63.73	± 16.02
19. pl.sz 80.77 Stanford 64.80 ± 8.49 20. fro.srcmf 80.28 UDPipe Future 65.19 ± 16.58 21. la.itub 79.84 ICS PAS 67.77 ± 8.37 22. f.ftb 79.65 TurkuNLP 67.13 ± 7.24 25. el.gdt 78.66 Stanford 64.29 ± 8.28 25. el.gdt 78.66 Stanford 64.29 ± 8.28 26. fr.gdt 78.44 Stanford 62.32 ± 8.59 27. hi.hdtb 78.30 UDPipe Future 67.33 ± 5.56 29. d.a.dtdt 77.31 Stanford 66.22 ± 9.63 30. et.edt 76.97 TurkuNLP 63.54 ± 5.86 31. ni.alpino 75.67 UDPipe Future 60.47 ± 11.36 35. ar.afribooms 75.67 UDPipe Future 63.05 ± 7.70 36. s.s.nk 75.01 Stanford 61.02 ± 7.69 38.						
20. fro_sremf 80.28 UDPipe Future 65.19 ±16.58 21. laitub 79.84 ICS PAS 67.77 ± 8.37 22. fiftb 79.65 TurkuNLP 66.11 ± 8.83 23. sv_talbanken 79.32 Stanford 68.05 ± 8.49 24. ro_rrt 78.66 Stanford 64.29 ± 8.28 26. fr.gsd 78.44 Stanford 65.09 ± 5.86 29. da.dtt 77.31 Stanford 66.22 ± 9.81 30. et.edt 76.97 TurkuNLP 63.76 ± 7.06 31. nl.alpino 76.52 Stanford 66.22 ± 5.76 31. pl.bosque 75.94 Stanford 63.05 ± 7.89 32. n.p.ged 72.61 Stanford 61.95 ± 7.06 35. af.afribooms 75.67 UDPipe Future 56.42 ± 8.32 37. en.pud 74.46 Stanf				-		
21.la.ittb79.84ICS PAS67.77 ± 8.37 22.f.ftb79.56TurkuNLP66.11 ± 8.86 23.sv_talbanken79.32Stanford68.05 ± 8.49 24.ro_rt78.68TurkuNLP67.43 ± 7.24 25.el.gdt78.66Stanford64.29 ± 8.59 27.hi.hdtb78.30UDPipe Future68.48 ± 5.58 28.sr_set77.73UDPipe Future67.33 ± 5.96 29.da.ddt77.31Stanford65.00 ± 6.89 30.et.edt76.33Stanford66.84 ± 5.86 33.pt.bosque75.94Stanford66.22 ± 9.81 34.stanford66.30 ± 7.89 5.65 UDPipe Future67.6 ± 7.06 35.at.afribooms75.61UDPipe Future67.6 ± 7.06 ± 7.69 36.sk_snk75.01Stanford61.95 ± 9.12 39.hr_set73.44Stanford61.95 ± 9.12 39.hr_set73.44Stanford51.95 ± 8.04 41.ja.gsd72.22IUS PAS 61.72 ± 1.10 45.at.afribooms72.27UDPipe Future54.54 ± 8.04 44.eu.bdt71.73UDPipe Future54.54 ± 8.04 43.en.lines72.22IUS PAS 61.72 ± 1.80 45.g.lcg70.92Stanford51.92 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
22. firlb79.65TurkuNLP66.11± 8.8623. sv_talbanken79.32Stanford68.05± 8.4924. ro_rrt78.66Stanford64.29± 7.2425. el_gdt78.66Stanford64.29± 8.5826. fr.gsd78.44Stanford69.33± 5.5827. hi.hdtb77.31UDPipe Future67.33± 5.5828. sr.set77.73UDPipe Future63.59± 8.3430. et.edt76.57TurkuNLP63.59± 8.3431. nl.alpino75.67UDPipe Future60.47± 11.3632. en_ewt75.67UDPipe Future63.76± 7.0636. sk_snk75.01Stanford66.82± 8.3237. en.pud74.86Stanford61.95± 9.1239. hr.set73.24ICS PAS61.72± 7.6941. ja.gsd72.62HIT-SCIR59.52± 6.2042. uk.iu71.73UDPipe Future53.45± 8.0843. en.lines72.25ICS PAS61.33± 8.6245. gl.ctg70.92Stanford51.72± 18.0046.63Stanford51.72± 8.8043. en.lines72.25ICS PAS61.33± 6.6244. eu.bdt71.73UDPipe Future53.48± 6.2445. gl.ctg70.92Stanford51.72± 8.8044. eu.bdt71.73UDPipe Future53.48± 6.2445. gl.ctg70.92Stanford51.72± 8				-		
23. sv_talbanken79.32Stanford 68.05 ± 8.49 24. ro_rrt78.66TurkuNLP 67.43 ± 7.24 25. el.gdt78.66Stanford 64.29 ± 8.28 26. fr_gsd78.44Stanford 69.33 ± 8.59 27. hi.hdtb78.00UDPipe Future 67.33 ± 5.56 29. da.ddt77.31Stanford 65.00 ± 6.89 20. et.edt76.97TurkuNLP 63.59 ± 8.34 31. nl.alpino76.52Stanford 66.22 ± 7.63 33. pt.bosque75.94Stanford 66.22 ± 7.63 33. at.bosque75.94Stanford 63.05 ± 7.89 35. af.afribooms75.61UDPipe Future 63.05 ± 7.89 36. sk.snk75.01Stanford 63.05 ± 7.89 37. en.pud74.46Stanford 63.05 ± 7.89 38. nl.lassysmall74.11Stanford 63.05 ± 7.89 39. hr_set72.62HT-SCIR 5.52 ± 6.20 41. ija.gsd72.62IUPipe Future 55.45 ± 8.04 44. eu.bdt71.73UDPipe Future 53.49 ± 8.02 45. gl.ctg70.92Stanford 51.22 ± 1.10 46. arpadt68.50Stanford 51.23 ± 6.12 47. it.postwita68.50Stanford 51.23 ± 6.12 47. it.postwita66.58Stanford 51.22 ± 4.80 48. id.gsd68.36Stanfo						
24. ro_rrt 78.68 TurkuNLP 67.43 ±7.24 25. el_gdt 78.66 Stanford 64.29 ± 8.28 26. fr.gsd 78.44 Stanford 69.33 ± 8.59 27. hi.hdtb 78.30 UDPipe Future 67.33 ± 5.96 20. da.ddt 77.31 Stanford 65.00 ± 6.89 30. et.edt 76.52 Stanford 66.22 ± 9.81 31. nl.alpino 76.52 Stanford 66.22 ± 6.76 34. cs.pud 75.61 UDPipe Future 60.76 ± 7.81 35. af.afribooms 75.61 UDPipe Future 63.76 ± 7.70 36. sk.snk 75.01 Stanford 61.95 ± 9.12 39. hr_set 73.44 Stanford 63.05 ± 7.89 31. nl_asysmall 74.11 Stanford 61.95 ± 8.04 41. ja.gsd 72.22 IDTPipe Future 58.49 ± 8.62 42. uk.u 72.25 ICS PAS 61.72 ± 8.61						
26.fr.gsd78.44Stanford69.33 ± 8.59 27.hi.hdtb78.30UDPipe Future68.48 ± 5.88 28.sr.set77.73UDPipe Future67.33 ± 5.96 29.d.aldt77.73Stanford65.00 ± 6.89 30.et.edt76.97TurkuNLP63.59 ± 8.34 31.nl.alpino76.52Stanford66.22 ± 9.81 32.en.ewt76.33Stanford66.22 ± 6.76 34.cs.pud75.44Stanford63.05 ± 7.706 35.af.afribooms75.67UDPipe Future63.76 ± 7.06 36.sk.snk75.01Stanford61.95 ± 9.12 39.nr.set73.44Stanford61.05 ± 9.12 39.nr.set73.24ICS PAS61.72 ± 7.69 41.ja.gsd72.62HIT-SCIR59.52 ± 6.20 42.uk.iu71.73UDPipe Future53.45 ± 8.08 43.en.lines72.25ICS PAS61.33 ± 8.62 43.en.lines72.25ICS PAS61.23 ± 8.62 44.eu.bdt71.73UDPipe Future53.48 ± 6.24 45.gl.ctg70.92Stanford51.72 ± 18.10 46.stanford51.72 ± 8.80 ± 12.72 ± 14.10 46.es.65Stanford51.72 ± 8.80 47.it.postwita66.62 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
27. hi_hdtb 78.30 UDPipe Future 68.48 ± 5.88 28. sr_set 77.73 UDPipe Future 67.33 ± 5.96 29. da.ddt 77.31 Stanford 65.00 ± 6.89 30. et.edt 76.97 TurkuNLP 63.59 ± 8.34 31. nl.alpino 76.52 Stanford 66.22 ± 9.81 32. en_ewt 75.81 UDPipe Future 63.76 ± 7.06 35. af_afribooms 75.67 UDPipe Future 63.76 ± 7.06 36. sk.snk 75.67 UDPipe Future 63.76 ± 7.07 30. en.gum 73.24 ICS PAS 61.72 ± 7.07 40. en.gum 73.24 ICS PAS 61.72 ± 7.07 41. ja.gsd 72.25 ICS PAS 61.72 ± 7.06 41. ja.gsd 68.54 Stanford 51.22 ± 8.04 44. eu.bdt 71.73 UDPipe Future 58.49 ± 8.62 5						
28. sr.set 77.73 UDPipe Future 67.33 ± 5.96 29. da.ddt 77.31 Stanford 65.00 ± 6.89 30. et.edt 76.97 TurkuNLP 63.59 ± 8.34 31. nl.alpino 76.52 Stanford 66.82 ± 9.81 32. en_ewt 76.33 Stanford 66.22 ± 6.76 34. cs.pud 75.61 UDPipe Future 63.76 ± 7.06 35. af.afribooms 75.67 UDPipe Future 63.76 ± 7.79 35. af.afriboams 75.61 UDPipe Future 63.76 ± 7.07 40. en.gum 73.24 ICS PAS 61.95 ± 9.12 39. hr.set 73.44 Stanford 61.95 ± 8.04 41. ja.gsd 70.25 ICS PAS 61.72 ± 7.69 42. uk.iu 72.25 ICS PAS 61.32 ± 6.62 45. eu.bdt 71.73 UDPipe Future 53.48 ± 6.2 45. eu.bdt 71.73 UDPipe Future 53.08 <						
29. da.ddt 77.31 Stanford 65.00 \pm .8.34 30. et.edt 76.52 Stanford 62.82 \pm .9.81 31. nl.alpino 76.52 Stanford 66.84 \pm .5.86 31. pt.bosque 75.43 Stanford 66.84 \pm .5.86 33. pt.bosque 75.47 UDPipe Future 63.76 \pm .7.06 35. af.afribooms 75.67 UDPipe Future 63.76 \pm .7.89 36. ak.snk 75.01 Stanford 61.95 \pm .9.12 39. n.set 73.44 Stanford 61.95 \pm .9.12 39. n.set 73.44 Stanford 61.92 \pm .7.69 41. ja.gsd 72.22 IUDPipe Future 55.45 \pm .80.8 43. en.lines 72.25 ICS PAS 63.25 \pm .8.04 44. eu.bdt 71.73 UDPipe Future 53.48.04 \pm .49.2 45. j.ctg 70.92 Stanford 51.22 \pm .8.06 45. j.ctg <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
30. et.edt 76.97 TurkuNLP 63.59 ± 8.34 31. nl.alpino 76.52 Stanford 62.82 ± 9.81 32. en.ewt 76.33 Stanford 66.84 ± 5.86 33. pt.bosque 75.94 Stanford 66.22 ± 6.76 34. cs.pud 75.81 UDPipe Future 60.74 ± 11.36 35. af.afribooms 75.07 UDPipe Future 63.05 ± 7.89 37. en.pud 74.46 Stanford 61.95 ± 9.12 37. en.pud 74.48 Stanford 61.95 ± 7.06 40. en.gum 73.24 ICS PAS 61.72 ± 7.70 40. en.gum 73.24 IUDPipe Future 55.45 ± 8.04 41. ja.gsd 72.62 HT-SCIR 59.52 ± 6.20 42. uk.iu 71.73 UDPipe Future 55.45 ± 8.08 43. en.lines 72.25 ISC PAS 61.62 57.92 ± 11.04 44. eu.bdt 71.73 UDPipe Future 58.49 ± 8.66 51.ct.grotwita 68.5						
31. n.alpino 76.52 Stanford 62.82 ± 9.81 32. en_ewt 76.33 Stanford 66.84 ± 5.86 33. pt.bosque 75.81 UDPipe Future 60.47 ± 11.36 34. cs.pud 75.81 UDPipe Future 63.05 ± 7.06 35. af.afribooms 75.67 UDPipe Future 63.05 ± 7.89 38. n.lassysmall 74.11 Stanford 60.08 ± 7.07 40. en_gum 73.24 ICS PAS 61.72 ± 7.69 41. ja.gsd 72.62 HIT-SCIR 59.52 ± 6.20 42. uk.iu 72.27 UDPipe Future 58.45 ± 8.04 43. en.lines 72.25 ICS PAS 62.35 ± 8.04 44. eu.bdt 71.73 UDPipe Future 58.45 ± 6.62 45. stanford 51.72 ± 8.80 ± 5.93 ± 6.62 45. stanford 51.72 ± 8.80 ± 6.62 47.						
32. en.ewt 76.33 Stanford 66.84 ± 5.86 33. pt.bosque 75.94 Stanford 66.22 ± 6.76 34. cs.pud 75.61 UDPipe Future 60.37 ± 11.36 35. af.afribooms 75.67 UDPipe Future 63.76 ± 7.06 36. sk.snk 75.01 Stanford 63.05 ± 7.89 38. n.Lassysmall 74.11 Stanford 61.95 ± 9.12 39. nr.set 73.44 Stanford 61.95 ± 9.12 39. nr.set 73.44 Stanford 61.95 ± 9.12 39. nr.set 73.24 ICS PAS 61.72 ± 7.69 41. ja.gsd 72.25 ICS PAS 62.35 ± 8.04 43. en.lines 72.25 ICS PAS 62.35 ± 8.04 44. eu.bdt 71.73 UDPipe Future 53.48 ± 62.2 45. j.ctg 70.92 Stanford 51.21 ± 8.04 46.8.4 Stanford						
34. cs.pud 75.81 UDPipe Future 60.47 ± 11.36 35. af.afribooms 75.07 UDPipe Future 63.76 ± 7.06 36. sk.snk 75.01 Stanford 63.05 ± 7.06 37. en.pud 74.86 Stanford 63.05 ± 7.83 38. nl.lassysmall 74.11 Stanford 61.95 ± 9.12 39. hr.set 73.44 Stanford 60.08 ± 7.07 40. en.gum 73.24 ICS PAS 61.72 ± 7.69 41. ja.gsd 72.62 HT-SCIR 59.52 ± 6.20 42. uk.iu 72.27 IDDPipe Future 58.49 ± 8.04 44. eu.bdt 71.73 UDPipe Future 58.49 ± 8.04 44. eu.bdt 71.73 UDPipe Future 53.31 ± 7.96 50. hu.szegd 68.36 Stanford 51.22 ± 8.01 51. ab.gsd 66.58 Stanford 52.42 ± 5.87 52. sv_lines 66.58 Stanford 52.42 ± 5.87 53. cu.proiel 63.31 Stanf			76.33	Stanford	66.84	± 5.86
35. af_afribooms 75.67 UDPipe Future 63.76 \pm 7.06 36. sk_snk 75.01 Stanford 56.82 \pm 8.32 37. en_pud 74.86 Stanford 63.05 \pm 7.89 38. nLassysmall 74.11 Stanford 60.08 \pm 7.97 39. hr_set 73.44 Stanford 60.08 \pm 7.07 40. en_gum 72.42 IUTSCIR 59.52 \pm 6.62.0 42. uk.iu 72.27 IUDPipe Future 58.45 \pm 8.04 43. en_lines 72.25 ICS PAS 62.35 \pm 8.04 44. eu_bdt 71.73 IUDPipe Future 58.49 \pm 8.62 45. gl.ctg 70.92 Stanford 51.22 \pm 8.80 46. ar.padt 68.50 Stanford 51.22 \pm 8.80 47. it_postwita 68.50 Stanford 53.08 \pm 8.61 51. ab_god 66.62 HT-SCIR 50.42 \pm 5.87 52. sv lines 66.58 Stanford 53.08 \pm 6.69 51. ab_god 60.62 HT-SCIR 53.04 <						
36. sk_snk 75.01 Stanford 56.82 ± 8.32 37. $en.pud$ 74.86 Stanford 63.05 ± 7.89 38. $nl.lassysmall$ 74.11 Stanford 61.95 ± 9.12 39. hr_set 73.44 Stanford 60.08 ± 7.07 40. $en.gum$ 73.24 ICS PAS 61.72 ± 7.69 41. $ja.gsd$ 72.62 HIT-SCIR 59.52 ± 6.20 42. $uk.iu$ 72.27 UDPipe Future 58.45 ± 8.08 43. $en.lines$ 72.25 ICS PAS 62.35 ± 8.04 44. $eu.bdt$ 71.73 UDPipe Future 58.49 ± 8.62 45. $gl.ctg$ 70.92 Stanford 51.22 ± 1.10 46. $ar.padt$ 68.50 Stanford 51.22 ± 8.80 45. $gl.ctg$ 70.92 Stanford 51.22 ± 8.80 45. $al.pkot$ 66.62 HT-SCIR 50.42 ± 5.87 52. $sv.lines 66.53 Stanford 51.24 \pm 4.94 50. hu.scged 67.31 UDPipe Future $						
37. en.pud 74.86 Stanford 63.05 \pm 7.89 38. nl.lassysmall 74.11 Stanford 61.95 \pm 9.12 39. hr.set 73.44 Stanford 60.08 \pm 7.07 40. en.gum 73.24 ICS PAS 61.72 \pm 7.69 41. ja.gsd 72.62 HIT-SCIR 59.52 \pm 6.20 42. uk.iu 71.73 UDPipe Future 58.49 \pm 8.62 43. en.lines 72.25 ICS PAS 63.28 \pm 8.62 44. eu.bdt 71.73 UDPipe Future 53.28 \pm 6.12 47. it.postwita 68.50 Stanford 51.28 \pm 6.62 47. it.postwita 66.62 HIT-SCIR 53.01 \pm 7.65 51. h_{28} 66.62 HIT-SCIR 53.11 \pm 7.61 52. sv_lines 66.63 Stanford 52.2 \pm 9.49 52. sv_lines 66.53 Stanford 52.2 \pm 9.49						
38. nl.lassysmall 74.11 Stanford 61.95 ± 9.12 39. hr.set 73.44 Stanford 60.08 ± 7.07 40. en.gum 73.24 ICS PAS 61.72 ± 7.07 41. ja.gsd 72.62 HIT-SCIR 59.52 ± 8.04 41. ja.gsd 72.62 HIT-SCIR 59.52 ± 8.04 44. eu.bdt 71.73 UDPipe Future 58.49 ± 8.64 44. eu.bdt 71.73 UDPipe Future 58.49 ± 8.61 44. eu.bdt 71.73 UDPipe Future 53.28 ± 6.12 47. it.postwita 68.54 Stanford 51.32 ± 8.01 51. zh.gsd 66.62 HIT-SCIR 50.42 ± 5.87 52. sv_lines 66.68 Stanford 51.24 ± 5.80 53. fr.spoken 64.67 HIT-SCIR 53.31 ± 7.96 54. nutaiga 61.59 ISanford 52.2 ± 4.94 $55.cu.proiel 63.31 Stanford 47.2 \pm 18.2 59.36 55. cu.proiel 63.31 $						
39. hr.set 73.44 Stanford 60.08 ± 7.07 40. en.gum 73.24 ICS PAS 61.72 ± 7.69 41. ja.gsd 72.62 HIT-SCIR 59.52 ± 6.20 42. uk.iu 72.27 IUDPipe Future 55.45 ± 8.04 43. en.lines 72.25 ICS PAS 62.35 ± 8.04 44. eu.bdt 71.73 IDDPipe Future 55.45 ± 8.62 45. gl.ctg 70.92 Stanford 57.92 ± 14.10 46. ar.padt 68.54 Stanford 53.28 ± 6.61 47. it.postwita 68.50 Stanford 53.31 ± 7.96 50. hu.szeged 67.13 UDPipe Future 53.08 ± 8.01 51. zh.gsd 66.62 HT-SCIR 50.42 ± 5.87 52. sv lines 64.67 HT-SCIR 50.42 ± 5.87 53. fr.spoken 64.67 HT-SCIR 50.28 ± 6.69 57. gl.treegal 60.63 Stanford 45.22 ± 4.94 55. cu.proiel 60.27 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
41. ja_gsd 72.62 HIT-SCIR 59.52 ± 6.20 42. uk_iu 72.77 UDPipe Future 55.45 ± 8.08 43. en_lines 72.25 ICS PAS 63.35 ± 8.04 44. eu_bdt 71.73 UDPipe Future 58.49 ± 8.62 45. gl_ctg 70.92 Stanford 57.92 ± 14.10 46. ar_padt 68.54 Stanford 51.72 ± 8.80 47. it.postwita 68.56 Stanford 53.28 ± 6.12 47. it.postwita 68.56 Stanford 51.31 ± 7.96 50. hu.szeged 67.13 UDPipe Future 53.08 ± 8.01 51. zh_gsd 66.62 HIT-SCIR 53.11 ± 7.96 52. sv_lines 66.58 Stanford 52.22 ± 4.94 53. fr_spoken 64.67 HIT-SCIR 53.17 ± 5.61 54. he.htb 63.38 Stanford 47.62 ± 11.82 58. grc_proiel 60.27 Stanford 47.62 ± 11.82 58. grc_proiel 57.9						
42. uk.iu 72.27 UDPipe Future 55.45 \pm 8.08 43. en_lines 72.25 ICS PAS 62.35 \pm 8.04 44. eu_bdt 71.73 UDPipe Future 58.49 \pm 8.62 45. gl.ctg 70.92 Stanford 57.92 \pm 14.10 46. ar.padt 68.54 Stanford 51.32 \pm 8.80 48. id_gsd 68.36 Stanford 53.28 \pm 6.612 49. lv_Jvtb 67.789 Stanford 53.31 \pm 7.93 50. hu.szeged 66.51 HIT-SCIR 50.42 \pm 5.87 52. sv_lines 66.58 Stanford 51.74 \pm 7.43 53. fr.spoken 64.67 HIT-SCIR 50.17 \pm 5.87 54. he.htb 63.38 Stanford 47.22 \pm 5.93 57. gl.treegal 60.63 UDPipe Future 47.35 \pm 5.93 55. r_uta						
43. en_lines 72.25 ICS PAS 62.35 \pm 8.04 44. eu_bdt 71.73 UDPipe Future 58.49 \pm 8.62 45. gl_ctg 70.92 Stanford 57.92 \pm 14.10 46. ar_padt 68.54 Stanford 53.28 \pm 6.12 47. it_postwita 68.50 Stanford 51.72 \pm 8.80 48. id_gsd 66.78 Stanford 53.31 \pm 7.96 50. hu.szeged 67.13 UDPipe Future 53.08 \pm 8.01 51. zh_gsd 66.62 HTT-SCIR 50.42 \pm 5.87 52. sv lines 66.63 Stanford 45.22 \pm 4.94 55. cu_proiel 63.31 Stanford 45.22 \pm 4.94 55. ru_taiga 61.02 Stanford 47.22 \pm 11.82 57.9 Jtreegal 60.03 UDPipe Future 47.35 \pm 5.93 58. gr_treegal 50						
44. eu.bdt 71.73 UDPipe Future 58.49 ± 8.62 45. gl.ctg 70.92 Stanford 57.92 ± 14.10 46. ar.padt 68.50 Stanford 51.22 ± 14.10 46. ar.padt 68.50 Stanford 51.22 ± 8.80 48. id.gsd 68.50 Stanford 51.22 ± 8.80 49. lv.Jvtb 67.89 Stanford 51.22 ± 8.80 50. hu.szeged 67.13 UDPipe Future 53.08 ± 8.776 51. xh_gsd 66.62 HIT-SCIR 51.40 ± 7.43 53. fs.psoken 64.67 HIT-SCIR 51.71 ± 5.61 54. he.lb 63.38 Stanford 47.22 ± 4.94 55. cu.proiel 63.31 Stanford 47.62 ± 11.82 58. grc.proiel 60.27 Stanford 47.62 ± 11.82 58. g						
45. gl_ctg 70.92 Stanford 57.92 ± 14.10 46. ar_padt 68.54 Stanford 53.28 ± 6.12 47. it_postwita 68.56 Stanford 51.72 ± 8.80 48. id_ggad 68.36 Stanford 51.72 ± 8.80 48. id_ggad 67.13 UDPipe Futur 53.31 ± 7.96 50. hu.szeged 66.58 Stanford 57.40 ± 7.43 51. xh_ggad 66.58 Stanford 57.40 ± 7.43 53. fr.spoken 64.67 HIT-SCIR 53.17 ± 5.61 55. cu_proiel 63.31 Stanford 57.20 ± 4.94 55. cu_proiel 63.31 Stanford 47.62 ± 11.82 59. laproiel 59.36 Stanford 47.62 ± 11.82 59. laproiel 59.36 Stanford 47.79 ± 5.93 60. de gad						
46. ar.padt 68.54 Stanford 53.28 ± 6.12 47. it.postwita 68.50 Stanford 51.72 ± 8.80 48. id.gsd 68.36 Stanford 51.72 ± 8.80 48. id.gsd 68.36 Stanford 51.32 ± 8.80 49. lv.Jvtb 67.789 Stanford 53.31 ± 7.96 50. hu.szeged 67.13 UDPipe Future 53.08 ± 8.80 51. zh.gsd 66.62 HIT-SCIR 50.42 ± 5.87 52. sv_lines 66.63 Stanford 57.40 ± 7.43 53. fr.spoken 64.67 HIT-SCIR 50.28 ± 6.69 56. ru.taiga 61.59 ICS PAS 37.16 ± 7.53 57. gl.treegal 60.63 UDPipe Future 47.35 ± 5.93 58. grc_proiel 60.27 Stanford 47.2 ± 11.82 59. la.proiel 57.98 TurkuNLP 39.13 ± 10.35 61. ur.udtb 57.98 TurkuNLP 38.29 ± 12.37 64. egsd 57.71 ICS PAS <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
48. id_gsd 68.36 Stanford 61.03 ± 6.49 49. lv Jvtb 67.89 Stanford 53.31 ± 7.96 50. hu.szeged 67.13 UDPipe Future 53.08 ± 8.01 51. xb_gsd 66.62 HIT-SCIR 50.42 ± 5.81 52. sv_lines 66.58 Stanford 57.40 ± 7.43 53. fr.spoken 64.67 HIT-SCIR 53.17 ± 5.61 54. he.hb 63.38 Stanford 52.2 ± 4.94 55. cu_proiel 60.31 Stanford 47.22 ± 4.94 55. cu_proiel 60.27 Stanford 47.52 ± 11.82 58. grc_proiel 60.27 Stanford 47.62 ± 11.82 59. la_proiel 57.93 Stanford 47.62 ± 11.82 50. anynorsklia 57.51 ICS PAS 37.08 ± 2.73 61. ur_udtb 57.98 HIT-SCIR 32.42 ± 2.33 62. no_nynorsklia 57.51 ICS PAS 37.08 </td <td></td> <td></td> <td>68.54</td> <td>Stanford</td> <td>53.28</td> <td>± 6.12</td>			68.54	Stanford	53.28	± 6.12
49. lv_jvtb 67.89 Stanford 53.31 \pm 7.96 50. hu.szeged 67.13 UDPipe Future 53.08 \pm 8.01 51. zh.gsd 66.62 HIT-SCIR 50.42 \pm 5.87 52. sv_lines 66.63 Stanford 57.40 \pm 7.43 53. fr.spoken 64.67 HIT-SCIR 53.17 \pm 5.61 54. he.htb 63.31 Stanford 50.22 \pm 4.94 55. cu.proiel 63.31 Stanford 52.2 \pm 4.94 55. cu.proiel 63.31 Stanford 52.2 \pm 5.93 55. cu.proiel 63.31 Stanford 47.62 \pm 5.93 55. cu.proiel 60.63 IDPipe Future 47.62 \pm 1.82 59.1a.proiel 59.36 Stanford 47.79 \pm 1.03 62. no.nynorsklia 57.71 IUrkuNLP 49.64 \pm 2.18 62. no.nynorsklia <						
50. hu.szeged 67.13 UDPipe Future 53.08 \pm 8.01 51. zh.gsd 66.62 HIT-SCIR 50.42 \pm 5.87 52. sv_lines 66.63 HIT-SCIR 53.17 \pm 5.87 53. fr.spoken 64.67 HIT-SCIR 53.17 \pm 5.61 53. fr.spoken 64.67 HIT-SCIR 53.17 \pm 5.61 54. he.htb 63.38 Stanford 45.22 \pm 4.94 55. cu_proiel 60.63 UDPipe Future 47.35 \pm 5.93 57. gl.treegal 60.63 UDPipe Future 47.35 \pm 5.90 60. de.gsd 58.04 TurkuNLP 39.13 \pm 10.35 61. ur_udtb 57.98 TurkuNLP 38.29 \pm 12.37 64. got_proiel 56.45 UDPipe Future 46.18 \pm 5.66 65. tr.imst 55.73 Stanford 45.26 \pm 5.18 63. se_preresus						
51. zh.gsd 66.62 HIT-SCIR 50.42 ± 5.87 52. sv.lines 66.58 Stanford 57.40 ± 7.43 53. fr.spoken 64.67 HIT-SCIR 53.17 ± 5.61 54. he.htb 63.38 Stanford 45.22 ± 4.94 55. cu.proiel 63.31 Stanford 50.28 ± 6.69 57. gl.treegal 60.63 UDPipe Future 47.35 ± 5.93 58. grc.proiel 60.27 Stanford 47.62 ± 11.82 59. la.proiel 59.36 Stanford 47.79 ± 6.90 60. de.gsd 58.04 TurkuNLP 39.13 ± 10.35 61. ur_udtb 57.51 ICS PAS 37.08 ± 7.78 63. sme_giella 57.47 TurkuNLP 38.29 ± 12.37 64. got_proiel 56.45 UDPipe Future 46.18 ± 5.36 65. tr.imst 55.73 Stanford 45.26 ± 6.15 66. grc.perseus 54.98 HIT-SCIR 32.45 ± 7.28 70. sl_sst						
52. sv_lines 66.58 Stanford 57.40 \pm 7.43 53. fr.spoken 64.67 HIT-SCIR 53.17 \pm 5.61 54. he.htb 63.38 Stanford 52.22 \pm 4.94 55. cu_proiel 63.31 Stanford 50.28 \pm 6.69 55. cu_proiel 60.31 Stanford 50.28 \pm 5.93 58. grc.proiel 60.27 Stanford 47.62 \pm 11.82 59. la_proiel 59.36 Stanford 47.62 \pm 11.82 59. la_proiel 59.36 Stanford 47.62 \pm 11.82 60. de_gad 58.04 TurkuNLP 39.08 \pm 7.23 61. u_udtb 57.98 TurkuNLP 38.29 \pm 12.37 63. sme_giella 57.71 ICS PAS 3.08 \pm 7.78 63. sme_giella 57.71 TurkuNLP 38.61 \pm 5.36 65. tr_imst						
54. he_htb 63.38 Stanford 45.22 ± 4.94 55. cu_proiel 63.31 Stanford 50.28 ± 6.69 55. ru_taiga 61.59 ICS PAS 37.16 ± 7.53 57. gl_treegal 60.63 UDPipe Future 47.35 ± 5.93 58. grc_proiel 60.67 Stanford 47.62 ± 11.82 59. la_proiel 59.36 Stanford 47.62 ± 11.82 60. de.gsd 58.04 TurkuNLP 39.13 ± 10.35 61. ur_udtb 57.98 TurkuNLP 39.13 ± 10.35 61. ur_udtb 57.98 TurkuNLP 38.29 ± 12.37 63. sme_giella 57.47 TurkuNLP 38.29 ± 12.37 64. got_proiel 56.45 UDPipe Future 46.18 ± 5.36 65. tr.imst 55.73 Stanford 45.26 ± 6.15 66. grc_perseus 54.98 HIT-SCIR 32.45 ± 7.78 68. la_perseus 49.77 ICS PAS 33.12 ± 5.33 70. sl_sst 45.93 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
55. cu.proiel 63.31 Stanford 50.28 ± 6.69 56. ru.taiga 61.59 ICS PAS 37.16 ± 7.33 57. gl.treegal 60.63 UDPipe Future 47.35 ± 5.93 58. grc.proiel 60.27 Stanford 47.35 ± 5.93 58. grc.proiel 59.36 Stanford 47.79 ± 6.90 60. de_gsd 57.98 TurkuNLP 39.13 ± 10.35 61. ur.udtb 57.98 TurkuNLP 36.46 ± 4.21 62. no.mynorsklia 57.51 ICS PAS 37.08 ± 7.78 63. sme_giella 57.51 ICN PAK 36.26 ± 6.15 65. tr.imst 55.73 Stanford 45.26 ± 6.15 65. tr.imst 55.73 Stanford 45.26 ± 6.15 66. grc.perseus 54.98 HT-SCIR 32.45 ± 7.28 66. y.vpud 51.74 TurkuNLP 33.04 ± 5.18 <	53.	fr_spoken		HIT-SCIR	53.17	± 5.61
56. ru_taiga 61.59 ICS PAS 37.16 \pm 7.53 57. gl.rcegal 60.63 UDPipe Future 47.35 \pm 5.93 58. grc.proiel 60.27 Stanford 47.62 \pm 11.82 59. la_proiel 59.36 Stanford 47.79 \pm 6.060 60. de gad 58.04 TurkuNLP 39.13 \pm 10.35 61. ur_udtb 57.98 TurkuNLP 39.64 \pm 4.21 62. no.nynorsklia 57.51 ICS PAS 37.08 \pm 7.78 63. sme_giella 57.47 TurkuNLP 38.29 \pm 12.37 64. got_proiel 56.45 IDPipe Future 46.18 \pm 5.36 65. tr_imst 55.73 Stanford 45.26 \pm 12.37 66. grc_perseus 54.98 HIT-SCIR 35.65 \pm 12.31 67. sv_pud 51.74 TurkuNLP 33.01 \pm 5.33 71. ga_idt						
57. gl_treegal 60.63 UDPipe Future 47.35 \pm 5.93 58. grc_proiel 60.27 Stanford 47.62 \pm 11.82 59. la_proiel 59.36 Stanford 47.79 \pm 6.00 60. de_gsd 58.04 TurkuNLP 39.13 \pm 10.35 61. ur_udtb 57.98 TurkuNLP 49.64 \pm 4.21 62. on_onynorskiia 57.51 ICS PAS 37.08 \pm 7.78 63. sme_giella 57.47 TurkuNLP 38.29 \pm 12.37 64. got_proiel 56.45 UDPipe Future 46.18 \pm 5.73 65. tr_imst 57.37 Stanford 45.26 \pm 6.15 66. gr_opreseus 54.98 HIT-SCIR 35.65 \pm 12.31 67. sv_pud 47.61 HIT-SCIR 32.45 \pm 7.78 68. laperseus 49.77 ICS PAS 33.12 \pm 5.33 71. st_std						
58. grc_proiel 60.27 Stanford 47.62 ± 11.82 59. laproiel 59.36 Stanford 47.79 ± 6.90 60. de.gsd 58.04 TurkuNLP 39.13 ± 10.35 61. ur_udb 57.98 TurkuNLP 49.64 ± 4.21 62. no_nynorsklia 57.51 ICS PAS 37.08 ± 7.78 63. sme_giella 57.47 TurkuNLP 38.29 ± 12.37 64. got_proiel 56.45 UDPipe Future 46.18 ± 5.36 65. tr.imst 55.73 Stanford 45.26 ± 6.15 65. tr.imst 55.73 Stanford 45.26 ± 6.15 66. grc_perseus 54.98 HIT-SCIR 32.45 ± 7.78 68. laperseus 49.77 ICS PAS 33.12 ± 5.33 71. gaidt 45.78 UDPipe Future 35.08 ± 5.96 73. br.keb						
59. la_proiel 59.36 Stanford 47.79 \pm 6.90 60. de.gsd 58.04 TurkuNLP 39.13 \pm 10.35 61. ur_udtb 57.98 TurkuNLP 39.13 \pm 10.35 61. ur_udtb 57.98 TurkuNLP 39.13 \pm 10.35 62. no_nynorsklia 57.51 ICS PAS 37.08 \pm 7.78 63. sme_giella 57.47 TurkuNLP 38.29 \pm 12.37 64. got_proiel 56.45 UDPipe Future 46.18 \pm 5.36 65. tr_imst 55.73 Stanford 45.26 \pm 6.15 66. gr_perseus 54.98 HIT-SCIR 32.62 \pm 6.15 60. v_tyth 47.61 HIT-SCIR 32.42 \pm 7.28 70. sl_sst 45.93 ICS PAS 33.12 \pm 5.33 71. ga.idt 45.79 TurkuNLP 35.08 \pm 5.96 73. br_keb 13.91 Uppsala 1.52 \pm 3.34 74. hy_armidp 13				-		
		• •				
61. ur_udtb 57.98 TurkuNLP 49.64 \pm 2.11 62. no_nynorskiia 57.51 ICS PAS 37.08 \pm 7.78 63. sme_giella 57.47 TurkuNLP 38.29 \pm 12.37 64. got_proiel 56.45 UDPipe Future 46.18 \pm 5.53 65. tr_imst 55.73 Stanford 45.26 \pm 6.15 66. grc_perseus 54.98 HIT-SCIR 39.41 \pm 7.78 68. la_perseus 49.77 ICS PAS 28.67 \pm 8.06 69. vi_vtb 47.61 HIT-SCIR 32.45 \pm 7.78 70. sl_sst 45.79 ICS PAS 33.12 \pm 5.33 71. gaidt 45.78 UDPipe Future 35.68 \pm 5.92 72. ug.udt 45.78 UDPipe Future 35.68 \pm 5.94 72. ug.udt 13.26 CUNI x-ling 5.94 \pm 2.92 73. br_keb	60.	de_gsd			39.13	
$ \begin{array}{lllllllllllllllllllllllllllllllllll$	61.	ur_udtb				
66. grc.perseus 54.98 HIT-SCIR 35.65 ±12.31 67. sv.pud 51.74 TurkuNLP 39.41 ±7.78 68. la.perseus 49.77 ICS PAS 28.67 ±8.06 69. vi_vtb 47.61 HIT-SCIR 32.45 ± 7.28 70. sl.sst 45.73 ICS PAS 33.12 ± 5.33 71. ga.idt 45.79 TurkuNLP 33.70 ± 5.18 72. ug.udt 45.78 UDPipe Future 50.8 ± 5.94 73. br.keb 13.91 Upsala 1.52 ± 3.34 74. hy.armtdp 13.36 CUNI x-ling 5.94 ± 2.92 75. ja.modern 11.82 Uppsala 6.45 ± 2.59 76. hsb.ufal 9.09 LATTICE 4.66 ± 2.37 77. kk.ktb 8.93 CUNI x-ling 5.04 ± 2.92 79. th.pud 6.29 CUNI x-ling 0.42 ± 1.27 80. pcm.nsc 5.30 KParse 3.00 ± 1.33						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	68.	la_perseus	49.77	ICS PAS	28.67	± 8.06
$ \begin{array}{llllllllllllllllllllllllllllllllllll$						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$						
$\begin{array}{llllllllllllllllllllllllllllllllllll$						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				1		
75. ja⊥modern 11.82 Uppsala 6.45 ± 2.59 76. hsb_ufal 9.09 LATTICE 4.66 ± 2.37 77. kk,ktb 8.93 CUNI x-ling 5.04 ± 2.34 78. kmr_mg 7.98 IBM NY 4.01 ± 1.97 79. ht.pud 6.29 CUNI x-ling 0.42 ± 1.27 80. pcm_nsc 5.30 KParse 3.00 ± 1.30 81. bxr_bdt 2.98 AntNLP 1.33 ± 0.72						
78. kmr_mg 7.98 IBM NY 4.01 \pm 1.96 79. th_pud 6.29 CUNI x-ling 0.42 \pm 1.27 80. pcm_nsc 5.30 KParse 3.00 \pm 1.30 81. bxr_bdt 2.98 AntNLP 1.33 \pm 0.72	76.	hsb_ufal		LATTICE		
$ \begin{array}{c ccccc} 79. \ th_pud & 6.29 \ CUNI \ x-ling & 0.42 \ \pm 1.27 \\ 80. \ pcm_nsc & 5.30 \ KParse & \textbf{3.00} \ \pm 1.30 \\ 81. \ bxr_bdt & 2.98 \ AntNLP & 1.33 \ \pm 0.72 \\ \end{array} $						
80. pcm_nsc 5.30 KParse 3.00 ± 1.30 81. bxr_bdt 2.98 AntNLP 1.33 ± 0.72						
81. bxr_bdt 2.98 AntNLP 1.33 ± 0.72						
	82.	fo_oft	1.07	CUNI x-ling	0.37	± 0.21

	Treebank	BLEX		Avg	StDev
	pl_lfg	90.42	TurkuNLP	72.81	±16.96
	ru_syntagrus cs_pdt	88.65 87.91	TurkuNLP HIT-SCIR	68.57 74.41	± 18.07 ± 14.88
	cs_fictree	87.81	ICS PAS	71.10	
	cs_cac	86.79		71.61	± 10.20 ± 18.18
	hi_hdtb	86.74		75.80	± 9.28
7.	pl_sz	86.29	TurkuNLP	67.33	± 17.15
	no_bokmaal	85.82	1	69.52	
	ca_ancora	85.47	UDPipe Future	72.60	± 12.31
	es_ancora	84.92	HIT-SCIR	72.10	± 12.71
	it_isdt fr_sequoia	84.76 84.67	ICS PAS ICS PAS	75.42 70.63	$\pm 10.72 \\ \pm 11.66$
	no_nynorsk	84.44	TurkuNLP	67.43	± 11.00 ± 14.10
	la_ittb	84.37	TurkuNLP	68.10	± 17.85
	bg_btb	84.31	TurkuNLP	68.13	± 15.02
16.	fro_srcmf	84.11	UDPipe Future	70.46	± 16.40
	sr_set	83.28		65.62	± 17.61
	sl_ssj	83.23	Stanford Trader NL D	62.54	± 17.20
1	fi_ftb fi_pud	82.44 82.44	TurkuNLP TurkuNLP	59.66 52.25	$\pm 16.50 \\ \pm 18.50$
	sv_talbanken	81.44		66.45	± 13.30 ± 13.18
	fi_tdt	81.24	TurkuNLP	54.70	± 17.25
1	fr_gsd	81.18		69.61	± 10.58
	ro_rrt	80.97	TurkuNLP	63.53	± 15.84
	sk_snk	80.74	TurkuNLP	58.35	±15.07
	pt_bosque	80.62	TurkuNLP	68.71	±11.27
	en_pud cs_pud	80.53 80.53	LATTICE ICS PAS	64.73 64.62	±10.88 ±16.03
	hr_set	80.55		64.64	± 10.03 ± 17.13
	fa_seraji	80.44		68.38	± 7.39
	el_gdt	80.09	TurkuNLP	63.26	± 15.60
	ko_kaist	79.55	TurkuNLP	57.32	± 20.78
	et_edt	79.37	TurkuNLP	57.06	± 16.14
	nl_alpino en_ewt	79.15 78.44	HIT-SCIR HIT-SCIR	64.29 67.53	± 10.83 ± 8.47
1	uk_iu	78.38	TurkuNLP	57.78	± 8.47
	eu_bdt	78.15	TurkuNLP	60.52	± 15.24
	da_ddt	78.07	TurkuNLP	63.16	± 11.41
	sv_lines	77.01	ICS PAS	63.13	± 11.72
	id_gsd	76.56		62.52	± 7.89
	nl_lassysmall af_afribooms	76.54 76.44		60.92 63.87	±11.93 ±9.62
1	ko_gsd	76.31	TurkuNLP	54.13	± 9.02
	en_lines	75.29		62.29	± 9.27
45.	gl_ctg	75.14	Stanford	60.86	± 10.82
	ur_udtb	73.79	TurkuNLP	62.93	± 6.42
	ja_gsd	73.79	HIT-SCIR ICS PAS	60.87	$\pm 6.04 \pm 8.59$
	en_gum hu_szeged	73.57 73.17	TurkuNLP	61.02 55.42	± 8.39
	zh_gsd	72.97	HIT-SCIR	55.66	± 6.26
	lv_lvtb	72.40	TurkuNLP	53.42	± 14.56
	de_gsd	71.40		54.86	± 14.99
	cu_proiel	71.31	Stanford	51.27	±15.35
	ar_padt	70.06		49.13	± 18.98 ± 8.76
	it_postwita grc_proiel	69.34 69.03	HIT-SCIR TurkuNLP	50.97 48.58	$\pm 8.76 \pm 19.91$
	la_proiel	67.60		51.03	
	sv_pud	66.12		50.20	
59.	fr_spoken	65.63	HIT-SCIR	52.57	± 7.29
1	he_htb	65.04		47.22	± 6.60
	ru_taiga	64.36		39.32	
	gl_treegal got_proiel	64.29 63.98		49.38 48.79	$\pm 8.18 \pm 13.77$
	no_nynorsklia	60.98		48.79	± 13.77 ± 8.64
	tr_imst	60.13		45.39	±10.38
66.	sme_giella	60.10		35.76	± 12.68
	grc_perseus	58.68	TurkuNLP	36.48	±16.03
	ug_udt	55.42		41.64	± 8.09 ± 7.61
	ga_idt la_perseus	55.18 52.75	TurkuNLP ICS PAS	37.83 30.16	$\pm 7.61 \\ \pm 11.05$
	sl_sst	50.94		37.20	± 6.87
	vi_vtb	44.02		35.50	± 3.74
73.	pcm_nsc	26.04		12.07	± 5.63
	hsb_ufal	21.09		11.26	± 4.97
	br_keb	20.70		4.19	± 4.93
	hy_armtdp fo_oft	19.04 14.40		10.68 7.32	$\pm 4.37 \pm 3.33$
	ja_modern	13.79		7.70	± 2.86
	kmr_mg	13.66		8.44	± 3.11
	kk_ktb	11.33		6.75	± 2.95
	th_pud	10.77	CUNI x-ling	0.91	± 2.11
82.	bxr_bdt	6.65	AntNLP	3.39	± 1.61

Table 16: Treebank ranking by best parser MLAS.

Table 17: Treebank ranking by best parser BLEX.

	Treebank	LAS	MLAS	Diff	Language
	de_gsd	70.13	39.13	31.01	German
	sv_pud	67.02	39.41	27.61	Swedish
	fo_oft ur_udtb	27.87 75.89	0.37 49.64	27.50 26.25	Faroese Urdu
	ga_idt	58.37	33.70	24.66	Irish
	grc_perseus	59.01	35.65	23.36	
	hsb_ufal	26.48	4.66	21.82	Upper Sorbian
	sk_snk	76.53		19.71	Slovak
	ug_udt	54.27		19.20	
	ru_taiga	56.27		19.12	
	hr_set la_perseus	78.37 46.91	60.08 28.67	18.29 18.24	
	grc_proiel	65.02	47.62		
	gl_treegal	64.65	47.35	17.30	Galician
	uk_iu	72.47	55.45	17.01	
16.	hi_hdtb	85.16	68.48	16.68	Hindi
	pl_sz	81.47	64.80		
	hy_armtdp	22.39	5.94	16.45	Armenian
	el_gdt	80.65	64.29	16.36	
	sv_lines	73.76	57.40	16.36	
	kmr_mg nl_alpino	20.27 77.76	4.01 62.82	16.26 14.95	Kurmanji Dutch
	gl_ctg	72.46		14.95	
	lv_lvtb	67.76	53.31	14.45	
	got_proiel	60.55		14.37	
26.	pt_bosque	80.49	66.22	14.27	
	ja_gsd	73.68		14.16	Japanese
	kk_ktb	19.11		14.07	
	hu_szeged	67.05			Hungarian
	sl_sst	47.07		13.95	
	eu_bdt he_htb	72.08 58.73		13.59 13.51	-
	la_proiel	61.25	47.79	13.46	
	no_nynorsklia			13.25	
	it_postwita	64.95	51.72	13.22	Italian
	nl_lassysmall	75.08	61.95	13.14	Dutch
37.	af_afribooms	76.61	63.76	12.84	Afrikaans
	sme_giella	51.10		12.82	North Sámi
	cs_pud	73.24	60.47	12.77	Czech
	sl_ssj	75.00	62.41	12.59	
	sr_set	79.84	67.33	12.50	
	en_gum ja_modern	74.20 18.92	61.72 6.45	12.48 12.47	English Japanese
	cu_proiel	62.64		12.36	Old Church Slavonic
	cs_fictree	82.10	69.91	12.19	
	pl_lfg	85.89	73.73	12.17	Polish
	id_gsd	73.05	61.03	12.02	Indonesian
	br_keb	13.27	1.52	11.75	Breton
	fr_spoken	64.66	53.17	11.49	
	en_pud	74.51	63.05	11.46	
	cs_cac	82.69	71.39 53.28	11.29	Czech Arabic
	ar_padt fi_ftb	64.07 76.89	53.28 66.11	10.79 10.78	
	it_isdt	87.61	77.14		
	tr_imst	55.61		10.47	
	pcm_nsc	13.19	3.00		
	fr_sequoia	80.55	70.42		French
58.	bxr_bdt	11.45	1.33	10.12	
	fr_gsd	79.43	69.33		French
	da_ddt	75.02	65.00	10.02	
	no_nynorsk	78.55	68.62	9.93	
	en_lines	72.28	62.35 50.42	9.93	C
05. 64	zh_gsd sv_talbanken	60.32 77.71	50.42 68.05	9.90 9.66	
	bg_btb	82.52	73.18	9.34	Bulgarian
	la_ittb	77.00	67.77	9.23	
	fro_srcmf	74.38	65.19	9.18	Old French
68.	en_ewt	75.99	66.84	9.15	
	no_bokmaal	79.80	70.75	9.05	Norwegian
	ca_ancora	83.61	74.62	8.99	
	cs_pdt	82.18	73.61	8.57	Czech
	et_edt	72.08	63.59 67.43	8.50	
	ro_rrt fi_tdt	75.77 73.55	67.43	8.33 8.28	Romanian Finnish
	es_ancora	82.84	74.61	8.23	Spanish
	ko_gsd	71.88	63.73	8.25	Korean
	ru_syntagrus	79.68	71.63	8.05	Russian
78.	vi_vtb	40.40	32.45	7.95	Vietnamese
79.	fa_seraji	78.71	71.23	7.48	Persian
	ko_kaist	77.10	70.18	6.92	Korean
	fi_pud	68.87	62.38	6.49	
82.	th_pud	1.38	0.42	0.96	Thai

Table 18: Treebank ranking by difference betweenaverage parser LAS and MLAS.

	Treebank	Best	Best system	Avg	StDev
70.	bxr_bdt	99.24	IBM NY	88.64	± 8.09
71.	fi_pud	99.69	Uppsala	88.13	± 10.81
72.	zh_gsd	96.71	HIT-SCIR	86.91	± 3.83
73.	fo_oft	99.47	CUNI x-ling	86.76	± 10.68
74.	ar₋padt	96.81	Stanford	86.62	\pm 7.00
75.	kmr_mg	96.97	Uppsala	86.61	\pm 7.16
76.	kk_ktb	97.40	Uppsala	85.55	\pm 7.45
77.	br_keb	92.45	TurkuNLP	83.76	\pm 7.37
78.	he_htb	93.98	Stanford	82.45	± 3.80
79.	vi_vtb	93.46	HIT-SCIR	81.71	± 3.73
80.	pcm_nsc	99.71	CEA LIST	79.94	±10.69
81.	ja_modern	75.69	HIT-SCIR	59.40	\pm 7.70
82.	th_pud	69.93	Uppsala	17.16	± 20.57

Table 19: Treebanks with most difficult word segmentation (by average parser F_1).

	Treebank	Best	Best system	Avg	StDev
73.	grc_proiel	51.84	HIT-SCIR	42.46	\pm 7.33
74.	cu_proiel	48.67	Stanford	35.54	± 4.02
75.	la_proiel	39.61	Stanford	33.40	± 5.39
76.	got_proiel	38.23	Stanford	27.22	± 4.47
77.	it_postwita	65.90	Stanford	25.25	±14.30
78.	sl_sst	24.43	NLP-Cube	20.92	± 4.70
79.	fr_spoken	24.17	Stanford	20.43	± 2.89
80.	th_pud	12.37	TurkuNLP	1.75	± 3.68
81.	pcm_nsc	0.93	Stanford	0.06	± 0.19
82.	ja_modern	0.23	Stanford	0.01	± 0.04

Table 20: Treebanks with most difficult sentence segmentation (by average parser F_1).

7 Analysis of Submitted Systems

Table 21 gives an overview of 24 of the systems evaluated in the shared task. The overview is based on a post-evaluation questionnaire to which 24 of 25 teams responded. Systems are ordered alphabetically by name and their LAS rank is indicated in the second column.

Looking first at word and sentence segmentation, we see that, while a clear majority of systems (19/24) rely on the baseline system for segmentation, slightly more than half (13/24) have developed their own segmenter, or tuned the baseline segmenter, for at least a subset of languages. This is a development from 2017, where only 7 out of 29 systems used anything other than the baseline segmenter.

When it comes to morphological analysis, including universal POS tags, features and lemmas, all systems this year include some such component, and only 6 systems rely entirely on the base-

System	R	Segment	Morph	Syntax	WEmb	Additional Data	MultiLing
AntNLP	9	Base	Base	Single-G	FB	None	Own _S
ArmParser	25	Base	Own	Single	FB	None	None
BOUN	21	Base	Base	Single-T	Base	None	None
CEA LIST	6	Base	$B_{\rm L}/Own$	Single-G/T	B/FB	OPUS/Wikt	Own _L
CUNI x-ling	20	B/Own	B/Own	Single/Ens	FB/None	O/UM/WALS/Wiki	Own _{L,S}
Fudan	17	Base	Base	Ensemble	None	None	Own _{L,S}
HIT-SCIR	1	B/Own	Base	Ensemble	B/FB/Crawl	None	$Own_{L,S}$
HUJI	24	Base	Base	Single-T	FB	None	$Own_{\rm L}$
IBM NY	13	B/Own	B/Joint	Ensemble-T	B/FB	Wiki	Own _{L,S}
ICS PAS	3	Base	Own	Single-G	FB/None	None	None
KParse	16	B/Own	Own	Single	Other	None	Own _L
LATTICE	3	Base	Own_{U}	Single-G/Ens	B/FB/Crawl	OPUS/Wiki	Own _{L,S}
LeisureX	15	Base	Own	Single	Base	None	Own _L
NLP-Cube	9	Own	Own	Single	FB	None	$Own_{\rm L}$
ONLP lab	22	Base	Base	Single-T	None	UML	None
ParisNLP	11	B/Own	B/Own	Single-G	FB	UML	Own _L
Phoenix	19	Own	Own_{U}	Single	Train	None	$Own_{\rm L}$
SLT-Interactions	12	B/Own	Own	Single	Crawl	None	Own_{L}
SParse	26	B/Own	Own	Single-G	Crawl	None	Own_{L}
Stanford	7	Own	Own	Single-G	B/FB	None	None
TurkuNLP	2	B/Own	Own	Single-G	B/FB	OPUS/Aper	Own _L
UDPipe Future	3	Own	Joint	Single-G	B/FB	None	None
UniMelb	14	Base	Joint	Single	Base	None	Base
Uppsala	7	Own	$\text{Own}_{\mathrm{U},\mathrm{F}}$	Single-T	B/FB/Wiki	OPUS/Wiki/Aper	Own _{L,S}

Table 21: Classification of participating systems. $\mathbf{R} = \text{LAS}$ ranking. **Segment** = word/sentence segmentation. **Morph** = morphological analysis, including universal POS tags [U], features [F] and lemmas [L], with subscripts for subsets [Joint = morphological component trained jointly with syntactic parser]. **Syntax** = syntactic parsing [Single = single parser; Ensemble (or Ens) = parser ensemble; G = graph-based; T = transition-based]. **WEmb** = pre-trained word embeddings [FB = Facebook; Crawl = trained on web crawl data provided by the organizers; Wiki = trained on Wikipedia data; Train = trained on treebank training data]. **Additional Data** = data used in addition to treebank training sets [OPUS (or O) = OPUS, Aper = Apertium morphological analysers, Wikt = Wiktionary, Wiki = Wikipedia, UM = UniMorph, UML = Universal Morphological Lattices, WALS = World Atlas of Language Structures]. **MultiLing** = multilingal models used for low-resource (L) or small (S) languages. In all columns, Base (or B) refers to the Baseline UDPipe system or the baseline word embeddings provided by the organizers, while None means that there is no corresponding component in the system.

line UDPipe system. This is again quite different from 2017, where more than half the systems either just relied on the baseline tagger (13 systems) or did not predict any morphology at all (3 systems). We take this to be primarily a reflection of the fact that two out of three official metrics included (some) morphological analysis this year, although 3 systems did not predict the lemmas required for the BLEX metric (and 2 systems only predicted universal POS tags, no features). As far as we can tell from the questionnaire responses, only 3 systems used a model where morphology and syntax were predicted jointly.¹⁴

For syntactic parsing, most teams (19) use a single parsing model, while 5 teams, including the winning HIT-SCIR system, build ensemble models, either for all languages or a subset of them. When it comes to the type of parsing model, we observe that graph-based models are more popular than transition-based models this year, while the opposite was true in 2017. We hypothesize that

¹⁴The ONLP lab system also has a joint model but in the end used the baseline morphology as it gave better results.

this is due to the superior performance of the Stanford graph-based parser in last year's shared task, and many of the high-performing systems this year either incorporate that parser or a reimplementation of it.¹⁵

The majority of parsers make use of pre-trained word embeddings. Most popular are the Facebook embeddings, which are used by 17 systems, followed by the baseline embeddings provided by the organizers (11), and embeddings trained on web crawl data (4).¹⁶ When it comes to additional data, over and above the treebank training sets and pretrained word embeddings, the most striking observation is that a majority of systems (16) did not use any at all. Those that did primarily used OPUS (5), Wikipedia dumps (3), Apertium morphological analyzers (2), and Universal Morphological Lattices (2). The CUNI x-ling system, which focused on low-resource languages, also exploited UniMorph and WALS (in addition to OPUS and Wikipedia).

Finally, we note that a majority of systems make use of models trained on multiple languages to improve parsing for languages with little or no training data. According to the questionnaire responses, 15 systems use multilingual models for the languages classified as "low-resource", while 7 systems use them for the languages classified as "small".¹⁷ Only one system relied on the baseline delexicalized parser trained on data from all languages.

8 Conclusion

The CoNLL 2018 Shared Task on UD parsing, the second in the series, was novel in several respects. Besides using cross-linguistically consistent linguistic representations, emphasizing end-to-end processing of text, and in using a multiply parallel test set, as in 2017, it was unusual also in featuring an unprecedented number of languages and treebanks and in integrating cross-lingual learning for resource-poor languages. Compared to the first edition of the task in 2017, this year several languages were provided with little-to-no resources, whereas in 2017, predicted morphology trained on

the language in question was available for all of the languages. The most extreme example of these is Thai, where the only accessible resource was the Facebook Research Thai embeddings model and the OPUS parallel corpora. This year's task also introduced two additional metrics that take into account morphology and lemmatization. This encouraged the development of truly end-to-end full parsers, producing complete parses including morphological features and lemmas in addition to the syntactic tree. This also aimed to improve the utility of the systems developed in the shared task for later downstream applications. For most UD languages, these parsers represent a new state of the art for end-to-end dependency parsing.

The analysis of the shared task results has so far only scratched the surface, and we refer to the system description papers for more in-depth analysis of individual systems and their performance. For many previous CoNLL shared tasks, the task itself has only been the starting point of a long and fruitful research strand, enabled by the resources created for the task. We hope and believe that the 2017 and 2018 UD parsing tasks will join this tradition.

Acknowledgments

We are grateful to all the contributors to Universal Dependencies; without their effort a task like this simply wouldn't be possible.

The work described herein, including data preparation for the *CoNLL 2018 UD Shared Task*, has been supported by the following grants and projects: "CRACKER," H2020 Project No. 645357 of the European Commission; "MANYLA," Grant No. GA15-10472S of the Grant Agency of the Czech Republic; FIN-CLARIN; and the LINDAT/CLARIN research in-frastructure project funded by the Ministry of Education, Youth and Sports of the Czech Republic, Project. No. LM2015071. The data for the *CoNLL 2018 UD Shared Task* are available also via the LINDAT/CLARIN repository.

References

Gor Arakelyan, Karen Hambardzumyan, and Hrant Khachatrian. 2018. Towards JointUD: Part-ofspeech tagging and lemmatization using recurrent neural networks. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to*

¹⁵This is true of at least 3 of the 5 best performing systems. ¹⁶The baseline embeddings were the same as in 2017 and therefore did not cover new languages, which may partly explain the greater popularity of the Facebook embeddings this year.

¹⁷We know that some teams used them also for clusters involving high-resource languages, but we have no detailed statistics on this usage.

Universal Dependencies. Association for Computational Linguistics.

- Riyaz Ahmad Bhat, Irshad Ahmad Bhat, and Srinivas Bangalore. 2018. The SLT-Interactions parsing system at the CoNLL 2018 shared task. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies.* Association for Computational Linguistics.
- Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching word vectors with subword information *arXiv preprint arXiv*:1607.04606.
- Tiberiu Boroș, Stefan Daniel Dumitrescu, and Ruxandra Burtica. 2018. NLP-Cube: End-to-end raw text processing with neural networks. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*. Association for Computational Linguistics.
- Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X shared task on multilingual dependency parsing. In *Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X)*. Association for Computational Linguistics, pages 149– 164. http://anthology.aclweb.org/W/W06/W06-29.pdf#page=165.
- Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng, and Ting Liu. 2018. Towards better UD parsing: Deep contextualized word embeddings, ensemble, and treebank concatenation. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.
- Danlu Chen, Mengxiao Lin, Zhifeng Hu, and Xipeng Qiu. 2018. A simple yet effective joint training method for cross-lingual universal dependency parsing. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.
- Elie Duthoo and Olivier Mesnard. 2018. CEA LIST : Processing low-resource languages for CoNLL 2018. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*. Association for Computational Linguistics.
- Murhaf Fares, Stephan Oepen, Lilja Øvrelid, Jari Björne, and Richard Johansson. 2018. The 2018 shared task on extrinsic parser evaluation: On the downstream utility of English universal dependency parsers. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*. Association for Computational Linguistics, Brussels, Belgium.
- Filip Ginter, Jan Hajič, Juhani Luotolahti, Milan Straka, and Daniel Zeman. 2017. CoNLL 2017 shared task -

automatically annotated raw texts and word embeddings. LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguistics, Charles University. http://hdl.handle.net/11234/1-1989.

- Allan Hanbury, Henning Müller, Krisztian Balog, Torben Brodt, Gordon V. Cormack, Ivan Eggel, Tim Gollub, Frank Hopfgartner, Jayashree Kalpathy-Cramer, Noriko Kando, Anastasia Krithara, Jimmy Lin, Simon Mercer, and Martin Potthast. 2015. Evaluation-as-a-Service: Overview and Outlook. *ArXiv e-prints* http://arxiv.org/abs/1512.07454.
- Daniel Hershcovich, Omri Abend, and Ari Rappoport. 2018. Universal dependency parsing with a general transition-based DAG parser. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*. Association for Computational Linguistics.
- Ganesh Jawahar, Benjamin Muller, Amal Fethi, Louis Martin, Éric de La Clergerie, Benoît Sagot, and Djamé Seddah. 2018. ELMoLex: Connecting ELMo and lexicon features for dependency parsing. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies.* Association for Computational Linguistics.
- Tao Ji, Yufang Liu, Yijun Wang, Yuanbin Wu, and Man Lan. 2018. AntNLP at CoNLL 2018 shared task: A graph-based parser for universal dependency parsing. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.
- Jenna Kanerva, Filip Ginter, Niko Miekka, Akseli Leino, and Tapio Salakoski. 2018. Turku neural parser pipeline: An end-to-end system for the CoNLL 2018 shared task. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.
- Ömer Kırnap, Erenay Dayanık, and Deniz Yuret. 2018. Tree-stack LSTM in transition based dependency parsing. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*. Association for Computational Linguistics.
- Zuchao Li, Shexia He, Zhuosheng Zhang, and Hai Zhao. 2018. Joint learning of pos and dependencies for multilingual universal dependency parsing. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies.* Association for Computational Linguistics.
- KyungTae Lim, Cheoneum Park, Changki Lee, and Thierry Poibeau. 2018. SEx BiST: A multi-source trainable parser with deep contextualized lexical representations. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.

- Dat Quoc Nguyen and Karin Verspoor. 2018. An improved neural network model for joint pos tagging and dependency parsing. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*. Association for Computational Linguistics.
- Joakim Nivre, Mitchell Abrams, Željko Agić, Lars Ahrenberg, Lene Antonsen, Maria Jesus Aranzabe, Gashaw Arutie, Masayuki Asahara, Luma Ateyah, Mohammed Attia, Aitziber Atutxa, Liesbeth Augustinus, Elena Badmaeva, Miguel Ballesteros, Esha Banerjee, Sebastian Bank, Verginica Barbu Mititelu, John Bauer, Sandra Bellato, Kepa Bengoetxea, Riyaz Ahmad Bhat, Erica Biagetti, Eckhard Bick, Rogier Blokland, Victoria Bobicev, Carl Börstell, Cristina Bosco, Gosse Bouma, Sam Bowman, Adriane Boyd, Aljoscha Burchardt, Marie Candito, Bernard Caron, Gauthier Caron, Gülşen Cebiroğlu Eryiğit, Giuseppe G. A. Celano, Savas Cetin, Fabricio Chalub, Jinho Choi, Yongseok Cho, Jayeol Chun, Silvie Cinková, Aurélie Collomb, Çağrı Çöltekin, Miriam Connor, Marine Courtin, Elizabeth Davidson, Marie-Catherine de Marneffe, Valeria de Paiva, Arantza Diaz de Ilarraza, Carly Dickerson, Peter Dirix, Kaja Dobrovoljc, Timothy Dozat, Kira Droganova, Puneet Dwivedi, Marhaba Eli, Ali Elkahky, Binyam Ephrem, Tomaž Erjavec, Aline Etienne, Richárd Farkas, Hector Fernandez Alcalde, Jennifer Foster, Cláudia Freitas, Katarína Gajdošová, Daniel Galbraith, Marcos Garcia, Moa Gärdenfors, Kim Gerdes, Filip Ginter, Iakes Goenaga, Koldo Gojenola, Memduh Gökırmak, Yoav Goldberg, Xavier Gómez Guinovart, Berta Gonzáles Saavedra, Matias Grioni, Normunds Grūzītis, Bruno Guillaume, Céline Guillot-Barbance, Nizar Habash, Jan Hajič, Jan Hajič jr., Linh Hà Mỹ, Na-Rae Han, Kim Harris, Dag Haug, Barbora Hladká, Jaroslava Hlaváčová, Florinel Hociung, Petter Hohle, Jena Hwang, Radu Ion, Elena Irimia, Tomáš Jelínek, Anders Johannsen, Fredrik Jørgensen, Hüner Kaşıkara, Sylvain Kahane, Hiroshi Kanayama, Jenna Kanerva, Tolga Kayadelen, Václava Kettnerová, Jesse Kirchner, Natalia Kotsyba, Simon Krek, Sookyoung Kwak, Veronika Laippala, Lorenzo Lambertino, Tatiana Lando, Septina Dian Larasati, Alexei Lavrentiev, John Lee, Phương Lê Hồng, Alessandro Lenci, Saran Lertpradit, Herman Leung, Cheuk Ying Li, Josie Li, Keying Li, KyungTae Lim, Nikola Ljubešić, Olga Loginova, Olga Lyashevskaya, Teresa Lynn, Vivien Macketanz, Aibek Makazhanov, Michael Mandl, Christopher Manning, Ruli Manurung, Cătălina Mărănduc, David Mareček, Katrin Marheinecke, Héctor Martínez Alonso, André Martins, Jan Mašek, Yuji Matsumoto, Ryan McDonald, Gustavo Mendonça, Niko Miekka, Anna Missilä, Cătălin Mititelu, Yusuke Miyao, Simonetta Montemagni, Amir More, Laura Moreno Romero, Shinsuke Mori, Bjartur Mortensen, Bohdan Moskalevskyi, Kadri Muischnek, Yugo Murawaki, Kaili Müürisep, Pinkey Nainwani, Juan Ignacio Navarro Horñiacek, Anna Nedoluzhko, Gunta Nešpore-Bērzkalne,

Lương Nguyễn Thị, Huyền Nguyễn Thị Minh, Vitaly Nikolaev, Rattima Nitisaroj, Hanna Nurmi, Stina Ojala, Adédayò Olúòkun, Mai Omura, Petya Osenova, Robert Östling, Lilja Øvrelid, Niko Partanen, Elena Pascual, Marco Passarotti, Agnieszka Patejuk, Siyao Peng, Cenel-Augusto Perez, Guy Perrier, Slav Petrov, Jussi Piitulainen, Emily Pitler, Barbara Plank, Thierry Poibeau, Martin Popel, Lauma Pretkalniņa, Sophie Prévost, Prokopis Prokopidis, Adam Przepiórkowski, Tiina Puolakainen, Sampo Pyysalo, Andriela Rääbis, Alexandre Rademaker, Loganathan Ramasamy, Taraka Rama, Carlos Ramisch, Vinit Ravishankar, Livy Real, Siva Reddy, Georg Rehm, Michael Rießler, Larissa Rinaldi, Laura Rituma, Luisa Rocha, Mykhailo Romanenko, Rudolf Rosa, Davide Rovati, Valentin Rosca, Olga Rudina, Shoval Sadde, Shadi Saleh, Tanja Samardžić, Stephanie Samson, Manuela Sanguinetti, Baiba Saulīte, Yanin Sawanakunanon, Nathan Schneider, Sebastian Schuster, Djamé Seddah, Wolfgang Seeker, Mojgan Seraji, Mo Shen, Atsuko Shimada, Muh Shohibussirri, Dmitry Sichinava, Natalia Silveira, Maria Simi, Radu Simionescu, Katalin Simkó, Mária Šimková, Kiril Simov, Aaron Smith, Isabela Soares-Bastos, Antonio Stella, Milan Straka, Jana Strnadová, Alane Suhr, Umut Sulubacak, Zsolt Szántó, Dima Taji, Yuta Takahashi, Takaaki Tanaka, Isabelle Tellier, Trond Trosterud, Anna Trukhina, Reut Tsarfaty, Francis Tyers, Sumire Uematsu, Zdeňka Urešová, Larraitz Uria, Hans Uszkoreit, Sowmya Vajjala, Daniel van Niekerk, Gertjan van Noord, Viktor Varga, Veronika Vincze, Lars Wallin, Jonathan North Washington, Seyi Williams, Mats Wirén, Tsegay Woldemariam, Tak-sum Wong, Chunxiao Yan, Marat M. Yavrumyan, Zhuoran Yu, Zdeněk Žabokrtský, Amir Zeldes, Daniel Zeman, Manying Zhang, and Hanzhi Zhu. 2018. Universal dependencies 2.2. LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University. http://hdl.handle.net/11234/1-2837.

- Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajič, Christopher Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. 2016. Universal Dependencies v1: A multilingual treebank collection. In *Proceedings* of the 10th International Conference on Language Resources and Evaluation (LREC 2016). European Language Resources Association, Portorož, Slovenia, pages 1659–1666. http://www.lrecconf.org/proceedings/lrec2016/summaries/348.html.
- Joakim Nivre and Chiao-Ting Fang. 2017. Universal dependency evaluation. In *Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW 2017)*. pages 86–95.
- Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007. The CoNLL 2007

shared task on dependency parsing. In *Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007*. Association for Computational Linguistics, pages 915–932. http://www.aclweb.org/anthology/D/D07/D07-1.pdf#page=949.

- Berkay Furkan Önder, Can Gümeli, and Deniz Yuret. 2018. SParse: Koç University graph-based parsing system for the CoNLL 2018 shared task. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.
- Şaziye Betül Özateş, Arzucan Özgür, Tunga Güngör, and Balkız Öztürk. 2018. A morphology-based representation model for LSTM-based dependency parsing of agglutinative languages. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.
- Martin Popel, Zdeněk Žabokrtský, and Martin Vojtek. 2017. Udapi: Universal API for universal dependencies. In *NoDaLiDa 2017 Workshop on Universal Dependencies*. Göteborgs universitet, Göteborg, Sweden, pages 96– 101. http://aclweb.org/anthology/W/W17/W17-0412.pdf.
- Martin Potthast, Tim Gollub, Francisco Rangel, Paolo Rosso, Efstathios Stamatatos, and Benno Stein. 2014. Improving the reproducibility of PAN's shared tasks: Plagiarism detection, author identification, and author profiling. In Evangelos Kanoulas, Mihai Lupu, Paul Clough, Mark Sanderson, Mark Hall, Allan Hanbury, and Elaine Toms, editors, *Information Access Evaluation meets Multilinguality, Multimodality, and Visualization. 5th International Conference of the CLEF Initiative* (*CLEF 14*). Springer, Berlin Heidelberg New York, pages 268–299. https://doi.org/10.1007/978-3-319-11382-1_22.
- Peng Qi, Timothy Dozat, Yuhao Zhang, and Christopher D. Manning. 2018. Universal dependency parsing from scratch. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*. Association for Computational Linguistics.
- Rudolf Rosa and David Mareček. 2018. CUNI x-ling: Parsing under-resourced languages in CoNLL 2018 UD shared task. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*. Association for Computational Linguistics.
- Piotr Rybak and Alina Wróblewska. 2018. Semisupervised neural system for tagging, parsing and lematization. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*. Association for Computational Linguistics.

- Amit Seker, Amir More, and Reut Tsarfaty. 2018. Universal morpho-syntactic parsing and the contribution of lexica: Analyzing the ONLP submission to the CoNLL 2018 shared task. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*. Association for Computational Linguistics.
- Aaron Smith, Bernd Bohnet, Miryam de Lhoneux, Joakim Nivre, Yan Shao, and Sara Stymne. 2018. 82 treebanks, 34 models: Universal dependency parsing with multi-treebank models. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.
- Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*. Association for Computational Linguistics.
- Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-Pipe: trainable pipeline for processing CoNLL-U files performing tokenization, morphological analysis, POS tagging and parsing. In *Proceedings* of the 10th International Conference on Language Resources and Evaluation (LREC 2016). European Language Resources Association, Portorož, Slovenia.
- Milan Straka and Jana Straková. 2017. Tokenizing, POS tagging, lemmatizing and parsing UD 2.0 with UDPipe. In *Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*. Association for Computational Linguistics.
- Jörg Tiedemann. 2012. Parallel data, tools and interfaces in OPUS. In Nicoletta Calzolari (Conference Chair), Khalid Choukri, Thierry Declerck, Mehmet Ugur Dogan, Bente Maegaard, Joseph Mariani, Jan Odijk, and Stelios Piperidis, editors, *Proceedings of the Eight International Conference on Language Resources and Evaluation* (*LREC'12*). European Language Resources Association (ELRA), Istanbul, Turkey.
- Hui Wan, Tahira Naseem, Young-Suk Lee, Vittorio Castelli, and Miguel Ballesteros. 2018. IBM Research at the CoNLL 2018 shared task on multilingual parsing. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*. Association for Computational Linguistics.
- Yingting Wu, Hai Zhao, and Jia-Jun Tong. 2018. Multilingual universal dependency parsing from raw text with low-resource language enhancement. In *Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies.* Association for Computational Linguistics.
- Daniel Zeman, Martin Popel, Milan Straka, Jan Hajič, Joakim Nivre, Filip Ginter, Juhani Luoto-

lahti, Sampo Pyysalo, Slav Petrov, Martin Potthast, Francis Tyers, Elena Badmaeva, Memduh Gökırmak, Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr., Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka Urešová, Jenna Kanerva, Stina Ojala, Anna Missilä, Christopher Manning, Sebastian Schuster, Siva Reddy, Dima Taji, Nizar Habash, Herman Leung, Marie-Catherine de Marneffe, Manuela Sanguinetti, Maria Simi, Hiroshi Kanayama, Valeria de Paiva, Kira Droganova, Héctor Martínez Alonso, Çağrı Çöltekin, Ümut Sulubacak, Hans Uszkoreit, Vivien Macketanz, Aljoscha Burchardt, Kim Harris, Katrin Marheinecke, Georg Rehm, Tolga Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael Mandl, Jesse Kirchner, Hector Fernandez Alcalde, Jana Strnadova, Esha Banerjee, Ruli Manurung, Antonio Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo Mendonça, Tatiana Lando, Rattima Nitisaroj, and Josie Li. 2017. Conll 2017 shared task: Multilingual parsing from raw text to universal dependencies. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics, Vancouver, Canada, pages 1-19. http://www.aclweb.org/anthology/K17-3001.