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Abstract

We present experiments for cross-domain se-
mantic dependency analysis with a neural
Maximum Subgraph parser. Our parser targets
1-endpoint-crossing, pagenumber-2 graphs
which are a good fit to semantic dependency
graphs, and utilizes an efficient dynamic pro-
gramming algorithm for decoding. For dis-
ambiguation, the parser associates words with
BiLSTM vectors and utilizes these vectors to
assign scores to candidate dependencies. We
conduct experiments on the data sets from Se-
mEval 2015 as well as Chinese CCGBank.
Our parser achieves very competitive results
for both English and Chinese. To improve the
parsing performance on cross-domain texts,
we propose a data-oriented method to ex-
plore the linguistic generality encoded in En-
glish Resource Grammar, which is a precision-
oriented, hand-crafted HPSG grammar, in an
implicit way. Experiments demonstrate the ef-
fectiveness of our data-oriented method across
a wide range of conditions.

1 Introduction

Semantic Dependency Parsing (SDP) is defined
as the task of recovering sentence-internal bilex-
ical semantic dependency structures, which en-
code predicate–argument relationships for all con-
tent words. Such sentence-level semantic analy-
sis of text is concerned with the characterization
of events and is therefore important to understand
the essential meaning of a natural language sen-
tence. With the advent of many supporting re-
sources, SDP has become a well-defined task with
a substantial body of work and comparative eval-
uation. (Almeida and Martins, 2015; Du et al.,
2015a; Zhang et al., 2016; Peng et al., 2017; Wang
et al., 2018). Two SDP shared tasks have been run
as part of the 2014 and 2015 International Work-
shops on Semantic Evaluation (SemEval) (Oepen
et al., 2014, 2015).

There are two key dimensions of the data-driven
dependency parsing approach: decoding and dis-
ambiguation. Existing decoding approaches to
syntactic or semantic analysis into bilexical de-
pendencies can be categorized into two domi-
nant types: transition-based (Zhang et al., 2016;
Wang et al., 2018) and graph-based, i.e., Max-
imum Subgraph (Kuhlmann and Jonsson, 2015;
Cao et al., 2017a) approaches. For disambigua-
tion, while early work on dependency parsing fo-
cused on global linear models, e.g., structured per-
ceptron (Collins, 2002), recent work shows that
deep learning techniques, e.g., LSTM (Hochre-
iter and Schmidhuber, 1997), is able to signif-
icantly advance the state-of-the-art of the pars-
ing accuracy. From the above two perspectives,
i.e., the decoding and disambiguation frameworks,
we find that what is still underexploited is neu-
ral Maximum Subgraph parsing for highly con-
strained graph classes, e.g., noncrossing graphs.
In this paper, we fill this gap in the literature by
developing a neural Maximum Subgraph parser.

Previous work showed that the 1-endpoint-
crossing, pagenumber-2 (1EC/P2) graphs are an
appropriate graph class for modeling semantic de-
pendency structures (Cao et al., 2017a). In this pa-
per, we build a parser that targets 1EC/P2 graphs.
Based on an efficient first-order Maximum Sub-
graph decoder, we implement a data-driven parser
that scores arcs based on stacked bidirectional-
LSTM (BiLSTM) together with a multi-layer per-
ceptron. Using the benchmark data sets from the
SemEval 2015 Task 18 (Oepen et al., 2015), our
parser gives very competitive results for English
semantic parsing. To test the ability for cross-
lingual parsing, we also conduct experiments on
the Chinese CCGBank (Tse and Curran, 2010) and
Enju HPSGBank (Yu et al., 2010) data. Our parser
plays equally well for Chinese, resulting in an er-
ror reduction of 23.5% and 9.4% over the best
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published result reported in Zhang et al. (2016)
and Du et al. (2015b).

Most studies on semantic parsing focused on
the in-domain setting, meaning that both train-
ing and testing data are drawn from the same do-
main. Even a data-driven parsing system achieves
a high in-domain accuracy, it usually performs
rather poorly on the out-of-domain data (Oepen
et al., 2015). How to build robust semantic de-
pendency parsers that can learn across domains re-
mains an under-addressed problem. To improve
the cross-domain parsing performance, we pro-
pose a data-oriented model to explore the linguis-
tic generality encoded in a hand-crafted, domain-
independent, linguistically-precise English gram-
mar, namely English Resource Grammar (ERG;
Flickinger, 2000). In particular, we introduce
a cost-sensitive training model to learn cross-
domain semantic information implicitly encoded
in WikiWoods (Flickinger et al., 2010), i.e., a
corpus that collects the wikipedia1 texts as well
as their automatic syntactico-semantic annotations
produced by ERG. Evaluation demonstrates the
usefulness of the imperfect annotations automat-
ically created by ERG.

Our parser is available at https://github.
com/draplater/msg-parser.

2 Semantic Dependency Parsing

2.1 Semantic Dependency Analysis
SDP is the task of mapping a natural language sen-
tence into a formal meaning representation in the
form of a dependency graph. Figure 1 shows an
Minimal Recursion Semantics (MRS; Copestake
et al., 2005) reduced semantic dependency anal-
ysis (Ivanova et al., 2012). In this example, the
semantic analysis is represented as a labeled di-
rected graph in which the vertices are tokens in
the sentence. The graph abstracts away from syn-
tactic analysis (e.g., the complementizer—that—
and passive construction are excluded) and in-
cludes most semantically relevant non-anaphoric
local (e.g., from “wants” to “Mark”) and long-
distance (e.g., from “buy” to “company”) depen-
dencies. The arc labels encode linguistically-
motivated, broadly-applicable semantic relations
that are grounded under the type-driven semantics.
It is worth noting that semantic dependency graphs
are not necessarily trees: (1) a token may be mul-
tiply headed because a word can be the arguments

1https://www.wikipedia.org

The company that Mark wants to buy is broken
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Figure 1: A fragment of a semantic dependency graph.

of more than one predicate; (2) cycles are allowed
if the direction of arcs are not taken into account.

2.2 Previous Work

Some recent work on parsing targets the graph-
structured semantic representations that are more
general than the tree representation. Existing ap-
proaches can be categorized into two dominant
types: the transition-based (Zhang et al., 2016;
Wang et al., 2018) and graph-based, i.e., Max-
imum Subgraph (Kuhlmann and Jonsson, 2015;
Cao et al., 2017a), approaches. Previous investiga-
tions on transition-based string-to-semantic-graph
parsing adopt many ideas from syntactic string-to-
tree parsing, such as how to handle crossing arcs
and how to perform neural disambiguation. Zhang
et al. (2016) introduced two transition systems that
can generate arbitrary graphs and augmented them
into practical semantic dependency parsers with a
structured perceptron model. Wang et al. (2018)
evaluated the effectiveness of deep learning tech-
niques for transition-based SDP.

Kuhlmann and Jonsson (2015) proposed to for-
mulate SDP as the search for the maximum sub-
graphs for some particular graph classes. This
proposal is called Maximum Subgraph parsing,
which is a generalization of the graph-based pars-
ing framework for syntactic parsing. For arbitrary
graphs, Du et al. (2015a) proved that the second-
order Maximum Subgraph problem is an NP-
hard problem. Nevertheless, Almeida and Mar-
tins (2015) and Du et al. (2015a) showed that dual
decomposition is a practical technique to solve
the problem. Considering more restricted graph
classes, Kuhlmann and Jonsson (2015) introduced
a dynamic programming algorithem for parsing to
noncrossing graphs. Cao et al. (2017a; 2017b)
showed that 1EC/P2 graphs are more suitable for
describing semantic graphs than the noncrossing
graphs, and they also allow low-degree dynamic
programming algorithms for decoding.

https://github.com/draplater/msg-parser
https://github.com/draplater/msg-parser
https://www.wikipedia.org
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3 A Neural Maximum Subgraph Parser

3.1 Maximum Subgraph Parsing

Usually, syntactic dependency analysis employs
the tree-shaped representation. Dependency pars-
ing, thus, can be formulated as the search for
a maximum spanning tree (MST) from an arc-
weighted (complete) graph. For SDP where
the target representation are no longer trees,
Kuhlmann and Jonsson (2015) proposed to gener-
alize the MST model to other types of subgraphs.
In general, dependency parsing is formulated as
the search for Maximum Subgraph regarding to
a particular graph class, viz. G: Given a graph
G = (V,A), find a subset A′ ⊆ A with maxi-
mum total weight such that the induced subgraph
G′ = (V,A′) belongs to G. Formally, we have the
following optimization problem:

G′(s) = arg max
H∈G(s,G)

SCORE(H)

= arg max
H∈G(s,G)

∑
p in H

SCOREPART(s, p)

(1)

Here, G(s,G) is the set of all graphs that belong
to G and are compatible with s and G. For parsing,
G is usually a complete graph. SCOREPART(s, p)
evaluates whether a small subgraph p of a candi-
date graph H is a good partial analysis for sen-
tence s.

For some graph classes and some types of
score functions, there exists efficient algorithms
for solving (1). For example, when G is the set of
noncrossing graphs and SCOREPART is limited to
handle individual dependencies, (1) can be solved
in cubic-time (Kuhlmann and Jonsson, 2015).

3.2 Parsing to 1EC/P2 Graphs

Previous work showed that the Maximum Sub-
graph framework is not only elegant in theory
but also effective in practice (Kuhlmann and Jon-
sson, 2015; Cao et al., 2017a,b). In particular,
1EC/P2 graphs are an appropriate graph class for
modeling semantic dependency structures (Cao
et al., 2017a). Figure 2 presents an example to
illustrate the 1-endpoint-crossing property, while
Figure 3 shows a case for pagenumber-2. Below
we present the formal description of the two prop-
erties that are adopted from Pitler et al. (2013) and
Kuhlmann and Jonsson (2015) respectively.

a b c d e

Figure 2: (a, c)’s crossing edges (b, d) and (b, e) share an
endpoint b.

a b c d e f

Page 1

Page 2

Figure 3: A pagenumber-2 graph. The upper and the lower
figures represent two half-planes respectively.

Definition 1 A dependency graph is 1-Endpoint-
Crossing if for any edge e, all edges that cross e
share an endpoint p named pencil point.

Definition 2 A pagenumber-k graph means it
consists at most k half-planes, and arcs on each
half-plane are noncrossing.

If G is the set of 1-endpoint-crossing graphs
or more restricted 1EC/P2 graphs, the optimiza-
tion problem (1) in the first-order case can be
solved in quintic-time (Cao et al., 2017a) by us-
ing dynamic programming. Furthermore, ignoring
one linguistically-rare structure in 1EC/P2 graphs
descreases the complexity to O(n4) (Cao et al.,
2017a). In this paper, we implement Cao et al.
Cao et al. (2017a)’s algorithm as the basis of our
parser.

3.3 Disambiguation with an LSTM

3.3.1 The Architecture
A semantic graph mainly consists of two parts: the
structural part and the label part. The former de-
scribes the predicate–argument relation in the sen-
tence, and the latter describes the type of this rela-
tion. In our model, the structural part and the la-
bel part are regarded as independent of each other.
We use a coarse-to-fine strategy: finding the max-
imum unlabeled subgraph first and assigning a la-
bel for every edge in this subgraph then. The mo-
tivation is to avoid the calculation of a number of
unnecessary label scores in order to improve the
processing efficiency.

Following Kiperwasser and Goldberg (2016)’s
successful experience on syntactic tree parsing and
Peng et al. (2017)’s experience on semantic graph
parsing, we employ a stacked bidirectional-LSTM
(BiLSTM) based model to assign scores. In our
system, the BiLSTM vectors associated with the
input words are utilized to calculate scores for the
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...LSTM LSTM LSTM

He       PRP wants  VBZ go     VB

...

Figure 4: The architecture of the network when processing
He wants to go. The upper-left nonlinear transform is used
for edge scoring while the upper right one is used for label
scoring.

candidate dependencies as well as their relation
types. Figure 4 shows the architecture of our sys-
tem.

3.3.2 Dense Representations
We use words as well as POS tags as clues
for scoring an individual arc. In particular, we
transform all of them into continuous and dense
vectors. Inspired by Costa-jussà and Fonollosa
(2016)’s work, we utilize character-based em-
bedding for low-frequency words, i.e., words
that appear more than k times in the train-
ing data, and word-based embeddings for other
words. The word-based embedding module ap-
plies the common lookup-table mechanism, while
the character-based word embedding wi is im-
plemented by extracting the features (denoted as
c1, c2, . . . , cn) within a character-based BiLSTM:

x1 : xn = BiLSTM(c1 : cn)

wi = x1 + xn

3.3.3 Lexical Feature Extractor
The concatenation of word embedding wi and
POS-tag embedding pi of each word in specific
sentence is used as the input of BiLSTMs to ex-
tract context-related feature vectors ri for each po-
sition i.

ai = wi ⊕ pi

r1 : rn = BiLSTM(a1 : an)

3.3.4 Factorized Scoring
In our first order model, the SCORE function eval-
uates the preference of a semantic dependency
graph by considering every bilexical relation in
this graph one by one. In particular, the corre-
sponding SCOREPART function assigns a score to
a candidate arc between word i and word j using a
non-linear transform from the two feature vectors,
viz. ri and rj , associated to the two words:

SCOREPART(i, j) =
W2 · ReLU(W1,1 · ri + W1,2 · rj + b)

The assignment task for dependency labels can
be regarded as a classification task. Our label scor-
ing process is similar to the prediction of depen-
dencies:

LABEL(i, j) = arg max
W2 · ReLU(W1,1 · ri + W1,2 · rj + b) + b2

We can see here the two local score functions
explicitly utilize the positions of a semantic head
and a semantic dependent. It is similar to the first-
order factorization as defined in a number of linear
parsing models, e.g., the models defined by Mar-
tins and Almeida (2014) and Cao et al. (2017a).

3.3.5 Training
In order to update graphs which achieve high
model scores but are actually wrong, we use a
margin-based approach to compute loss from the
gold graph G∗ and the best prediction Ĝ under cur-
rent model. We define the loss term as:

max(0,∆(G∗, Ĝ)− SCORE(G∗) + SCORE(Ĝ))

The margin objective ∆ measures the similar-
ity between the gold graph G∗ and the prediction
Ĝ. Follow Peng et al. (2017)’s approach, we de-
fine ∆ as weighted Hamming to trade off between
precision and recall.

4 Cross-Domain Parsing with a Precision
Grammar and a Data-Oriented Model

4.1 Precision Grammar-Guided Parsing
Semantic dependency graphs like Minimal Recur-
sion Semantics (MRS) reduced analysis (dubbed
DM) and Head-driven Phrase Structure Gram-
mar (HPSG) grounded predicate–argument anal-
ysis (dubbed PAS) are derived from the linguis-
tic analysis licensed by a deep linguistic grammar.
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They are parallel with the deep syntactic analysis,
and the semantic construction process of them is
strictly compositional. Another type of domain-
independent, sentence-level semantic annotations
are based on annotators’ reflection of the mean-
ings of particular natural language sentences. No
syntactic constraints on linguistic signals are intro-
duced explicitly introduced. A representative ex-
ample is Abstract Meaning Representation (AMR;
Banarescu et al., 2013).

Different from data-driven syntactic parsing, se-
mantic parsing for the first type of annotation can
leverage a precision grammar-guided model. Such
a model applies a rich set of precise linguistic
rules to constrain their search for a preferable syn-
tactic or semantic analysis. In recent years, sev-
eral of these linguistically motivated parsing sys-
tems achieved high performances that are compa-
rable or even superior to the treebank-based purely
data-driven parsers. For example, using ERG
(Flickinger, 2000), which provides precise linguis-
tic analyses for a broad range of phenomena, as
the the core engine, PET2 (Callmeier, 2000) and
ACE3 produce better results than all existing data-
driven semantic parsers for sentences that can be
parsed by ERG.

The main weakness of the precision grammar-
guided parsers is their robustness with respect to
both coverage and efficiency. Even for treebank-
ing on the newswire data, i.e., the Wall Street Jour-
nal data from Penn TreeBank, ERG lacks analy-
ses for c.a. 11% sentences (Oepen et al., 2015).
For the texts from the web, e.g., tweets, this prob-
lem is much more serious. Moreover, checking
all linguistic constraints makes a grammar-guided
parser too slow for many realistic NLP applica-
tions. On the contrary, light-weight, data-driven
parsers usually have complementary strengthes in
terms of both coverage and efficiency.

4.2 The Parser-Oriented Model

Intuitively, a hand-crafted precision grammar, e.g.,
ERG, reflects highly generalized properties of a
particular language and is thus highly resilient
to domain shifts. Accordingly, one should ex-
pect that a precision grammar-guided parser which
guarantees the a rich set of domain-independent
linguistic constraints to be met can be more robust
to domain shifts than a purely data-driven parser.

2http://pet.opendfki.de/
3http://sweaglesw.org/linguistics/ace/

In related work for syntactic parsing, Ivanova et al.
(2013) showed that the ERG-based parser was
more robust to domain variation than several rep-
resentative data-driven parsers.

Zhang and Wang (2009) proposed to derive fea-
tures from syntactic parses generated by PET to
assist a data-driven dependency tree parser and ob-
served some encouraging results for cross-domain
evaluation. However, there are at least two draw-
backs of their ERG-guided parser based method:

1. A considerable number of sentences cannot
benefit from ERG since PET may produce no
analysis.

2. This method fails to take parsing efficiency
into account.

4.3 Our Data-Oriented Model

In this paper, we introduce a new data-oriented
strategy to consume a precision grammar. The key
idea is to take a grammar as an imperfect anno-
tator: We let a precision grammar-guided parser
parse large-scale raw texts in an offline way, and
then utilize the automatically generated analysis
as imperfect training data. Because we only need
raw texts to be parsed once, even if this process
takes much time, it is still reasonable. A grammar-
guided parser cannot parse a considerable portion
of data, but this will not cause serious problems
because we can take an enormous amount of sen-
tences as annotation candidates. Just considering
the wikipedia, we can collect at least dozens of
millions of comparatively high-quality sentences.

An essential problem of this method is that such
imperfect annotations bring in annotation errors
which may hurt parser training. To deal with
this problem, we adopted a cost-sensitive training
method to train our model on the extended training
data. In each epoch, we trained on imperfect cor-
pus first and then on gold-standard corpus. When
processing an imperfect sentence, we do not take
a loss into consideration if the loss of this sentence
is too small. In particular, if a loss of a bilexical
relation between two tokens is less than 0.05, we
would exclude the loss. As for label assigning, we
exclude losses less than 0.5. These threshold num-
bers are tuned on the development data.

http://pet.opendfki.de/
http://sweaglesw.org/linguistics/ace/
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System DM PAS PSD
LP LR LF LP LR LF LP LR LF

IN
-D

O
M

A
IN

Du et al. ensemble 90.93 87.32 89.09 92.90 89.67 91.26 78.60 72.93 75.66
Almeida and Martins single 89.84 86.64 88.21 91.87 89.92 90.88 78.62 74.23 76.36
Peng et al. single - - - - 89.4 - - - - 92.2 - - - - 77.6
Peng et al. multitask - - - - 90.4 - - - - 92.7 - - - - 78.5
Wang et al. single - - - - 89.3 - - - - 91.4 - - - - 76.1
Wang et al. ensemble - - - - 90.3 - - - - 91.7 - - - - 78.6
Ours single 90.74 90.40 90.57 92.26 92.43 92.35 76.42 76.33 76.38
Ours (E[3]) ensemble 92.17 91.35 91.76 93.50 92.98 93.24 78.83 77.07 77.95
Ours ([E10]) ensemble 92.81 91.65 92.23 93.91 93.22 93.56 79.33 78.00 78.66

O
U

T-
O

F
-D

O
M

A
IN

Du et al. ensemble 84.29 79.53 81.84 89.47 85.10 87.23 77.36 69.61 73.28
Almeida and Martins single 84.81 78.90 81.75 88.52 85.30 86.88 78.68 71.31 74.82
Peng et al. single - - - - 84.5 - - - - 88.3 - - - - 75.3
Peng et al. multitask - - - - 85.3 - - - - 89.0 - - - - 76.4
Wang et al. single - - - - 83.2 - - - - 87.2 - - - - 73.2
Wang et al. ensemble - - - - 84.9 - - - - 87.6 - - - - 75.9
Ours single 85.70 85.02 85.37 89.11 88.85 88.98 73.54 73.19 73.36
Ours (E[3]) ensemble 87.65 86.24 86.94 90.72 89.31 90.01 76.10 73.83 74.95
Ours (E[10]) ensemble 88.13 86.37 87.24 91.19 89.50 90.34 76.75 74.48 75.60

Table 1: Labeled F1 on the test data from SemEval 2015.

Hyper-parameter Val
Randomly-initialized word embedding dimension 100
Pre-trained word embedding dimension 100
Randomly-initialized character embedding dimension 100
Character LSTM layers for each direction 2
Randomly-initialized POS-Tag embedding dimension 50
POS-Tag dropout 0.5
Batch size 32
BiLSTM dimension for each direction 150
BiLSTM layers 5
MLP hidden layers 1
MLP hidden layer dimension 100

Table 2: Hyper-parameter setting of our model.

5 Experiments

5.1 Set-up for the Baseline System

To evaluate neural Maximum Subgraph parsing in
practice, we first conduct experiments on the three
English data sets, namely DM, PAS and PSD4,
which are from the SemEval 2015 Task18 (Oepen
et al., 2015). We use the “standard” training, vali-
dation, and test splits to facilitate comparisons. In
other words, the data splitting policy follows the
shared task. In addition to English parsing, we
consider Chinese SDP and use two data sets: (1)
Chinese PAS data provided by SemEval 2015, and
(2) Chinese CCGBank (Tse and Curran, 2010) to
evaluate the cross-lingual ability of our model. All
the SemEval data sets are publicly available from

4 DM, PAS and PSD are short for DeepBank, Enju HPS-
GBank and Prague Dependency Treebank.

LDC (Oepen et al., 2016).
We use DyNet5 to implement our neural mod-

els. We use the automatic batch technique (Neubig
et al., 2017) in DyNet to perform mini-batch gradi-
ent descent training. The batch size is 32. The de-
tailed network hyper-parameters are summarized
in Table 2. We use the same pre-trained word em-
bedding as Kiperwasser and Goldberg (2016).

5.2 Main Results of English Parsing

Table 1 lists the parsing accuracy of our system
as well as the best published results in the liter-
ature for comparison. Results from other papers
are of different yet representative decoding or dis-
ambiguation frameworks. Du et al. (2015a)’s and
Almeida and Martins (2015)’s parsers use global
linear models to perform disambiguation. These
systems obtained the best parsing accuracy for the
SemEval 2015 shared task. Peng et al. (2017)’s
and Wang et al. (2018)’s parsers utilize neural
models, LSTMs in particular, to score either arcs
or transitions. Our single models get the high-
est scores on not only in-domain but also out-of-
domain test sets for the DM and PAS data sets,
and they obtain comparable results with the state-
of-art parser on the PSD data set. Comparing our
results to the results obtained by parsers based on
linear models, we can see the effectiveness of the
BiLSTM based disambiguation model. The preci-

5https://github.com/clab/dynet

https://github.com/clab/dynet
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Figure 5: Labeled F1 relative to different ensemble methods.
Results are obtained on the development data.

sion of the two linear model-based parsers is com-
parable or even superior to our neural parser, but
the recall is far behind.

5.3 Model Ensemble

Ensemble methods have been shown very help-
ful to boost the accuracy of neural network based
parsing. We evaluate two ensemble methods, vot-
ing and score averaging. In the voting method,
each model parses the sentence to graph respec-
tively. An edge will exist on the combined graph
only if more than half output graphs of these mod-
els contain this edge. The label of this edge will
be the most common label. In the score averag-
ing method, we use averaged score parts to get a
maximum graph and classify labels.

We choose 3/10 kind of different initial param-
eters to train models for ensemble. Figure 5 shows
the result of the two ensemble methods. The av-
eraging method has slightly better performance on
the 3 datasets. The performance of this method on
test data is shown on Table 1.

5.4 Data for Cross-Domain Experiments

Since around 2001, the ERG has been accom-
panied by syntactico-semantic annotations, where
for each sentence an annotator has selected the
intended analysis among all alternatives licensed
by the grammar. This derived resource, namly
Redwoods6 (Oepen et al., 2002; Flickinger et al.,
2017), is a collection of hand-annotated corpora
and consists of data sets from several distinct do-
mains. Redwoods also includes (re)treebanking
results of the first 22 sections of the venerable
Wall Street Journal (WSJ) text and the section
of Brown Corpus in the Penn Treebank (Marcus
et al., 1993). The WSJ part is also known as Deep-

6http://moin.delph-in.net/RedwoodsTop

Bank (Flickinger et al., 2012). The Brown corpus
part is used as the out-of-domain test data by Se-
mEval 2015. The DM data sets for both SemEval
2014 and 2015 SDP shared tasks are based on the
RedWoods corpus.

Besides gold standard annoations, Flickinger
et al. (2010) built the WikiWoods corpus7, which
provides automatically created annotations for the
texts from wikipedia. The annotations are disam-
biguated using the MaxEnt model trained using
redwoods without DeepBank. We use a small por-
tion of Wikiwoods, which contains 857,329 sen-
tences in total.

To evaluate the (positive) impact of ERG on
out-of-domain parsing, we conduct experiments
on the DM data. The first group of experiments
are designed to be comparable with the results ob-
tained by various participant systems of SemEval
2015. The detailed data set-up is as follows:

• Test Data. We use the Brown corpus section
which is provided by SemEval 2015.

• Training Data. We use three data sets for
training: (1) DeepBank, (2) RedWoods and
(3) a small portion of WikiWoods reparsed
using the MaxEnt model trained on Deep-
Bank. We denote this reparsed WikiWoods
as WikiWoods-ACE, since the HPSG analy-
sis is provided by the ACE parser. To extract
the semantic dependency graph, we use the
pydelphin tool8.

For the second group of experiments, we use
the section wsj21 from the DeepBank as test data,
which is the official in-domain test of the SemEval
2015. The training data includes the “RedWoods
minus DeepBank” annotations (RedwoodsWOD
for short) as well as the official WikiWoods anno-
tations. Note that the MaxEnt model used to ob-
tain the official WikiWoods annotations are com-
patible with RedwoodswWOD. Due to the diver-
sity of the RedwoodsWOD and DeepBank sen-
tences, this set-up can also be viewed as an out-
of-domain evaluation.

5.5 Results of Cross-Domain Parsing

Table 3 summarizes experimental results for dif-
ferent cross-domain evaluation set-ups. For the

7http://moin.delph-in.net/WikiWoods
8https://github.com/delph-in/pydelphin

http://moin.delph-in.net/RedwoodsTop
http://moin.delph-in.net/WikiWoods
https://github.com/delph-in/pydelphin
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Training Data LP LR LF
IN-DOMAIN (SEMEVAL)

DeepBank S 90.74 90.40 90.57
Redwoods S 91.50 90.57 91.03
DeepBank+WikiWoods-ACE S 91.93 90.72 91.32
DeepBank+WikiWoods-ACE E[3] 92.73 91.48 92.11

OUT-OF-DOMAIN (SEMEVAL)
DeepBank S 85.70 85.02 85.37
Redwoods S 86.28 84.85 85.56
DeepBank+WikiWoods-ACE S 88.30 86.42 87.35
DeepBank+WikiWoods-ACE E[3] 89.53 87.57 88.54

OUT-OF-DOMAIN (REDWOODSWOD)
DeepBank S 90.74 90.40 90.57
RedwoodsWOD S 81.40 78.99 80.18
RedwoodsWOD+WikiWoods S 84.05 79.86 81.90
RedwoodsWOD+WikiWoods E[3] 84.84 81.02 82.88

Table 3: Labeled F1 on the DM test sets. “S” denotes single model, while “E[3]” denotes ensemble model with 3 sub-models.

first group of experiments, we test the parser us-
ing different training data sets. The baseline uti-
lizes the WSJ portion only. While more reliable
training data is added, the performances increase
consistently. We notice that the improvement ex-
tending the training data from DeepBank to Red-
woods is quite limited for the out-of-domain eval-
uation. One reason is that the amount of en-
larged gold standard annotations is still limited:
The DeepBank training data contains 35,656 sen-
tences (838,374 tokens, i.e., roughly words), while
the additional training data contains 35,950 sen-
tences (538,659 tokens). For comparison, we se-
lect 480,564 sentences (5,346,703 tokens) from
WikiWoods to train another model, and leave out
other parts of Redwoods. The performance im-
provement is more remarkable when providing
more data, even though such data contains annota-
tion errors. For the second group of experiments,
we use the RedwoodsWOD sentences for train-
ing and the DeepBank WSJ sentences for evalu-
ation. For this set-up, consistent improvements of
the parser quality are observed.

5.6 Results of Chinese Parsing

To test the ability for cross-lingual parsing,
we conduct experiments on HPSG and CCG
grounded semantic analyses respectively. The
HPSG grounded analysis is provided by SemEval
2015 and the underlying framework is the same to
the English PAS data. The CCG grounded analy-
sis is from Chinese CCGBank. We use the same

set-up as Zhang et al. (2016). Both data sets are
transformed from Chinese TreeBank with two rich
sets of heuristic rules (Yu et al., 2010; Tse and
Curran, 2010). Table 4 and 5 presents all results.
Our parser significantly outperforms Zhang et al.
(2016)’s Zhang et al. (2016) system on Chinese
CCGBank, which achieved best reported perfor-
mance.

Chinese POS tagging has a great impact on
parsing. In this paper, we consider two POS tag-
gers: a symbol-refined generative HMM tagger
(SR-HMM) (Huang et al., 2009) and a BiLSTM-
CRF model when assisting Chinese SDG. For
the neural tagging model, in addition to a BiL-
STM layer for encoding words, we set a BiLSTM
layer for encoding characters, which supports us
to derive character-level representations for all
words. In particular, vectors from the character-
level LSTM is concatenated with the pre-trained
word embedding before feeding into the other
word-level BiLSTM network to capture contextual
information. The final module of our CRF tagger
is a linear chain CRF which scores the output se-
quence by factoring it in local tag bi-grams. From
Table 5, we can see that POS information is very
important to Chinese SDP. This phenomenon is
consist with Chinese syntactic parsing, including
both constituency and dependency parsing. Man-
darin Chinese is recognized as a morphology-poor
language: POS tags are defined mainly according
to words’ distributional rather than morphological
properties. The LSTM-based tagger can leverage
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Model LP LR LF
Peking 84.75 82.15 83.43
Ours 85.49 84.11 84.79

Table 4: Labeled F1 on the test set of SemEval 2015 for
Chinese. “Peking” is the participant system that obtained the
best parsing accuracy for Chinese in SemEval 2015.

Model POS LP LR LF
ZDSW Gold 82.09 81.81 81.95
Ours Gold 86.37 86.00 86.19

SR-HMM 80.19 80.53 80.37
BiLSTM-CRF 81.13 81.74 81.43

Table 5: Labeled F1 on the test set of Chinese CCGBank.
“ZDSW” is the system that obtained the best parsing accu-
racy on the Chinese CCGBank data in the literature.

the power of the RNN architecture to learn non-
local dependencies and thus benefit our semantic
dependency parser a lot.

6 Conclusion

Parsing sentences to linguistically-rich semantic
representations is a key goal of Natural Language
Understanding. We introduce a new parser for
semantic dependency analysis, which combines
two promising parsing techniques, i.e., decoding
based on Maximum Subgraph algorithms and dis-
ambiguation based on BiLSTMs. To our knowl-
edge, this is the first neural Maximum Subgraph
parser. Our parser significantly improves state-of-
the-art accuracy on three out of total four data sets
from SemEval 2015 for English/Chinese parsing
and the CCGBank data for Chinese parsing. We
also propose a new data-oriented method to lever-
age ERG, a linguistically-motivated, hand-crafted
grammar, to improve cross-domain performance.
Experiments demonstrate the effectiveness of tak-
ing ERG as an imperfect annotator. We think this
method can be re-used for other types of data-
driven semantic parsing models.
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