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Abstract

This paper investigates learning methods for
multi-class classification using labeled data for
the target classification scheme and another la-
beled data for a similar but different classi-
fication scheme (support scheme). We show
that if we have prior knowledge about the re-
lation between support and target classification
schemes in the form of a class correspondence
table, we can use it to improve the model per-
formance further than the simple multi-task
learning approach. Instead of learning the in-
dividual classification layers for the support
and target schemes, the proposed method con-
verts the class label of each example on the
support scheme into a set of candidate class
labels on the target scheme via the class cor-
respondence table, and then uses the candi-
date labels to learn the classification layer for
the target scheme. We evaluate the proposed
method on two tasks in NLP. The experimental
results show that our method effectively learns
the target schemes especially for the classes
that have a tight connection to certain support
classes.

1 Introduction

Machine learning based methods have shown high
performance in many NLP tasks, which typically
are formulated as some kinds of classification
problems. Although there has been a remarkable
progress in methods utilizing unlabeled resources,
many tasks still require a large amount (at least
thousands, in some cases millions or billions) of
high quality labeled data to achieve high accuracy.

For many tasks, however, classification schemes
vary depending on fields of application or other
factors, and large and high quality labeled data
following a single scheme is insufficient. Named
entity recognition (NER) (Nadeau and Sekine,
2007) and text classification (TC) (Joachims,
1998) are typical examples that allow variable

classification schemes. For example, there are
two kinds of NE type definitions for Japanese
NER: IREX (Sekine and Isahara, 2000) with eight
entity types and Sekine’s extended NE (ENE)
hierarchy with 200 entity types (Sekine et al.,
2002). These two schemes are relevant but not
in complete correspondence, i.e., a class in ENE
is not necessarily a proper subclass of a class
in IREX and vice versa. For example, entities
with LOCATION type in IREX are (a subtype of)
LOCATION or FACILITY in ENE, while some
entities with FACILITY type in ENE can also be
ORGANIZATION in IREX. It is also the case that
a classification scheme for an existing model is
revised. In the case of news categolization, for
example, a new category such as world cup
would be added at a certain point of time; or the
articles about eSports would newly categorised the
existing sports category.

To obtain labeled data following the desired
scheme, it is often required to create them al-
most from scratch or modify existing annotation
because the existing data follow partly different
schemes. However, the annotation processes to
create such on-demand labeled data usually take
too much cost to obtain enough data.

This paper addresses the methods to utilize the
existing large amount of labeled data with a dif-
ferent classification scheme (support scheme) to
learn a good model for the target scheme with a
small amount of corresponding labeled data. One
possible solution is the multi-task learning ap-
proach (Caruana, 1997) in which the model for
each classification scheme is learned while shar-
ing the model parameters for the input representa-
tion. A drawback of typical multi-task approaches
is that they cannot exploit relation between two
schemes directly, even if we know it in advance.
The problem becomes critical when it is required
to preserve the classification performance on the
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classes that are tightly connected to those of the
support scheme. This corresponds to the follow-
ing practical situation. We have a model work-
ing on some systems, and are required to modify
it to adapt to a new classification scheme given
only a small amount of examples related to the
change of the scheme. It is also required that the
performance of the retrained model is almost un-
changed for the input examples that is not related
to the change of the scheme. In the simple multi-
task learning, the classification layer for the target
scheme is learned only from the small labeled data
for the target scheme. Such small data are often
insufficient to learn existing classes in spite of the
shared input representation.

In this paper, we propose a method to exploit the
relation between the two classification schemes
which is given in the form of a class correspon-
dence table described in Section 3. Instead of
learning the individual classification layers for the
support and target schemes, the proposed method
converts the class label of each example on the
support scheme into a set of candidate class labels
on the target scheme via the class correspondence
table, and then uses it to learn the classification
layer for the target scheme using the learning with
multiple labels framework (Jin and Ghahramani,
2002). The difference from the typical multi-
task learning methods is that the large amount of
labeled data on the support scheme are directly
used to learn the classification layer for the target
scheme. It enables the model to learn the target
scheme while preserving the performance on those
classes which are tightly connected to the support
scheme effectively. We conduct experiments for
two tasks in NLP to verify the effectiveness of our
proposed method.

The contribution of this paper is as follows.

• We propose a method to utilize the known re-
lation of the two classification schemes by us-
ing the relation as an explicit constraint.

• We evaluated the proposed method on two
task with public data and original but repro-
ducible classification schemes.

The proposed method has the following advan-
tages.

• We can utilize the prior knowledge on the re-
lation between the support and the target clas-
sification schemes to effectively constrain the
model.

• The method can learn the classes existing in
the support scheme, even when the target la-
beled data contain few or no examples on
these classes.

• It can also be used for such tasks in which the
output is structured and difficult to be sepa-
rated, e.g., NER.

• The proposed method can be applied to the
most of current neural network based models
which output a probability distribution and
take loss to update parameters with learning
method such as SGDs. There is no need to
violate the original network architecture.

2 Preliminaries

2.1 Problem Settings

The goal is to learn a classification scheme (tar-
get scheme) fT : X → YT for a certain input
space X (e.g., sentences) and a set of class la-
bels YT. We assume that the model to learn takes
an input x ∈ X and predicts a probability distri-
bution pT(y|x; θT) over YT, where θT represents
the model parameters to learn. We focus on the
situation that we have only a small amount of la-
beled dataDT = {(xi, yi)}NT

i=1. Instead, we have a
large amount of labeled data DS = {(xi, yi)}NS

i=1,
where xi is from the same input space X and the
same domain distribution but yi is from a different
set of class labels YS. We denote fS : X → YS
by the classification scheme (support scheme) fol-
lowed by DS. In addition, we have prior knowl-
edge about the relation between these two schemes
fS and fT. We introduce the relation formally in
Section 3.

In general, we can assume multiple support and
target schemes. But this paper describes the cases
of a single support scheme and a single target
scheme for simplicity. Note that the formulation
in the following can be extended to multi-support
and multi-target cases straightforwardly.

2.2 Multi-task Learning

We first review simple multi-task learning on two
tasks, which we use as a baseline as well as the
basis of the proposed method.

In multi-task learning, the probability ditribu-
tions on both YS and YT are learned simultane-
ously with sharing a part of their model parame-
ters. Let θR denote the shared part, θCT the part
specific to the target model , and θCS the parame-
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ters specific to the support model. Then the prob-
ability distributions on the support and the target
schemes can be written as pS(y|x; θR, θCS) and
pT(y|x; θR, θCT), respectively.

For training, the following loss function is min-
imized:

LMT = LT + λLS, (1)

where

LT = − 1

NT

∑
(x,y)∈DT

log pT(y|x; θR, θCT), (2)

LS = − 1

NS

∑
(x,y)∈DS

log pS(y|x; θR, θCS), (3)

and λ is a real-valued hyperparameter for specify-
ing the weight of the support loss.

2.3 Learning with Multiple Labels

In learning with multiple labels (LwML) frame-
work, each training example (x, Y ) consists of an
input x and a set of candidate labels Y instead of
a single true label. It is assumed that the only one
label in Y is correct for x, and the objective is to
learn a classifier that maps inputs to the correct la-
bels. To deal with the problem, the loss fucntion
consists of the likelihood for the predicted distri-
bution to be high within the candidate label set:

lML(x, Y, p) = log
∑
y∈Y

p(y|x). (4)

3 Proposed Methods

In this section, we introduce relations between
schemes in the form of class correspondence ta-
ble, and how it is used for training a classifier for
the target scheme.

3.1 Class Correspondence Table

We suppose that the two schemes introduced in
Section 2.1 have a strong relation in that for an
input x, the candidates for its class on the target
scheme can be limited by its class on the support
scheme. Here we give examples for two scheme
sets introduced in Section 1. For Japanese NE
type definitions, an entity with LOCATION type in
IREX definition can be (a subtype of) LOCATION
or FACILITY in ENE, but it cannot be other
type such as PERSON, DISEASE or COLOR. For

news categolization, sports category in the tar-
get scheme comes only from sports and the cat-
egories which include articles about eSports in the
support scheme.

Formally, we consider the following class cor-
respondence table. The class correspondence ta-
ble T is a map from a class in YS to a set of classes
in YT. It functions as a constraint on the target
scheme fT. Namely, the class yT = fT(x) must
be a member of T (yS), where yS = fS(x).

There are some possible ways to construct a
class correspondence table. One is to define it by
hands. For example, if the ontology related to the
classification scheme is known, it is straightfor-
ward to define the class correspondence table ac-
cording to the ontology. Another way is to define
it from data. First, we apply the model learned for
the support scheme to the examples in the labeled
data for the target scheme. Then, we obtain pairs
of labels on the support and the target schemes.
The class correspondence table can be defined by
allowing the pair that appears in the dataset at a
certain frequency. While the method can automat-
ically define the relation, there is a risk to drop
the possible relation that is not found in the given
dataset, or because of the insufficient model accu-
racy. We propose a model to alleviate the problem
in Section 3.3.

3.2 Multi-Task Learning with Multiple
Candidate Labels

For training, the following loss function is mini-
mized:

LCS = LT + λLSCS, (5)

where

LSCS = − 1

NS
·∑

(x,y)∈DS

lML(x, T (y), pT(y|x; θR, θCT)),

(6)

with a real-valued hyperparameter λ. The first
term corresponds to the loss from the target
dataset, and the second for the support dataset in
the form of LwML with candidate classes given
by the class correspondence table. Compared with
the simple multi-task learning, our method trains
only θT (i.e. θR and θCT) and does not require
the parameters specific to support scheme. We call
this model as Class Shift constraint (CS) model.
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To get an intuition, let us see the special cases.
If the support scheme is equal to the target scheme
and the class correspondence is identity, then the
loss (5) behaves just like a single-task learning
with labeled data consisting of the support and the
target data. If the class correspondence table al-
lows all class shift for all classes in the support
scheme, then LSCS is always zero and so the sup-
port dataset has completely no effect on training.

3.3 Combination with Simple Multi-Task
Learning

While CS model can exploit the prior knowl-
edge about class correspondence, it has a potential
problem that the class correspondence table can
work inadequately. For example, if we construct
the class correspondence table from some data au-
tomatically, there can be some overlooked relation
because they just do not exist in the given data.

To overcome this problem, we propose an ex-
tention of the CS model which relaxes the class
shift constraint by combining it with the loss from
the simple multi-task learning:

LMTCS = LT + λ {µLSCS + (1− µ)LS} , (7)

with an additional hyperparameter µ ∈ [0, 1]. We
call this model as Multi-Task with Class Shift
constraint (MTCS) model.

3.4 Training
For the following experiments with neural-based
models, we adopt training by stochastic gradient
descent (SGD) with mini-batches. For each it-
eration, we sample b examples from each of the
support and the target labeled data, where b is the
mini-batch size. Then the loss is calculated by (5)
or (7) for the batch.

We suppose that the model is trained with
a large amount of labeled data on the support
scheme. When such labeled data is unavailable,
however, it is possible to obtain pseudo-labeled
data by applying the model for the support scheme
to unlabeled data, and use them to train the model
for the target scheme.

4 Experiments

We evaluated the proposed method on two tasks:
named entity recognition (NER) and text classifi-
cation (TC).

To examine the effectiveness of the proposed
method, we adopted datasets that are not only

large but also accompanied with well-organized
ontology. We defined the target schemes follow-
ing the exsiting shared tasks, while we defined dif-
ferent support schemes according to their ontol-
ogy so that the labels correspond to the different
level or granularity in the same ontology. By do-
ing so, we can compare the proposed method with
an ideal settings where all data is labeled accord-
ing to the target scheme, which can be seen as an
upper bound.

4.1 Named Entity Recognition (NER) task

We conducted NER task on GENIA corpus. GE-
NIA corpus (Kim et al., 2003) was developed as
a resource for text mining in biomedical litera-
ture. It contains annotated text for 2,000 Medline
abstracts, and the annotated information includes
term annotation for entities related to biological
components such as proteins, genes and cells.

As described in (Kim et al., 2003), the entities
are annotated according to hierarchical ontology,
and have 36 types. BioNLP / JNLPBA shared task
(Kim et al., 2004) is organized by GENIA project
as well. The task is to extract named entities of 5
types, which is defined by integrating the above 36
types following the ontology.

We used the JNLPBA definition as the target
scheme, and made another definition for the sup-
port scheme. We show the class correspondence
in Table 1. Note that the O (no tag) class in the tar-
get scheme corresponds to Nucleic acid and
O classes in the support scheme. It means that
the shift from the support scheme to the target
scheme involves both class subdivision and inte-
gration. We also note that we follow BIOES (Col-
lobert et al., 2011) representation to convert the
NE tags into the word-level class labels. It means
that each NE class (say XXX) except O corresponds
to 4 word-level classes (S-XXX, B-XXX, I-XXX,
and E-XXX). We construct the class correspon-
dence table by associating the labels with same
prefix for each corresponding label pair. For in-
stance, if a class XXX in the support scheme cor-
responds to the label YYY in the target scheme,
the word-level class label S-XXX corresponds to
S-YYY, and so on. This setting is based on a
strong assumption that the modification of the tag-
ging scheme does not change the range of named
entity mentions. As it is not always true, the re-
laxed formulation (7) is expected to work better.

We created the NER input for the support
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Support scheme Target scheme Original GENIA ontology
Nucleic acid DNA DNA (5 types)

RNA RNA (5 types)
O (no tag) polynucleotide, nucleotide

Protein Protein protein (7 types)
O (no tag) Cell type cell type

Cell line cell line
O (no tag) others (15 types) + no tag

Table 1: Class correspondence table for NER task.

Support
Sentences 14838
Types Nucleic acid 6954

Protein 26777
Target Train Dev Test
Sentences 2966 742 3856
Types DNA 1868 412 1056

RNA 206 50 118
Protein 3634 1257 5067
Cell type 887 241 1921
Cell line 635 176 500

Table 2: Data statistics of NER task.

scheme from the original GENIA corpus. For to-
kenization we used NLTK (Bird et al., 2009), and
then broke tokens at the start and the end of the en-
tity mentions. Since the task does not allow over-
lap of entity mentions, we chose the shortest men-
tions and discarded longer ones when mentions are
nested in the original corpus. We used JNLPBA
dataset as the input for the target scheme. Table 2
shows the statistics of the dataset.

4.2 Text Classification (TC) task
For TC, we used DBpedia ontology classification
dataset created by (Zhang et al., 2015). Each sam-
ple in the dataset consists of the description text
and the class of a DBpedia (Lehmann et al., 2015)
entry. The entries are chosen from 14 ontology
classes. We use these classes as the target scheme,
and defined the support scheme by integrating the
categories into 5 classes. The class correspon-
dence is shown in Table 3. Table 4 shows the
statistics of the dataset.

4.3 Baseline Methods
We compare the following methods with the pro-
posed methods CS and MTCS described in Sec-
tion 3.

• Target Only trains a model with only labeled
data on the target scheme.

• Finetune method first trains a model with la-
beled data on the support scheme. Then, the
model for the target scheme is trained for an-
other set of labeled data with the shared part
θR of the parameters initilaized with the value
trained on the support data (Razavian et al.,
2014).

• MT is the multi-task learning method de-
scribed in Section 2.2.

• ALL Target represents training on an ideal
situation that all training examples are la-
beled according to the target scheme. The to-
tal number of training examples of each task
is the sum of the number of labeled data for
the support and the target schemes.

We also initialized model parameters for MT, CS
and MTCS with the Finetune method.

4.4 Models and Training Settings

For NER, we used the model similar to the one de-
scribed in (Ma and Hovy, 2016) with the same net-
work parameters, except that we used the sum of
word-level loss as in (Collobert and Weston, 2008)
instead of the structural loss12, mainly because of
the computation time. As a result, the model is
trained as a simple word-level label classification.

For TC, we used a simple softmax model which
is similar to fastText (Grave et al., 2017) model
with the same network parameters except we use
pretrained word embeddings; we use simple soft-
max instead of hierarchical softmax; and only bag-
of-words features are used to construct input rep-
resentation.

1It is reported that its performance is competitive to the
structural loss (Chiu and Nichols, 2016).

2The training of CRF with multiple label candidates can
be found in (Tsuboi et al., 2008).
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Support scheme Target scheme
Org Company, EducationalInstitution
Artist Artist
Non-artist Athlete, OfficeHolder
Work Album, Film, WrittenWork
Other MeanOfTransportation, Building, NaturalPlace,

Village, Animal, Plant

Table 3: Class correspondence table for TC task.

Support
Sentences 500000
Types Org 70688

Artist 35419
Non artist 70544
Work 106162
Other 212187

Target (14 classes) Train Dev Test
Sentences 5000 60000 70000
Sentences / class 357.1 4285.7 5000
(ave.)

Table 4: Data statistics of TC task. We show only the
average number of sentences per class for target since
the data is highly balanced.

Hyperparameter NER TC
dropout rate 0.5 0.5
batch size 10 10
initial learning rate 0.1 0.075
learning rate decay 0.1 0.05
gradient clipping 0.5 0.5
λ (MT) 1.0 1.25
λ (CS) 1.0 1.0
λ (MTCS) 1.5 1.25
µ (MTCS) 0.5 0.6

Table 5: Hyperparameter settings.

For both models, all parameters except the soft-
max layers on the top are shared. We implemented
these models using DyNet (Neubig et al., 2017) li-
brary.

The models are trained by SGD with mini-
batches as mentioned in Section 3.4, and some op-
timization techniques are used including dropout,
learning rate decay and gradient clipping follow-
ing (Ma and Hovy, 2016). The result of hyperpa-
rameter tuning on development data is described
in Table 5.

We used pretrained word embeddings from

Method NER (F1) TC (Acc.)
Target Only 66.02 93.29
Finetune 68.29 94.71
MT 68.73 94.91
CS 68.73 95.81
MTCS 69.12 95.67
All Target 72.23 96.81

Table 6: Results for NER and TC task.

PMC open access subset (commercial use ver-
sion)3 for NER and from Wikipedia dump
(2010/10/11)4 for TC.

4.5 Experimental Results
All of the following results are averaged over five
runs.

Table 6 shows the F1 scores for NER task and
accuracy scores for TC task. For NER, the perfor-
mance of CS is competitive to MT, but by com-
bining them (MTCS) we had the improved perfor-
mance. On the other hand, for TC task CS outper-
forms MT in a certain degree. The effect of their
combination of (MTCS) is limited on this task.

We also evaluated the effect of the class shift
constraint when the amount of labeled data for the
target scheme is quite small. Figure 1 and Figure 2
show how the scores improve as the size of the la-
beled data for the target scheme increases. We can
see that the advantage of CS and MTCS methods
are significant especially when the size of the la-
beled data for the target scheme is very small.

Next, we evaluated how the models preserve
the classification performance on the classes that
are tightly connected to some classes in the sup-
port scheme. We first trained a model on the
support scheme (support model) using the labeled
data for the support scheme. Next we transfer the
model for the target scheme with the labeled data

3https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
4https://dumps.wikimedia.org/backup-index.html
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Figure 1: F1 scores with different data size on target
scheme for NER task.

Figure 2: Accuracy scores with different data size on
target scheme for TC task.

for the target scheme using Finetune, MT, CS, or
MTCS. Then, test data are labeled by both the sup-
port model and the transferred model. By doing
so, we can compare the classification performance
of the support model and the transferred models
on the unchanged classes for these tasks, namely
Protein for NER and Artist for TC. We first
check the performance of the transferred models
on these classes with the small size of labeled data
for the target schemes. Figure 3 and Figure 4 show
the results. Compared to Finetune and MT, the
performance of CS and MTCS is high even when
the size of labeled data for the target scheme is
very small. It suggests that the proposed methods
effectively use the knowledge from support mod-
els for recognizing these classes. Table 7 shows
the number of examples that are correctly classi-
fied by the transferred models out of those cor-

Figure 3: F1 scores with different data size on the target
scheme for Protein class in NER task.

Figure 4: Accuracy scores with different data size on
the target scheme for Artist class in TC task.

rectly classified by the support model. For NER
task, the support model extracted 3193 out of 5067
Protein mentions correctly. For TC task, the
support model categorized 4534 out of 5000 text
with Artist labels correctly. We can see that the
proposed methods succeed to prevent performance
deterioration more effectively than Finetune and
MT.

5 Related Work

Improving model performance with knowledge
from other models or data sources is one of the
central research topics in machine learning.

Domain adaptation methods utilize training data
that have the same class definition but they come
from different domains (Daumé III, 2007; Dai
et al., 2007; Crammer and Mansour, 2012). These
methods focus on the change of input distribution,
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Method NER-Protein TC-Artist
Finetune 0.928 (2963) 0.966 (4380)
MT 0.933 (2979) 0.980 (4445)
CS 0.956 (3053) 0.991 (4495)
MTCS 0.955 (3051) 0.989 (4486)

Table 7: The proportion of performance preservation
from the support model on unchanged classes. The
numbers in the brackets represent the number of ex-
amples correctly classified by both the support and the
target models.

not the classicication scheme.
Multi-task learning approaches with nerual net-

works often achieve this by sharing input repre-
sentation among different tasks. The objectives
of jointly learned tasks are often different and the
mapping from the shared representation to the out-
put for each task is learned independently (Liu
et al., 2015; Hashimoto et al., 2017). Therefore,
the relation between classification schemes is not
directly considered.

Some studies focus on adding model capabili-
ties to handle new tasks without storing all train-
ing data for old tasks. The central issue is to avoid
catastrophic forgetting (Li and Hoiem, 2017), and
several approaches have been explored (Lopez-
Paz et al., 2017; Kirkpatrick et al., 2017; Triki
et al., 2017). As with standard multi-task learning,
many studies in this line assume different tasks
with task-specific output models. iCaRL (Rebuffi
et al., 2017) assumes a different problem named
class-incremental learning. A stream of new class
examples is observed and the model is required at
any time to perform as a multi-class classifier on
the classes observed so far. However, modifying
the classification scheme on observed samples is
not considered in this framework.

Knowledge distillation (Hinton et al., 2015) is
another topic of knowledge transfer, which can
be used to simplify a large complex classification
model such as ensemble model by letting a sim-
ple model imitate the output distributions of the
complex model instead of predicted labels. It is
also used for preventing catastrophic forgetting in
continual learning (Rebuffi et al., 2017; Shmelkov
et al., 2017).

Learning with Hierarchy and Exclusion (HEX)
graph (Deng et al., 2014) is a promising method
utilizing pre-defined relationship between class la-
bels. HEX graph can express exclusion and sub-

sumption relations between class labels. Despite
that it is originally used for a different kind of
problems (multi-class classification which allows
multiple labels for an input), it is possible to solve
our problem setting in this framework. In fact, we
can construct a HEX graph by assigning exclusive
edges to all class pairs within the same scheme
and to class pairs from different schemes which do
not correspond in the class correspondence table.
One of the main advantages of our method is the
computational cost. Inference with HEX graph is
sometimes computationally prohibitive depending
on the graph structure, while inference with our
model is not affected by the structure of the class
correspondence table. In addition, HEX graph ap-
proach requires parameters of both support and
target classes even at inference. Hence it is not
suitable if the classification scheme can change
many times.

Another related framework is semi-supervised
learning, which use both labeled and unlabeled
data. The approaches include use of classifiers
trained with automatically generated training data
from unlabeled data (Ando and Zhang, 2005), use
of automatically labeled data (Suzuki and Isozaki,
2008), language model (Peters et al., 2017, 2018)
trained from unlabeled data, and so on. In discrim-
inative models, knowledge from unlabled data is
often incorporated in the models as improved in-
put representation or additional features. Since our
method does not restrict input representation, such
semi-supervised methods can be easily combined.

6 Conclusion

We have proposed a training method for the set-
ting where we have only a small amount of labeled
data for the target scheme, but have access to a
large amount of labeled data for a related support
scheme with the class correspondence table. The
experimental results on a named entity recognition
task and a text classification task showed that our
proposed methods outperform finetune and simple
multi-task learning methods.

Although the experiment for NER task showed
that MTCS model has potential to work with a
possibly incomplete class correspondence table,
further experiments are necessary to verify its ef-
fectiveness on automatically generated class cor-
respondence tables. Future work also includes
applying our method to improve models learned
from a single corpus by combining other corpora
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with different schemes, experiments on multi-
support and multi-target settings, and extensions
to the case where input domain of labeled data for
support and target schemes are different.
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