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Abstract

Building systems that can communicate with
humans is a core problem in Artificial Intel-
ligence. This work proposes a novel neural
network architecture for response selection in
an end-to-end multi-turn conversational dia-
logue setting. The architecture applies context
level attention and incorporates additional ex-
ternal knowledge provided by descriptions of
domain-specific words. It uses a bi-directional
Gated Recurrent Unit (GRU) for encoding
context and responses and learns to attend over
the context words given the latent response
representation and vice versa. In addition, it
incorporates external domain specific informa-
tion using another GRU for encoding the do-
main keyword descriptions. This allows better
representation of domain-specific keywords in
responses and hence improves the overall per-
formance. Experimental results show that our
model outperforms all other state-of-the-art
methods for response selection in multi-turn
conversations.

1 Introduction

In a conversation scenario, a dialogue system can
be applied to the task of freely generating a new re-
sponse or to the task of selecting a response from
a set of candidate responses based on the previ-
ous utterances, i.e. the context of the dialogue.
The former is known as generative dialogue sys-
tem while the latter is called retrieval-based (or
response selection) dialogue system.

Both approaches can be realized using a modu-
lar architecture, where each module is responsible
for a certain task such as natural language under-
standing, dialogue state-tracking, natural language

Context
Utterance 1:
My networking card is not working on my
Ubuntu, can somebody help me?

Utterance 2:
What’s your kernel version? Run uname -r or
sudo dpkg -l |grep linux-headers |grep ii |awk
’{print $3}’ and paste the output here.

Utterance 3:
It’s 2.8.0-30-generic.

Utterance 4:
Your card is not supported in that kernel. You
need to upgrade, that’s like decade old kernel!

Utterance 5:
Ok how do I install the new kernel??

Response
Just do sudo apt-get upgrade, that’s it.

Table 1: Illustration of a multi-turn conversation with
domain specific words (UNIX commands) in italics.

generation, etc., or can be trained in an end-to-end
manner optimized on a single objective function.

Previous work, belonging to the latter category,
by Lowe et al. (2015a) applied neural networks
to multi-turn response selection in conversations
by encoding the utterances in the context as well
as the possible responses with a Long Short-term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997). Based on the context and response encod-
ings, the neural network then estimates the proba-
bility for each response to be the correct one given
the context. More recently, a lot of enhanced ar-
chitectures have been proposed that build on the
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general idea of encoding response and context first
and performing some embedding-based matching
after (Yan et al., 2016; Zhou et al., 2016; An et al.,
2018; Dong and Huang, 2018).

Although such approaches result in efficient
text-pair matching capabilities, they fail to attend
over logical consistencies for longer utterances in
the context, given the response. Moreover, in do-
main specific scenarios, a system’s ability to incor-
porate additional domain knowledge can be very
beneficial, e.g. for the example shown in Table 1.

In this paper, we propose a novel neural network
architecture for multi-turn response-selection that
extends the model proposed by Lowe et al.
(2015a). Our major contributions are: (1) a neu-
ral network paradigm that is able to attend over
important words in a context utterance given the
response encoding (and vice versa), (2) an ap-
proach to incorporate additional domain knowl-
edge into the neural network by encoding the de-
scription of domain specific words with a GRU
and using a bilinear operation to merge the re-
sulting domain specific representations with the
vanilla word embeddings, and (3) an empirical
evaluation on a publicly available multi-turn dia-
logue corpus showing that our system outperforms
all other state-of-the-art methods for response se-
lection in a multi-turn setting.

2 Related work

Recently, human-computer conversations have at-
tracted increasing attention in the research com-
munity and dialogue systems have become a field
of research on its own. The conversation mod-
els proposed in early studies (Walker et al., 2001;
Oliver and White, 2004; Stent et al., 2002) were
designed for catering to specific domains only,
e.g. for performing restaurant bookings, and re-
quired substantial rule-based strategy building and
human efforts in the building process. With the ad-
vancements in machine learning, there have been
more and more studies on conversational agents
which are based on data-driven approaches. Data-
driven dialogue systems can chiefly be realized
by two types of architectures: (1) pipeline ar-
chitectures, which follow a modular pattern for
modelling the dialogues, where each component
is trained/created separately to perform a specific
sub-task, and (2) end-to-end architectures, which
consist of a single trainable module for modelling
the conversations.

Task-oriented dialogue systems, which are de-
signed to assist users in achieving specific goals,
were mainly realized by pipeline architectures.
Recently however, there have been more and more
works on end-to-end dialogue systems because
of the limitations of the former modular archi-
tectures, namely, the credit assignment problem
and inter-component dependency, as for example
described by Zhao and Eskenazi (2016). Wen
et al. (2017) and Bordes et al. (2017) proposed
encoder-decoder-based neural networks for mod-
eling task oriented dialogues. Moreover, Zhao
and Eskenazi (2016) proposed an end-to-end rein-
forcement learning-based system for jointly learn-
ing to perform dialogue state-tracking (Williams
et al., 2013) and policy learning (Baird, 1995).

Since task oriented systems primarily focus on
completing a specific task, they usually do not al-
low free flowing, articulate conversations with the
user. Therefore, there has been considerable ef-
fort to develop non-goal driven dialogue systems,
which are able to converse with humans on an
open domain (Ritter et al., 2011). Such systems
can be modeled using either generative architec-
tures, which are able to freely generate responses
to user queries, or retrieval-based systems, which
pick a response suitable to a context utterance out
of a provided set of responses. Retrieval-based
systems are therefore more limited in their output
while having the advantage of producing more in-
formative, constrained, and grammatically correct
responses (Ji et al., 2014).

2.1 Generative models

Ritter et al. (2011) were the first to formu-
late the task of automatic response generation
as phrase-based statistical machine translation,
which they tackled with n-gram-based language
models. Later approaches (Shang et al., 2015;
Vinyals and Le, 2015; Luong et al., 2015) applied
Recurrent Neural Network (RNN)-based encoder-
decoder architectures. However, dialogue gener-
ation is considerably more difficult than language
translation because of the wide possibility of re-
sponses in interactions. Also, for dialogues, in
order to generate a suitable response at a certain
time-step, knowing only the previous utterance is
often not enough and the ability to leverage the
context from the sequence of previous utterances
is required. To overcome such challenges, a hier-
archical RNN encoder-decoder-based system has
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been proposed by Serban et al. (2016) for leverag-
ing contextual information in conversations.

2.2 Retrieval-based models

Earlier works on retrieval-based systems focused
on modeling short-text, single-turn dialogues. Hao
et al. (2013) introduced a data set for this task
and proposed a response selection system which
is based on information retrieval techniques like
the vector space model and semantic matching. Ji
et al. (2014) suggested to apply a deep neural net-
work for matching contexts and responses, while
Wu et al. (2016) proposed a topic aware convolu-
tional neural tensor network for answer retrieval in
short-text scenarios.

More recently, there has been a lot of focus on
developing retrieval-based models for multi-turn
dialogues which is more challenging as the mod-
els need to take into account long-term dependen-
cies in the context. Lowe et al. (2015a), intro-
duced the Ubuntu Dialogue Corpus (UDC), which
is the largest freely available multi-turn dialogue
data set. Moreover, the authors proposed to lever-
age RNNs, e.g. LSTMs, to encode both the con-
text and the response, before computing the score
of the pair based on the similarity of the encod-
ings (w.r.t. a certain measure). This class of meth-
ods is referred to as dual encoder architectures.
Shortly after, Kadlec et al. (2015) investigated the
performance of dual encoders with different kind
of encoder networks, such as convolutional neu-
ral networks (CNNs) and bi-directional LSTMs.
Yan et al. (2016) followed a different approach and
trained a single CNN to map a context-response
pair to the corresponding matching score.

Later on, various extensions of the dual en-
coder architecture have been proposed. Zhou et al.
(2016) employed two encoders in parallel, one
working on word- the other on utterance-level. Wu
et al. (2017) proposed the Sequential Matching
Network (SMN), where the candidate response is
matched with every utterance in the context sep-
arately, based on which a final score is computed.
The Cross Convolution Network (CNN) (An et al.,
2018) extends the dual encoder with a cross con-
volution operation. The latter is a dot product be-
tween the embeddings of the context and response
followed by a max-pooling operation. Both of
the outputs are concatenated and fed into a fully-
connected layer for similarity matching. More-
over, An et al. (2018) improve the representation

of rare words by learning different embeddings for
them from the data. Handling rare words has also
been studied by Dong and Huang (2018), who pro-
posed to handle Out-of-Vocabulary (OOV) words
by using both pre-trained word embeddings and
embeddings from task-specific data.

Furthermore, many models targeting response
selection along with other sentence pair scoring
tasks such as paraphrasing, semantic text scoring,
and recognizing textual entailment have been pro-
posed. Baudiš et al. (2016) investigated a stacked
RNN-CNN architecture and attention-based mod-
els for sentence-pair scoring. Match-SRNN (Wan
et al., 2016) employs a spatial RNN to cap-
ture local interactions between sentence pairs.
Match-LSTM (Wang and Jiang, 2016) improves
its matching performance by using LSTM-based,
attention-weighted sentence representations. QA-
LSTM (Tan et al., 2016) uses a simple attention
mechanism and combines the LSTM encoder with
a CNN.

Incorporating unstructured domain knowledge
into dialogue system has initially been studied by
Lowe et al. (2015b) and followed by Xu et al.
(2016), who incorporated a loosely-structured
knowledge base into a neural network using a spe-
cial gating mechanism. They created the knowl-
edge base from domain-specific data, however
their model is not able to leverage any external do-
main knowledge.

3 Background

In this section, we will explain the task at hand
and give a brief introduction to the neural network
architectures our proposed model is based on.

3.1 Problem definition

Let the data set D = {(ci, ri, yi)}Mi=1 be a set of
M triples consisting of context ci, response ri, and
ground truth label yi. Each context is a sequence
of utterances, that is ci = {uil}Ll=1, where L is
the maximum context length. We define an utter-
ance as a sequence of words {wt}Tt=1. Thus, ci can
also be viewed as a sequence of words by concate-
nating all utterances in ci. Each response ri is an
utterance and yi ∈ {0, 1} is the corresponding la-
bel of the given triple which takes a value of 1 if ri
is the correct response for ci and 0 otherwise. The
goal of retrieval-based dialogue systems is then to
learn a predictive distribution p(y|c, r,θ) param-
eterized by θ. That is, given a context c and re-
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sponse r, we would like to infer the probability of
r being a response to context c.

3.2 RNNs, BiRNNs and GRUs
Recurrent neural networks are one of the most
popular classes of models for processing se-
quences of words W = {wt}Tt=1 with arbitrary
length T ∈ N, e.g. utterances or sentences. Each
word wt is first mapped onto its vector represen-
tation wt (also referred to as word embedding),
which serves as input to the RNN at time step t.
The central element of RNNs is the recurrence re-
lation of its hidden units, described by

−→
h t = f(

−→
h t−1,wt|φ) , (1)

where φ are the parameters of the RNN and f is
some nonlinear function. Accordingly, the state−→
h t of the hidden units at time step t depends on
the state

−→
h t−1 in the previous time step and the

t-th word in the sequence. This way, the hidden
state

−→
h T obtained after T updates contains infor-

mation about the whole sequence W , and can thus
be regarded as an embedding of the sequence.

The RNN architecture can also be altered to take
into account dependencies coming from both the
past and the future by adding an additional sub-
RNN that moves backward in time, giving rise to
the name bi-directional RNN (biRNN). To achieve
this, the network architecture is extended by an ad-
ditional set of hidden units. The states

←−
ht of those

hidden units are updated based on the current in-
put word and the hidden state from the next time
step. That is for t = 1, . . . , T − 1:

←−
h T−t = f(

←−
h T−t+1,wT−t|φ) . (2)

Here, the words are processed in reverse order,
i.e. wT , . . . , w1, such that

←−
h T (analogous to

−→
h T

in the forward directed RNN) contains informa-
tion about the whole sequence. At the t-th time
step, the model’s hidden representation of the se-
quence is then usually obtained by the concatena-
tion of the hidden states from the forward and the
backward RNN, i.e. by ht = [

−→
h t,
←−
h t] and the

embedding of the whole sequence W is given by
hW = [

−→
h T ,
←−
h T ].

Modeling very long sequences with RNNs is
hard: Bengio et al. (1994) showed that RNNs suf-
fer from vanishing and exploding gradients, which
makes training over long-term dependency diffi-
cult. Such problems can be addressed by augment-
ing the RNN with additional gating mechanisms,

as it is done in LSTMs and the Gated Recurrent
Unit (GRU) (Cho et al., 2014). These mecha-
nisms allow the RNN to learn how much to update
the hidden state flexibly in each step and help the
RNN to deal with the vanishing gradient problem
in long sequences better than vanilla RNNs. The
gating mechanism of GRUs is motivated by that
of LSTMs, but is much simpler to compute and
implement. It contains two gates, namely the reset
and update gate, whose states at time t are denoted
by zt and rt, respectively. Formally, a GRU is de-
fined by the following update equations

zt = σ(Wzxt +Uzht−1) ,

rt = σ(Wrxt +Urht−1) ,

h̃t = tanh(Whxt +Uhri � ht−1) ,

ht = zt � h̃t + (1− zt)� ht−1 ,

where xt is the input (corresponding to wt in our
setting) and the set of weight matrices φ = {Wz ,
Uz ,Wr, Ur, Wh, Uh} constitute the learnable
model parameters.

3.3 Dual Encoder

Recurrent neural networks and their variants have
been used in many applications in the field of
natural language processing, including retrieval-
based dialogue systems. In this area the dual en-
coder (DE) (Lowe et al., 2015a) became a popular
model. It uses a single RNN encoder to transform
both context and response into low dimensional
vectors and computes their similarity. More for-
mally, let hc and hr be the encoded context and
response, respectively. The probability of r being
the correct response for c is then computed by the
DE as

p(y|c, r,θ) = σ((hc)T Mhr + b) , (3)

where θ = {φ,M, b} (recall, that φ is the set of
parameters of the encoder RNN that outputs hc

and hr ) is the set of parameters of the full model
and σ is the sigmoid function. Note, that the same
RNN is used to encode both context and response.

In summary, this approach can be described as
first creating latent representations of context and
response in the same vector space and then using
the similarity between these latent embeddings (as
induced by matrix M and bias b) for estimating the
probability of the the response being the correct
one for the given context.



501

4 Model description

Our model extends the DE described in Sec-
tion 3.3 by two attention mechanisms which make
the context encoding response-aware and vice
versa. Furthermore, we augment the model with a
mechanism for incorporating external knowledge
to improve the handling of rare words. Both ex-
tensions are described in detail in the following
subsections.

4.1 Attention augmented encoding

As described above, in the DE context and re-
sponse are encoded independently from each other
based on the same RNN. Instead of simply tak-
ing the final hidden state hc (and hr) of the RNN
as context (and response) encoding, we propose to
use a response-aware attention mechanism to cal-
culate the context embedding and vice versa.

Subsequently, we will describe this mechanism
formally. Recall that a context c can be seen as se-
quence of words {wc

t}Tt=1 where all utterances are
concatenated and T is the total number of words in
the context. Given this sequence, the RNN (in our
experiments a bi-directional GRU) produces a se-
quence of hidden states hc

1, . . . ,h
c
T and an encod-

ing of the whole context sequence hc as described
in Section 3.2. Analogously, we get hr

1, . . . ,h
r
T ′

and hr for a response consisting of a sequence of
words {wr

t }T
′

t=1, where T ′ is the total number of
words in the response.

For calculating the response-aware context en-
coding, we first estimate attention weights αc

t for
the hidden state hc

t in each time step, depending
on the response encoding hr:

αc
t ∝ exp((hc

t)
TWch

r) , (4)

where Wc is a learnable parameter matrix. The
response-aware context embedding then is given
by

ĥc =

T∑
t=1

αc
t h

c
t . (5)

Intuitively this means, that depending on the re-
sponse we focus on different parts of the context
sequence, for judging on how well the response
matches the context. This may resemble human
focus.

Similarly, we calculate the context-aware re-

· · · −→
h t−1

−→
h t

−→
h t+1 · · ·

· · ·←−
h t+1

←−
h t

←−
h t−1· · ·

ŵr
t−1 ŵr

t ŵr
t+1

⊕ wr
tBiGRU{wd

tk}Kk=1
1− βtβt

Figure 1: Our proposed way to incorporate domain
knowledge into the model. βt and 1−βt represent the
(multiplicative) weights for the description embedding
and the word embedding respectively. The resulting
combination, ŵr

t acts as an input of the encoder.

sponse encoding by

ĥr =
T∑
t=1

αr
t h

r
t , (6)

with attention weights

αr
t ∝ exp((hr

t )
TWrh

c) . (7)

The two attention-weighted encodings (for re-
sponse and context, respectively) then replace the
vanilla encodings in equation (3), that is

p(y|c, r,θ) = σ((ĥc)T Mĥr + b) . (8)

4.2 Incorporating domain keyword
descriptions

Bahdanau et al. (2018) proposed a method for
learning embeddings for OOV words based on ex-
ternal dictionary definitions. They learn these de-
scription embeddings of words using an LSTM for
encoding the corresponding definition. If a partic-
ular word included in the dictionary also appears
in the corpus’ vocabulary (for which vanilla word
embeddings are given), they add the word embed-
ding and the description embedding together. Oth-
erwise, in the case of OOV words, they use solely
the description embedding in place of the miss-
ing word embedding. Inspired by this approach,
we use a similar technique to incorporate domain
keyword descriptions into word embeddings.

If a word wr
t in the response utterance is in the

set of domain keywords K, we firstly extract its
description. The description of wr

t is a sequence
of words {wd

tk}Kk=1, which is projected onto se-
quence of embeddings {wd

tk}Kk=1. This sequence
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is encoded using another bi-directional GRU to
obtain a vector representation hd

t of the same di-
mension as the vanilla word embeddings. If wr

t is
not in K, we simply set hd

t to zero. We call hd
t the

description embedding.
Some domain specific words might also hap-

pen to be common words. For instance, in the
case of the UDC’s vocabulary, there exist tokens
such as shutdown 1 or who 2, which are ambigu-
ous, i.e., although they are valid UNIX commands,
they are also common words in natural language.
The description embeddings of domain specific
words can be simply added to the vanilla word em-
beddings as suggested by Bahdanau et al. (2018).
However, it might be advantageous if the model
can determine itself whether to treat the current
word as a domain specific word, a common word,
or something in between, depending on the con-
text. For instance, if the context is mainly talk-
ing about system users, then who is most likely a
UNIX keyword. Therefore, we propose a more
flexible way to combine the description embed-
ding hd

t and the word embedding wr
t , that is, we

define the final word embedding to be a convex
combination of both, and let the combination co-
efficients be given by a function of hd

t and the
context embedding ĥc. Intuitively, this allows the
model to flexibly focus on the description or the
vanilla embedding, in dependence on the context
and the description. Formally, the combination co-
efficients βt of t-th word in the response is given
by

βt ∝ exp(UTĥc +VTwr
t ) , (9)

where U and V are learnable parameter matrices.
Note that βt is a vector of the same dimension
as the embeddings. The final embedding of wr

t

(which serves as input to the response encoder) is
then the weighted sum

ŵr
t = βt � hd

t + (1− βt)�wr
t , (10)

where � denotes the element wise multiplication.

5 Experiment

5.1 Ubuntu multi-turn dialogue corpus
Extending the work of Uthus and Aha (2013),
Lowe et al. (2015a) introduced a version of the
Ubuntu chat log conversations which is the largest

1UNIX command for system shutdown.
2UNIX command to get a list of currently logged-in users.

publicly available multi-turn, dyadic, and domain-
specific dialogue data set. The chats are extracted
from Ubuntu related topic specific chat rooms in
the Freenode Internet Relay Chat (IRC) network.
Usually, experienced users address a problem of
someone by suggesting a potential solution and a
name mention of the addressed user. A conversa-
tion between a pair of users often stops when the
problem has been solved. However, they might
continue having a discussion which is not related
to the topic.

A preprocessed version of the above corpus and
the needed vocabulary are provided by Wu et al.
(2017). The preprocessing consisted of replac-
ing numbers, URLs, and system paths with special
placeholders as suggested by Xu et al. (2016). No
additional preprocessing is performed by us. The
data set consists of 1 million training triples, 500k
validation triples, and 500k test triples. One half
of the 1 million training triples are positive (triples
with y = 1, i.e. the provided response fits the con-
text) the other half negative (triples with y = 0).
In contrast, in the validation and test set, for every
context ci, there exists one positive triple provid-
ing the ground-truth response to ci and nine neg-
ative triples with unbefitting responses. Thus, in
these sets, the ratio between positive and negative
triples per context is 1:9 which makes evaluating
the model with information retrieval metrics such
as Recall@k possible (see Section 6).

5.2 Model hyperparameters

We chose a word embedding dimension of 200 as
done by Wu et al. (2017). We use fastText (Bo-
janowski et al., 2016) to pre-train the word embed-
dings using the training set instead of using off-
the-shelf word embeddings, following Wu et al.
(2017). We set the hidden dimension of our GRU
to be 300, as in the work of Lowe et al. (2015a).
We restricted the sequence length of a context by
a maximum of 320 words, and that of the response
by 160. Because of the resulting size of the model
and limited GPU memory, we had to use a smaller
batch size of 32. We optimize the binary cross en-
tropy loss of our model with respect to the training
data using Adam (Kingma and Ba, 2015) with an
initial learning rate of 0.0001. We train our model
for a maximum of 20 epochs as according to our
experience, this is more than enough to achieve
convergence. The training is stopped when the
validation recall does not increase after three sub-
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Model R2@1 R10@1 R10@3 R10@5

DE-RNN (Kadlec et al., 2015) 0.768 0.403 0.547 0.819
DE-CNN (Kadlec et al., 2015) 0.848 0.549 0.684 0.896
DE-LSTM (Kadlec et al., 2015) 0.901 0.638 0.784 0.949
DE-BiLSTM (Kadlec et al., 2015) 0.895 0.630 0.780 0.944

MultiView (Zhou et al., 2016) 0.908 0.662 0.801 0.951
DL2R (Yan et al., 2016) 0.899 0.626 0.783 0.944
r-LSTM (Xu et al., 2016) 0.889 0.649 0.857 0.932

MV-LSTM (Wan et al., 2016) 0.906 0.653 0.804 0.946
Match-LSTM (Wang and Jiang, 2016) 0.904 0.653 0.799 0.944
QA-LSTM (Tan et al., 2016) 0.903 0.633 0.789 0.943

SMNdyn (Wu et al., 2017) 0.926 0.726 0.847 0.961
CCN (An et al., 2018) - 0.727 0.858 0.971
ESIM (Dong and Huang, 2018) - 0.734 0.854 0.967

AK-DE-biGRU (Ours) 0.933 0.747 0.868 0.972

Table 2: Evaluation results of our models compared to various baselines on Ubuntu Dialogue Corpus.

sequent epochs. The test set is evaluated on the
model with the best validation recall.

For the implementation, we use PyTorch
(Paszke et al., 2017). We train the model end-to-
end with a single 12GB GPU. The implementa-
tion3 of our models along with the additional do-
main knowledge base4 are publicly available.

6 Results

Following Lowe et al. (2015a) and Kadlec et al.
(2015), we use the Recall@k evaluation metric,
where Rn@k corresponds to the fraction of of ex-
amples for which the correct response is under the
k best out of a set of n candidate responses, which
were ranked according to there their probabilities
under the model.

In our evaluation specifically, we use R2@1,
R10@1, R10@3, and R10@5.

6.1 Comparison against baselines

We compare our model, which we refer to as
Attention and external Knowledge augmented
DE with bi-directional GRU (AK-DE-biGRU),
against models previously tested on the same data
set: the basic DE models analyzed by Lowe
et al. (2015a) and Kadlec et al. (2015) using
different encoders, such as convolutional neu-
ral network (DE-CNN), LSTM (DE-LSTM) and

3https://github.com/SmartDataAnalytics/AK-DE-biGRU.
4Command descriptions scraped from Ubuntu man pages.

bi-directional LSTM (DE-BiLSTM); the Multi-
View, DL2R and r-LSTM models proposed by
Zhou et al. (2016), Yan et al. (2016) and Xu
et al. (2016), respectively; architectures for ad-
vanced context and response matching, namely
MV-LSTM (Wan et al., 2016), Match-LSTM
(Wang and Jiang, 2016), and QA-LSTM (Tan
et al., 2016); architectures processing the con-
text utterances individually, namely SMNdyn (Wu
et al., 2017) and CCN; and we also use recently
proposed ESIM (Dong and Huang, 2018) as a
baseline.

The results are reported in Table 2. Our model
outperforms all other models used as baselines.
The largest improvement of our model compared
to the best of the baselines (i.e. ESIM in general
and SMNdyn for R2@1 metric) are with respect to
the R10@1 and R10@3 metric, where we observed
absolute improvements of 0.013 and 0.014 corre-
sponding to 1.8% and 1.6% relative improvement
, respectively. For R2@1 and R10@5 we observed
more modest improvements of 0.007 (0.8%) and
0.005 (0.5%), respectively. Our results are signifi-
cantly better with p < 10−6 for a one-sample one-
tailed t-test compared to the best baseline (ESIM),
on R10@1, R10@3, R10@5 metrics, using the out-
come of 15 independent experiments. The vari-
ance between different trials is smaller than 0.001
for all evaluation metrics.
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Model R10@1 R10@3 R10@5

DE-GRU 0.685 0.831 0.960
DE-biGRU 0.678 0.813 0.956
A-DE-GRU 0.712 0.845 0.964
A-DE-biGRU 0.739 0.864 0.968
AK+-DE-biGRU 0.743 0.867 0.969
AK-DE-biGRUw2v 0.745 0.866 0.970
AK-DE-biGRU 0.747 0.868 0.972

Table 3: Ablation study with different settings.

6.2 Ablation study

Our model differs in various ways from the vanilla
DE: it uses a GRU instead of an LSTM for the en-
coding, introduces an attention mechanism for the
encoding of the context and another for the encod-
ing of the response, and incorporates additional
knowledge in the response encoding process.

To analyze the effect of these components on
the over all performance, we analyzed different
model variants: a DE using a GRU or a bi-
directional GRU as encoder (DE-GRU and DE-
biGRU, respectively) and both of these models
with attention augmented encoding for embedding
both context and response (A-DE-GRU and A-
DE-biGRU, respectively). We also tested the ef-
fects of using a simple addition instead of the
weighted summation given in equation (10) for
merging the word embedding with the descip-
tion embedding (AK+-DE-biGRU). Finally, we
investigated a version of our model (AK-DE-
biGRUw2v) where we used pre-trained word2vec
embeddings, as done by Wu et al. (2017), instead
of learning our own word embeddings from the
data set.

The results of the study are presented in Ta-
ble 3. With the basic models, i.e. DE-GRU and
DE-biGRU, as baselines, we observed around 4%
and 9% improvement on R10@1 when incorporat-
ing the attention mechanism (A-DE-GRU and A-
DE-biGRU, respectively).

When domain knowledge is incorporated by
simple addition (as in the work of Bahdanau et al.
(2018)), i.e. in AK+-DE-biGRU, we noticed 0.5%
further improvement. Note however, that the re-
sults are not as good as when using the proposed
weighted addition. Finally, using our method
of incorporating domain knowledge in combina-
tion with embeddings trained from scratch with
fastText (Bojanowski et al., 2016), the perfor-
mance gets 0.3% better than when using pre-

Example Response Utterances

gui for shutdown try typing sudo

shutdown -h now

sudo apt-get install qt4-designer

there could be some qt dev packages too

but i think the above will install them as
dependencies

certainly won n’t make a difference i m

sure but maybe try sudo shutdown -r

now shutdown works just fine graphical

and command line

pci can you put the output of lspci

on url and give me the link please

i do n’t see a line in xorg conf for

hsync and vsync do you get the same

you d create it i m looking at gentoo

and ubuntu forums a sec

can be many reasons of traceroute

url you will not get a complete result

Table 4: Visualization of attention weight in utterance
samples, darker shade means higher attention weight.

trained word2vec embeddings. In total, compared
to the DE-biGRU baseline, our model (AK-DE-
biGRU) achieves 10% of improvement in terms
of the R10@1 metric. Thus, the results clearly
suggest that both the attention mechanism and the
incorporation of domain knowledge, are effective
approaches for improving the dual encoder archi-
tecture. Curiously, we noticed that for the baseline
models, using a GRU as the encoder is better than
using a biGRU. This finding is in line with the re-
sults from Kadlec et al. (2015) reported in Table 2.
However, the table is turned when augmenting the
models with an attention mechanism where the
biGRU-based model outperforms the one with the
GRU. This observation motivates us to consider a
biGRU instead of a GRU in our final model.

6.3 Visualizing response attentions

To further investigate the results given by our
model, we qualitatively inspected several samples
of response utterances and their attention weights,
as shown in Table 4. We noticed that our model
learned to focus on technical terms, such as lspci,
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Context utterances
Utterance 1: Ubuntu <version>
Utterance 2: hi all sony vaio fx120 will not
turn off when shutting down, any ideas? btw
acpi =o ff in boot parameters anything else i
should be trying?
Utterance 3: how are you shutting down i.e.
terminal or gui?

Table 5: Sample context utterances from UDC’s test set
whose correct response is the first utterance in Table 4.

shutdown, and traceroute. We also observed that
the model is able to capture contextual importance,
i.e. it is able to focus on context relevant words.
For example, given the context in Table 5 and the
correct response in the first row of Table 4, one can
see the attention on the word shutdown, where it
gets a lower weight when used as a common word
in the first occurance than as a UNIX command in
the second. 5

6.4 Error analysis
We qualitatively analyzed the errors our method
made. We observed that our model’s predic-
tions are biased toward high information utter-
ances. That is, we observed for some examples
that the correct response is generic (i.e. has low
information), our model chooses a non-generic re-
sponse, as shown in Table 6. Furthermore, we
computed the average utterance information con-
tent (the entropy) for both the correct and pre-
dicted responses, based on Xu and Reitter (2018),
where we obtained 9.25 bits and 9.34 bits, re-
spectively. This quantitatively indicates that our
model is slightly biased toward high information
responses.

7 Conclusion and future work

We presented a novel model which extends the
dual encoder architecture for multi-turn response
selection by incorporating external domain knowl-
edge and attention augmented encoding. Our ex-
perimental results demonstrate that our model out-
performed other state-of-the-art methods for re-
sponse selection in a multi-turn dialogue setting,
and that the attention mechanism and incorporat-
ing additional domain knowledge are indeed ef-
fective approaches for improving the response se-

5N.B. The conversations are taken directly from the cor-
pus and can be grammatically inconsistent.

Examples of model error:

Correct: ok will do :), nope.
Predicted: url if you go down to the
bottom of that tutorial i also have a post there
that is a bit more detailed about my problem
poster name is trent

Correct: hmm! ok
Predicted: as did i w/ fbsd ... just check out
the livecd for a bit

Correct: okay thank you a thread i hope :)
Predicted: hmm ok because im not sure about
iwconfig and wpa but we can give it a try do
gksudo gedit path then add a record like
this url

Correct: right .. it is, it exists i verified
Predicted: i want to connect to your computer
remotely if you allow me to so i can fix the
problem for you just follow the following
procedure.

Correct: roger .. lemme check, got it ... thanks
dude :)
Predicted: just click the partition and then
click the blue text next to mount point or you
can simply navigate to that path

Table 6: Examples on the error our model made. We
observed that our model’s predictions are biased to-
wards non-generic responses.

lection performance of the dual encoder architec-
ture. Further improvement might be made by also
considering domain knowledge in the context and
by improving the handling of OOV words, e.g. by
widening our domain specific word vocabulary
and handling generic OOV words such as typos.
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