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Abstract

In sentence compression, the task of short-
ening sentences while retaining the original
meaning, models tend to be trained on large
corpora containing pairs of verbose and
compressed sentences. To remove the need for
paired corpora, we emulate a summarization
task and add noise to extend sentences and
train a denoising auto-encoder to recover the
original, constructing an end-to-end training
regime without the need for any examples
of compressed sentences. We conduct a
human evaluation of our model on a standard
text summarization dataset and show that it
performs comparably to a supervised base-
line based on grammatical correctness and
retention of meaning. Despite being exposed
to no target data, our unsupervised models
learn to generate imperfect but reasonably
readable sentence summaries. Although we
underperform supervised models based on
ROUGE scores, our models are competitive
with a supervised baseline based on human
evaluation for grammatical correctness and
retention of meaning.

1 Introduction

Sentence compression is the task of condensing
a longer sentence into a shorter one that still re-
tains the meaning of the original. Past models for
sentence compression have tended to rely heavily
on strong linguistic priors such as syntactic rules
or heuristics (Dorr et al., 2003; Cohn and Lap-
ata, 2008). More recent work using deep learning
involves models trained without strong linguistic
priors, instead requiring large corpora consisting
of pairs of longer and shorter sentences (Miao and
Blunsom, 2016).

∗ Denotes equal contribution

Sentence compression can also be can be seen
as a “scaled down version of the text summariza-
tion problem” (Knight and Marcu, 2002). Within
text summarization, two broad approaches exist:
extractive approaches extract explicit tokens or
phrases from the reference text, whereas abstrac-
tive approaches involve a compressed paraphras-
ing of the reference text, similar to the approach
humans might take (Jing, 2000, 2002).

In the related domain of machine translation, a
task that also involves learning a mapping from
one string of tokens to another, state of the art
models using deep learning techniques are trained
on large parallel corpora. Recent promising
work on unsupervised neural machine translation
(Artetxe et al., 2017; Lample et al., 2017) has
shown that with the right training regime, it is
possible to train models for machine translation
between two languages given only two unpaired
monolingual corpora.

In this paper, we apply neural text summariza-
tion techniques to the task of sentence compres-
sion, focusing on on extractive summarization.
However, we depart significantly from prior work
by taking a fully unsupervised training approach.
Beyond not using parallel corpora, we train our
model using a single corpus. In contrast to un-
supervised neural machine translation, which still
uses two corpora, we do not have separate corpora
of longer and shorter sentences.

We show that a simple denoising auto-encoder
model, trained on removing and reordering words
from a noised input sequence, can learn effec-
tive sentence compression, generating shorter se-
quences of reasonably grammatical text that retain
the original meaning. While the models are still
prone to both errors in grammar and meaning, we
believe that this is a strong step toward reducing
reliance on paired corpora.

We evaluate our model using both a stan-
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dard text-summarization benchmark as well as hu-
man evaluation of compressed sentences based on
grammatical correctness and retention of mean-
ing. Although our models do not capture the
written style of the target summaries (headlines),
they still produce reasonably readable and accu-
rate compressed sentence summaries, without ever
being exposed to any target sentence summaries.
We find that our model underperforms based on
ROUGE metrics, especially compared to super-
vised models, but performs competitively with su-
pervised baselines in human evaluation. We fur-
ther show that providing the model with a sen-
tence embedding of the original sentence leads
to better ROUGE scores but worse human eval-
uation scores. However, both unsupervised and
supervised methods still fall short based on hu-
man evaluation, and effective sentence compres-
sion and summarization remains an open problem.

2 Related work

Early sentence compression approaches were
extractive, focusing on deletion of uninforma-
tive words from sentences through learned rules
(Knight and Marcu, 2002) or linguistically-
motivated heuristics (Dorr et al., 2003). The first
abstractive approaches also relied on learned syn-
tactic transformations (Cohn and Lapata, 2008).

Recent work in automated text summarization
has seen the application of sequence-to-sequence
models to automatic summarization, including
both extractive (Nallapati et al., 2017) and ab-
stractive (Rush et al., 2015; Chopra et al., 2016;
Nallapati et al., 2016; Paulus et al., 2017; Fan
et al., 2017) approaches, as well as hybrids of
both (See et al., 2017). Although these meth-
ods have achieved state-of-the-art results, they are
constrained by their need for large amounts paired
document-summary data.

Miao and Blunsom (2016) seek to overcome
this shortcoming by training separate compressor
and reconstruction models, allowing for training
based on both paired (supervised) and unlabeled
(unsupervised) data. For their compressor, they
train a discrete variational auto-encoder for sen-
tence compression and use the REINFORCE al-
gorithm to allow end-to-end training. They fur-
ther use a pre-trained language model as a prior
for their compression model to induce their com-
pressed output to be grammatical. However, their
reported results are still based on models trained

on at least 500k instances of paired data.

In machine translation, unsupervised methods
for aligning word embeddings using only un-
matched bilingual corpora, trained with only small
seed dictionaries, (Mikolov et al., 2013; Lazari-
dou et al., 2015), adversarial training on simi-
lar corpora (Zhang et al., 2017; Conneau et al.,
2017b) or even on distant corpora and languages
(Artetxe et al., 2018) have enabled the develop-
ment of unsupervised machine translation (Artetxe
et al., 2017; Lample et al., 2017). However, it
is not clear how to adapt these methods for sum-
marization where the task is to shorten the refer-
ence rather than translate it. Wang and Lee (2018)
train a generative adversarial network to encode
references into a latent space and decode them
in summaries using only unmatched document-
summary pairs. However, in contrast with ma-
chine translation where monolingual data is plen-
tiful and paired data scarce, summaries are paired
with their respective documents when they exist,
thus limiting the usefulness of such approaches.
In contrast, our method requires no summary cor-
pora.

Denoising auto-encoders (Vincent et al., 2008)
have been successfully used in natural language
processing for building sentence embeddings (Hill
et al., 2016), training unsupervised translation
models (Artetxe et al., 2017) or for natural lan-
guage generation in narrow domains (Freitag and
Roy, 2018). In all those instances, the added noise
takes the form of random deletion of words and
word swapping or shuffling. Although our noising
mechanism relies on adding rather than removing
words, we take some inspiration from these works.

Work in sentence simplification (see Shardlow
(2014) for a survey) has some similarities with
sentence compression, but it differs in that the
key focus is on making sentences more easily un-
derstandable rather than shorter. Though word
deletion is used, sentence simplification methods
feature sentence splitting and word simplification
which are not usually present in sentence compres-
sion. Furthermore, these methods often rely heav-
ily on learned rules (e.g lexical simplification as
in Biran et al. (2011)), integer linear programming
and sentence parse trees which makes them starkly
different from our deep learning-based approach.
The exceptions that adopt end-to-end approaches,
such as Filippova et al. (2015), are usually super-
vised and focus on word deletion.
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3 Methods

3.1 Model

Our core model is based on a standard attentional
encoder-decoder (Bahdanau et al., 2014), consist-
ing of multiple layers bi-directional long short-
term memory networks in both the encoder and
decoder, with negative-log likelihood as our loss
function. We detail below the training regime and
model modifications to apply the denoising auto-
encoding paradigm to sentence compression.

3.2 Additive Noising

Since we do not use paired sentence compression
data with which to train our model in a supervised
way, we simulate a supervised training regime by
modifying a denoising auto-encoder (DAE) train-
ing regime to more closely resemble supervised
sentence compression. Given a reference sen-
tence, we extend and shuffle the input sentence,
and then train our model to recover the original
reference sentence. In doing so, the model has
to exclude and reorder words, and hence learns
to output shorter but grammatically correct sen-
tences.

Additive Sampling We randomly sample addi-
tional sentences from our data set, and then sub-
sample a number of words from each without re-
placement. We then append the newly sampled
words to our reference sentence. In our exper-
iments, we sample two additional sentences for
each reference sentence, and the number of words
sampled from each is dependent on the length of
the original reference sentence. In practice, we
aim to generate a noised sentence that extends the
original sentence by 40% to 60%. To fit the fully
unsupervised learning paradigm, we do not intro-
duce any biases into our sampling of words in
training our model. In particular, we excluded ap-
proaches that overweighted adjectives or speaker
identification (e.g “said X on Tuesday”) in nois-
ing.

Shuffling Next, we shuffle the resultant string of
words. We experiment with two forms of shuf-
fling: (i) a complete word (unigram) shuffle and
(ii) bigram shuffling, where we only shuffle among
the word bigrams, keeping pairs of adjacent words
together.

This process is illustrated in Figure 1.

3.3 Length Countdown

To induce our model to output sequences of a de-
sired length, we augment the RNN decoder in our
model to take an additional length countdown in-
put. In the context of text generation, RNN de-
coders can be formulated as follows:

ht = RNN(ht−1, xt) (1)

where ht−1 is the hidden state at the previous step
and xt is an external input (often an embedding
of the previously decoded token). Let Tdec be the
desired length of our output sequence. We modify
(1) with an additional input:

ht = RNN(ht−1, xt, Tdec − t) (2)

The length countdown T − t is a single scalar in-
put that ticks down to 0 when the decoder reaches
the desired length T , and goes negative after. In
practice, (xt, Tdec − t) are concatenated into a sin-
gle vector. We also experimented with adding a
length penalty to our objective function to amplify
the loss from predicting the end-of-sequence to-
ken <EOS> at the desired time step, but did not
find that our models required this additional loss
term to output sequences of the desired length.

Explicit length control has been used in previ-
ous summarization work. Fan et al. (2017) in-
troduced a length marker token that induces the
model to target an output of a desired length,
coarsely divided into discrete bins. Kikuchi et al.
(2016) examined several methods of introducing
target output length information, and found that
they were effective without negatively impacting
summarization quality. We found more success
with our models with a per time-step input com-
pared to a token at the start of the sequence as in
Fan et al. (2017).

3.4 Input Sentence Embedding

The model specified above is supplied only with
an unordered set of words with which to construct
a shorter sentence. However, there are typically
many ways of ordering a given set of words into a
grammatical sentence. In order to help our model
better recover the original sentence, we also pro-
vide the model with an InferSent sentence em-
bedding (Conneau et al., 2017a) of the original
sentence, generated using a pre-trained InferSent
model. The InferSent model is trained on NLI
tasks, where, given a longer premise text and a
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Figure 1: Illustration of Additive Noising. A reference sentence is noised with subsampled words from another sentence,
and then shuffled. The denoising auto-encoder is trained to recover the original reference sentence. This simulates a text
summarization training regimes without the need for parallel corpora.

shorter hypothesis text, the model is required to
determine if the premise (i) entails, (ii) contradicts
or (iii) is neutral to the hypothesis. The InferSent
sentence embeddings are an intermediate output of
the model, reflecting information captured from
each text string. Conneau et al. show that In-
ferSent sentence embeddings capture various as-
pects of the semantics of a string of text (Conneau
et al., 2018), and should provide additional infor-
mation to the model as to which ordering of words
best match the meaning original sentence.

We incorporate the InferSent embeddings by
modifying the hidden state passed between the en-
coder and the decoder. In typical RNN encoder-
decoder architectures, the final hidden state of the
encoder is used as the initial hidden state of the
decoder. In other words, hdec

0 = henc
Tenc

. We learn a
fully connected layer f to be used as follows:

hdec
0 = f(henc

Tenc
, s) (3)

where s is the InferSent embedding of the input
sentence. This transformation is only applied once
on the hidden state shared from the encoder to the
decoder. In the case of LSTMs, where there are
both hidden states and cell states, we learn a fully
connected mapping for each.

3.5 Numbered Out-of-Vocabulary (OOV)
Embeddings

Many text summarization data sets are based on
news articles and headlines, which often include
names, proper nouns, and other rare words or to-
kens that may not appear in word embedding dic-
tionaries. In addition, the output layer of most
models are based on a softmax over all potential
output tokens. This means that expanding the vo-
cabulary to potentially include more rare words in-
creases computation and memory costs in the fi-
nal layer linearly. There are many approaches to
tackle out-of-vocabulary (OOV) tokens (See et al.,
2017; Nallapati et al., 2016), and we detail below
our approach.

To address the frequent occurrences of OOV
characters, we learn a fixed number of embed-
dings for numbered OOV tokens.2 Given an in-
put sequence, we first parse the sentence to iden-
tify OOV tokens and number them in order, while
storing the map from numbered OOV tokens to
words.3 When embedding the respective tokens to
be inputs to the RNN, we assign the corresponding
embeddings for each numbered OOV token. We
apply the same numbering system to the target, so
the same word in the input and output will always
be assigned the same numbered OOV token, and
hence the same embedding. At inference, we re-
place any output numbered OOV tokens with their
respective words. This allows us to output sen-
tences using words not in our vocabulary.

This approach is similar to the pointer-generator
model (See et al., 2017), but whereas See et al.
compute attention weights over all tokens in the
input to learn where to copy and have an explicit
switch between copying (pointer) and output (gen-
erator), we learn embeddings for a fixed number of
OOV tokens, and the embeddings are in the same
latent space as our pre-trained word embeddings.

4 Experimental Setup

4.1 Data
For our text summarization task, We use the An-
notated Gigaword (Napoles et al., 2012) in line
with Rush et al. (2015). This data set is derived
for news articles, and consists of pairs of the main
sentences in the article (longer), and the headline
(shorter). The former and latter are used as ref-
erences and summaries respectively in the context
of summarization tasks. We preprocess the data
using the scripts made available by the authors,
which produces about 3.8M training examples and
400K validation examples. We sample randomly

2We use a fixed number of 10 OOV tokens in our experi-
ments.

3In the case of shuffling and noising, we number the OOV
tokens before shuffling, and number any additional OOV to-
kens from the noised input sentence in a second pass.



417

10K examples for validation and 10K for testing
from the validation set, similar to the procedure in
Nallapati et al. (2016). Like Rush et al. (2015), we
only extract the tokenized words of the first sen-
tence, in contrast with Nallapati et al. (2016) who
extract the first two sentences as well as part-of-
speech and named-entities tags.

4.2 Training

In training, we only use the reference sentences
from the Gigaword dataset. For all our models, we
used GloVe word embeddings (Pennington et al.,
2014). We freeze these embeddings during train-
ing. Our vocabulary is comprised of the 20000
most frequent words in the references, and we use
the aforementioned numbered OOV embeddings
for other unseen words. We similarly freeze the
InferSent model for sentence embeddings. The en-
coder and decoder are both 3-layer LSTMs with
512 hidden units. We use a batch size of 128, and
optimize our models using Adam (Kingma and
Ba, 2014) with a initial learning rate of 0.0005,
annealing it by 0.9 at every 10K mini-batches. We
do not use dropout but use gradient clipping at 2.
We train our models for 4 full epochs.

4.3 Inference

At inference, we supply our model with the un-
modified reference sentences–hence no noising is
applied. We use the length countdown to target
outputs of half the length of the reference sen-
tences. The application of sentence embeddings
is unchanged from training.

4.4 Implementation

We implemented our models using Pytorch
(Paszke et al., 2017), and will make our code
publicly available at https://github.com/
zphang/usc_dae.

5 Results

5.1 ROUGE Evaluation

In Table 1, we evaluate our models on ROUGE
(Lin, 2004) F1 scores, where a higher score is
better. We provide a comparison with a sim-
ple but strong baseline, F8W is simply first 8
words of the input, as is done in Wang and Lee
(2018) and similarly to the Prefix baseline (first
75 bytes) of Rush et al. (2015), as well as the
ROUGE of the whole text with the target. We pro-
vide scores of two supervised text-summarization

methods on Gigaword. One is our own baseline,
consisting of a sequence-to-sequence attentional
encoder-decoder trained on pairs of reference and
target summary text, but incorporating the same
length countdown mechanism as in our unsuper-
vised models. The other is the words-lvt2k-1sent
model of Nallapati et al. (2016). Although not
their best model, it is most comparable to ours
since it only uses the first sentence and does not
extract tf-idf vectors nor named entities tags.

F8W and All text are strong baselines due to the
tendency of news articles to contain specific terms
that are rarely rephrased. We find that our mod-
els perform competitively with these baselines,
although they pale in comparison to supervised
methods, likely because they do not learn any style
transfer and use only the reference’s vocabulary
and writing style. While our ROUGE-1 scores are
in line with the baselines, our ROUGE-2 scores
fall somewhat behind. Including InferSent sen-
tence embeddings improves our ROUGE scores
across the board. Our supervised baseline perfor-
mance is close to that of Nallapati et al. (2016),
with results lower in ROUGE-2 likely due to their
use of beam search. Nevertheless, the supervised
baseline is representative of the performance of a
standard sequence-to-sequence attentional model
on this task.

A direct comparison of ROUGE scores is not
completely adequate for evaluating our model.
Because of our training regime, our model primar-
ily learned to generate shortened sentences that of-
ten still retain the style of the input sentences. Un-
like other model setups, our model has never been
exposed to any examples of summaries, and hence
never adapts its output to match the style of the tar-
get summaries. In the case of Gigaword, the sum-
maries are headlines from news articles, which are
written in a particular linguistic style (e.g. drop-
ping articles, having clauses rather than full sen-
tences). ROUGE will thus penalize our model,
that tends to output longer, full sentences. In ad-
dition, ROUGE is an imperfect metric for sum-
marization as word/n-gram overlap does not fully
capture summary relevancy and retention of mean-
ing.4 For this reason, we also conduct a separate
human evaluation of our different models against

4See discussion in Nallapati et al. (2016), or in Paulus
et al. (2017) where a reinforcement learning model trained
on a Rouge-L objective alone achieves the best scores but
“produces the least readable summaries among [their] exper-
iments”

https://github.com/zphang/usc_dae
https://github.com/zphang/usc_dae
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Example 1:
I: nearly ### of the released hostages remain in hospital , and more
than ### of them are in very serious condition , russian medical
authorities said sunday .
G: nearly ### people still hospitalized more than ### in critical
condition
2-g shuf: more than ### hostages are in serious condition , russian
medical authorities said .
2-g shuf + InferSent: nearly ### hostages of the nearly released in
serious medical condition , said .

Example 2:
I: french president jacques chirac arrived here friday at the start of a
<unk> during which he is expected to hold talks with romanian
leaders on bucharest ’s application to join nato .
G: chirac arrives in romania
2-g shuf: french president jacques chirac arrived here friday to hold
talks with romanian leaders on nato .
2-g shuf + InferSent: french president jacques chirac arrived here
friday at the start of talks to join nato .

Example 3:
I: swedish truck maker ab volvo on tuesday reported its third
consecutive quarterly loss as sales plunged by one-third amid weak
demand in the april-june period .
G: volvo posts $ ### million loss on falling sales
2-g shuf: swedish truck maker volvo ab on tuesday reported its third
consecutive quarterly .
2-g shuf + InferSent: swedish truck maker ab volvo on tuesday
reported its consecutive quarterly loss .

Example 4:
I: wall street stocks rallied friday as a weak report on us economic
growth boosted hopes for an easier interest rate policy from the federal
reserve and investors reacted to upbeat earnings news .
G: wall street shrugs off weak gdp pushes higher
2-g shuf: wall street stocks rallied friday as investors reacted to upbeat
economic news and interest rate .
2-g shuf + InferSent: wall street stocks rallied friday as investors
reacted to an economic growth report on hopes .

Figure 2: Examples of inputs, ground-truth summaries, and
outputs from two of our models. I is input, G (gold) is the
true summaries. Example 1 and 2 show our models sum-
marizing pertinent information from the input. Example 3
demonstrates the ability to recover long ordered strings of to-
kens, even though the models are trained on shuffle data. Ex-
ample 4 shows cases where the models output grammatical
but semantically incorrect sentences.

a supervised baseline (Section 5.4).

5.2 ROUGE Ablation study
In Table 2, we report the results of an ablation
study. We observe that all three components we
vary, namely the use of attention, bigram shuffling,
and incorporation of sentence embeddings, con-
tribute positively to the performance of our model
as measured by ROUGE. The model that incorpo-
rates all three obtains the highest ROUGE scores.

5.3 Impact of Length
To assess our models’ ability to deal with se-
quences of text of different length, we measure the
ROUGE scores on two bins of length of the input
text, from 16 to 30 tokens and from 31 to 45. As
expected, longer sentences pose a harder challenge
to the model, with our model performing better

on shorter than longer sentences. Across most
sequence-based problems, models tend to perform
better on shorter sequences. However, in the con-
text of the text summarization or sentence com-
pression, longer sentences not only contain more
information that the model would need to selective
remove, but also more information from which to
identify the central theme of the sentence.

5.4 Human Evaluation

To qualitatively evaluate our model, we take inspi-
ration from the methodology of Turner and Char-
niak (2005) to design our human evaluation. We
asked 6 native English speakers to evaluate ran-
domly chosen summaries from five models: our
best models with and without InferSent sentence
embeddings, a summary generated from a trained
supervised model, and the ground truth summary.
The sentences are evaluated based on two separate
criteria: the grammaticality of the summary and
how well it retained the information of the original
sentence. In the former, only the summary is pro-
vided, whereas in the latter, the evaluator is shown
both the original sentence as well as the summary.
Each of these criteria were graded on a scale from
1 to 5. The examples are from the test set, with
50 examples randomly sampled for each evaluator
and criterion.5

We report the average evaluation given by our
6 evaluators in Table 4. That the Meaning score
for the ground truth is somewhat low (3.87) is
not surprising. Within the Gigaword dataset, sum-
maries (headlines) sometimes include information
not within the reference (main line of the arti-
cle). We observe that quantitative evaluation does
not correlate well with human evaluation. Meth-
ods using InferSent embeddings improved our
ROUGE scores but perform worse in human eval-
uation, which is in line with the summaries pre-
sented in 2. Notably, the model trained on shuffled
bigrams and InferSent embeddings performed best
within our ablation study, but the worst among the
three models in human evaluation. Encouragingly,
the model without InferSent embeddings performs
competitively with the supervised baseline in both
grammar and meaning scores, indicating that al-
though it does not capture the style of headlines, it
succeeds in generating grammatical sentences that

5The sampling is constrained to ensure each evaluator
sees an equal number of summaries from each model, al-
though evaluators are informed neither about the sampling
process, nor how many or what models are involved.
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ROUGE

Model R-1 R-2 R-L Avg. Length

Baselines:
All text 28.91 10.22 25.08 31.3
F8W 26.90 9.65 25.19 8

Unsupervised (Ours):
2-g shuf 27.72 7.55 23.43 15.4
2-g shuf + InferSent 28.42 7.82 24.95 15.6

Supervised abstractive:
Seq2seq 35.50 15.54 32.45 15.4
(words-lvt2k-1sent) (Nallapati et al., 2016) 34.97 17.17 32.70 -

Table 1: Performance of Baseline, Unsupervised and Supervised Models. Our unsupervised models pale in comparison to
supervised models, and perform in line with baselines. Simple baselines in text summarization benchmarks tend to be unusually
strong. The unsupervised model incorporating sentence embeddings performs slightly better on ROUGE.

ROUGE

Model R-1 R-2 R-L

1-g shuf (w/o attn) 23.01 5.51 20.07
2-g shuf (w/o attn) 22.36 5.18 19.60
1-g shuf 27.22 7.63 23.55
2-g shuf 27.72 7.55 23.43
1-g shuf + InferSent 28.12 7.75 24.81
2-g shuf + InferSent 28.42 7.82 24.95

Table 2: Ablation study. We find that using attention, shuf-
fling bigrams, and incorporating sentence embeddings all im-
prove our ROUGE scores. All length countdowns settings are
the same is in the main model.

ROUGE

Input Length R-1 R-2 R-L Avg. Length

16-30 30.79 9.20 27.73 12.6
31-45 26.89 6.76 23.04 17.7

Table 3: Effect of input sentence length on performance, us-
ing the 2-g shuf + InferSent model. Performance tends to be
worse on longer input texts.

Model Grammar Meaning

2-g shuf 3.53 (±0.18) 2.53 (±0.16)
1-g shuf + InferSent 2.82 (±0.17) 2.50 (±0.15)
2-g shuf + InferSent 2.87 (±0.16) 2.13 (±0.13)
Seq2seq (Supervised) 3.43 (±0.18) 2.60 (±0.17)

Ground Truth 4.07 (±0.13) 3.87 (±0.16)

Table 4: Human Evaluation. Mean scores, with 1 standard
error confidence bands in parentheses. Our best model per-
forms competitively with a supervised baseline in both gram-
matical correctness and retuention of meaning. Models with
sentence embeddings perform worse in human evaluation,
despite obtaining better ROUGE scores.

roughly match the meaning in the reference. Some
evaluators highlighted that it was problematic to
rate meaning for ungrammatical sentences.

5.5 Output Analysis

We show in Figure 2 several examples of the in-
puts, ground-truths target summaries, and outputs
from 2 of our models. We observe that the output
sentences are generally well-conditioned though
occasionally imperfectly grammatical. We also
observe certain artifacts from training only on ref-
erence texts that are not reflected in ground-truth
summaries. For example, every output sentence
ends with a period, and several examples end with
speaker identification clauses. In all instances, we
observe that the model without InferSent outputs
sentences are more readable and relevant, confirm-
ing human evaluation results in 4.

Example 1 shows that our model can extract the
most pertinent information to generate a grammat-
ical summary that captures the original meaning.

Example 2 shows an instance where our output
accurately summarizes the input text despite low
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ROUGE scores to the target (R-1 of 21.1 and R-2
of 11.8). In this case, both models capture the core
meaning of the input.

Example 3 shows that although the models are
provided completely shuffled words in training, at
inference it is able to recover complex terms such
as “swedish truck maker ab volvo”. We note that
this may be a bias in the data set (sentences in news
often start with proper nouns preceded by quali-
fiers) and hence a simple strategy for the model to
discover. This examples also shows common mis-
take of our models: in the output of model without
InferSent, it drops an important word (“loss”) right
before the end of the sentence, causing it to fail to
capture the original meaning.

Example 4 shows that on longer sentences, our
models may sometimes fail to accurately capture
meaning. In this case, for the model without In-
ferSent, although the output is grammatical and
meaningful, it captures a meaning different than
that of the original input. Indeed, our model sug-
gests that upbeat news cause the rally whereas the
original sentence indicates that given poor eco-
nomic news investors anticipate easier monetary
policy and thus caused a stock rally.

5.6 Length Variation

Because the desired length of the output sequence
is a user-defined input in the model, we can take
an arbitrary sentence and use the model to out-
put the corresponding compressed (or even ex-
panded) sentence of any desired length. We show
two examples in Figure 3, where we vary the
desired length from 7 to the input length, us-
ing our best model based on human evaluation.
We observe that for very short desired lengths,
the model struggles to produce meaningful sen-
tences, whereas for desired lengths close to the in-
put length, the model nearly reconstructs the input
sentence. Nevertheless, we observe that for many
of the intermediate lengths, the model outputs sen-
tences that are close in meaning to the input sen-
tence, with different ways of rephrasing or short-
ening the input sentence in the interim. This sug-
gests that when the ratio of the desired output sen-
tence length to the input sentence length is close
to that of the training regime, the model is able to
perform better than when it has to generate sen-
tences with other ratios.

Example 1:
I: three convicted serial killers have been hanged in tehran ’s evin
prison , the khorasan newspaper reported sunday .
L=9: three convicted serial killers have been hanged in .
L=11: three convicted serial killers have been hanged in prison sunday
.
L=13: three convicted serial killers have been hanged , a newspaper
reported sunday .
L=15: three convicted serial killers have been hanged in tehran , a
newspaper reported sunday .
L=17: three convicted serial killers have been hanged in tehran , the
tehran ’s newspaper reported sunday .
L=19: three convicted serial killers have been hanged in tehran ’s
prison , the newspaper tehran newspaper reported sunday .

Example 2:
I: a home-made bomb was found near a shopping center on indonesia
’s ambon island , where ## people were wounded by an explosion at
the weekend , state media said on monday .
L=9: a home-made bomb explosion wounded ## people monday .
L=11: a home-made bomb explosion wounded ## people on indonesia
monday .
L=13: a home-made bomb explosion wounded ## people on indonesia
’s ambon island .
L=15: a home-made bomb explosion wounded ## people at a shopping
center on ambon monday .
L=17: a home-made bomb explosion wounded ## people at a shopping
center on ambon island on monday .
L=19: a home-made bomb explosion wounded ## people at a shopping
center near ambon on indonesia ’s island state .
L=21: a home-made bomb explosion wounded ## people at a shopping
center near ambon on indonesia ’s ambon island on monday .
L=23: a home-made bomb was found on a shopping center near ambon
, indonesia ’s state on monday , state media said monday .
L=25: a home-made bomb was found on a shopping center near ambon
, indonesia ’s state media center where ## people were wounded by
bomb .
L=27: a home-made bomb was found on a shopping center near ambon
, indonesia ’s state media center where ## people were wounded ,
media said monday .
L=29: a home-made bomb was found on a shopping center near ambon
, indonesia ’s state media on monday , where ## people were wounded
by an explosion nearby .
L=31: a home-made bomb was found on a shopping center near ambon
, indonesia ’s state media on monday , where ## people were wounded
by an explosion at the weekend .
L=33: a home-made bomb was found on a shopping center near ambon
, indonesia ’s state media on monday , where ## people were wounded
by an explosion at the weekend on monday .

Figure 3: Summaries of varied desired lengths, using
the 2-g shuf model. L is the desired output length pro-
vided to the model. Because the desired output length is a
human-provided input, we can produce summaries of vary-
ing lengths, ranging from highly contracted to verbose.

6 Discussion

In our experiments, we found that denoising
auto-encoders quickly learn to generate well-
conditioned text, even from badly conditioned in-
puts. We were surprised by the ability of denois-
ing auto-encoders to recover readable sentences
even from completely shuffled and noised sets of
words. We observed some cases where the de-
noising auto-encoders outputs sequences that are
grammatical correct but nonsensical or semanti-
cally different from the input. However, the ability
for denoising auto-encoders to subsample words
to form grammatical sentences would significantly
reduce the search space for candidate sentences,
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and we believe this could be useful for tasks in-
volving sentence construction and reformulation.

Our attempts to better condition the denoising
auto-encoders outputs on the original sentence us-
ing sentence embeddings had mixed results. Al-
though the incorporation of InferSent embeddings
improved our quantitative ROUGE scores, human
evaluators scored outputs conditioned on InferSent
embeddings markedly worse on both grammar and
meaning retention. It is unclear whether this is
due to InferSent embeddings failing to capture the
most significant semantic information, or if our
mechanism for incorporating the sentence embed-
ding is suboptimal.

Lastly, we echo sentiments from previous au-
thors that ROUGE remains an imperfect proxy for
measuring the adequacy of summaries. We found
that ROUGE scores can be fairly uncorrelated with
human evaluation, and in general can be distorted
by quirks of the data set or model outputs, partic-
ularly pertaining to length, formatting, and han-
dling of special tokens. On the other hand, human
evaluation can be more sensitive to comprehensi-
bility and relevancy while being more robust to re-
wording and reasonable ambiguity. Based on our
human evaluation, we find that both unsupervised
and supervised methods still fall short of effective
sentence compression and summarization.

7 Conclusion

We present a fully unsupervised approach to the
task of sentence compression in the form of
a denoising auto-encoder with additive noising
and word shuffling. Our model achieves com-
parable scores in human evaluation to a super-
vised sequence-to-sequence attentional baseline in
grammatical correctness and retention of mean-
ing, but underperforms on ROUGE. Output anal-
ysis indicates that our model does not capture
the particular style of the summaries in the Gi-
gaword dataset, but nevertheless produces reason-
ably valid sentences that capture the meaning of
the input. Although our models are still prone to
making mistakes, they provide a strong baseline
for future sentence compression and summariza-
tion work.
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