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Abstract

Neural morphological tagging has been re-
garded as an extension to POS tagging task,
treating each morphological tag as a mono-
lithic label and ignoring its internal structure.
We propose to view morphological tags as
composite labels and explicitly model their
internal structure in a neural sequence tag-
ger. For this, we explore three different neural
architectures and compare their performance
with both CRF and simple neural multiclass
baselines. We evaluate our models on 49 lan-
guages and show that the neural architecture
that models the morphological labels as se-
quences of morphological category values per-
forms significantly better than both baselines
establishing state-of-the-art results in morpho-
logical tagging for most languages.1

1 Introduction

The common approach to morphological tagging
combines the set of word’s morphological fea-
tures into a single monolithic tag and then, sim-
ilar to POS tagging, employs multiclass sequence
classification models such as CRFs (Müller et al.,
2013) or recurrent neural networks (Labeau et al.,
2015; Heigold et al., 2017). This approach, how-
ever, has a number of limitations. Firstly, it ig-
nores the intrinsic compositional structure of the
labels and treats two labels that differ only in
the value of a single morphological category as
completely independent; compare for instance la-
bels [POS=NOUN,CASE=NOM,NUM=SG] and
[POS=NOUN,CASE=NOM,NUM=PL] that only
differ in the value of the NUM category. Secondly,
it introduces a data sparsity issue as the less fre-
quent labels can have only few occurrences in the

1The source code is available at
https://github.com/AleksTk/seq-morph-tagger

training data. Thirdly, it excludes the ability to pre-
dict labels not present in the training set which can
be an issue for languages such as Turkish where
the number of morphological tags is theoretically
unlimited (Yuret and Türe, 2006).

To address these problems we propose to treat
morphological tags as composite labels and explic-
itly model their internal structure. We hypothesise
that by doing that, we are able to alleviate the spar-
sity problems, especially for languages with very
large tagsets such as Turkish, Czech or Finnish, and
at the same time also improve the accuracy over a
baseline using monolithic labels. We explore three
different neural architectures to model the compo-
sitionality of morphological labels. In the first ar-
chitecture, we model all morphological categories
(including POS tag) as independent multiclass clas-
sifiers conditioned on the same contextual word
representation. The second architecture organises
these multiclass classifiers into a hierarchy—the
POS tag is predicted first and the values of morpho-
logical categories are predicted conditioned on the
value of the predicted POS. The third architecture
models the label as a sequence of morphological
category-value pairs. All our models share the
same neural encoder architecture based on bidirec-
tional LSTMs to construct contextual representa-
tions for words (Lample et al., 2016).

We evaluate all our models on 49 UD version
2.1 languages. Experimental results show that our
sequential model outperforms other neural coun-
terparts establishing state-of-the-art results in mor-
phological tagging for most languages. We also
confirm that all neural models perform significantly
better than a competitive CRF baseline. In short,
our contributions can be summarised as follows:

1) We propose to model the compositional in-
ternal structure of complex morphological la-

https://github.com/AleksTk/seq-morph-tagger
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bels for morphological tagging in a neural
sequence tagging framework;

2) We explore several neural architectures for
modeling the composite morphological labels;

3) We find that tag representation based on the
sequence learning model achieves state-of-the
art performance on many languages.

4) We present state-of-the-art morphological tag-
ging results on 49 languages on the UDv2.1
corpora.

2 Related Work

Most previous work on modeling the internal struc-
ture of complex morphological labels has occurred
in the context of morphological disambiguation—a
task where the goal is to select the correct analy-
sis from a limited set of candidates provided by a
morphological analyser. The most common strat-
egy to cope with a large number of complex labels
has been to predict all morphological features of a
word using several independent classifiers whose
predictions are later combined using some scoring
mechanism (Hajič and Hladká, 1998; Hajič, 2000;
Smith et al., 2005; Yuret and Türe, 2006; Zalmout
and Habash, 2017; Kirov et al., 2017). Inoue et al.
(2017) combined these classifiers into a multitask
neural model sharing the same encoder, and pre-
dicted both POS tag and morphological category
values given the same contextual representation
computed by a bidirectional LSTM. They showed
that the multitask learning setting outperforms the
combination of several independent classifiers on
tagging Arabic. In this paper, we experiment with
the same architecture, termed as multiclass mul-
tilabel model, on many languages. Additionally,
we extend this approach and explore a hierarchical
architecture where morphological features directly
depend on the POS tag.

Another previously adopted approach involves
modeling complex morphological labels as se-
quences of morphological feature values (Hakkani-
Tur et al., 2000; Schmid and Laws, 2008). In neural
networks, this idea can be implemented with recur-
rent sequence modeling. Indeed, one of our pro-
posed models generates morphological tags with
an LSTM network. Similar idea has been applied
for the morphological reinflection task (Kann and
Schütze, 2016; Faruqui et al., 2016) where the se-
quential model is used to generate the spellings of
inflected forms given the lemma and the morpho-
logical label of the desired form. In morphological

tagging, however, we generate the morphological
labels themselves.

Another direction of research on modeling the
structure of complex morphological labels involves
structured prediction models (Müller et al., 2013;
Müller and Schütze, 2015; Malaviya et al., 2018;
Lee et al., 2011). Lee et al. (2011) introduced
a factor graph model that jointly infers morpho-
logical features and syntactic structures. Müller
et al. (2013) proposed a higher-order CRF model
which handles large morphological tagsets by de-
composing the full label into POS tag and mor-
phology part. Malaviya et al. (2018) proposed a
factorial CRF to model pairwise dependencies be-
tween individual features within morphological la-
bels and also between labels over time steps for
cross-lingual transfer. Recently, neural morpholog-
ical taggers have been compared to the CRF-based
approach (Heigold et al., 2017; Yu et al., 2017).
While Heigold et al. (2017) found that their neu-
ral model with bidirectional LSTM encoder sur-
passes the CRF baseline, the results of Yu et al.
(2017) are mixed with the convolutional encoder
being slightly better or on par with the CRF but the
LSTM encoder being worse than the CRF baseline.

Most previous work on neural POS and morpho-
logical tagging has shared the general idea of using
bidirectional LSTM for computing contextual fea-
tures for words (Ling et al., 2015; Huang et al.,
2015; Labeau et al., 2015; Ma and Hovy, 2016;
Heigold et al., 2017). The focus of the previous
work has been mostly on modeling the inputs by ex-
ploring different character-level representations for
words (Heigold et al., 2016; Santos and Zadrozny,
2014; Ma and Hovy, 2016; Inoue et al., 2017; Ling
et al., 2015; Rei et al., 2016). We adopt the general
encoder architecture from these works, construct-
ing word representations from characters and using
another bidirectional LSTM to encode the context
vectors. In contrast to these previous works, our
focus is on modeling the compositional structure
of the complex morphological labels.

The morphologically annotated Universal De-
pendencies (UD) corpora (Nivre et al., 2017) offer
a great opportunity for experimenting on many lan-
guages. Some previous work have reported results
on several UD languages (Yu et al., 2017; Heigold
et al., 2017). Morphological tagging results on
many UD languages have been also reported for
parsing systems that predict POS and morphologi-
cal tags as preprocessing (Andor et al., 2016; Straka
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et al., 2016; Straka and Straková, 2017). Since UD
treebanks have been in constant development, these
results have been obtained on different UD versions
and thus are not necessarily directly comparable.
We conduct experiments on all UDv2.1 languages
and we aim to provide a baseline for future work
in neural morphological tagging.

3 Neural Models

We explore three different neural architectures for
modeling morphological labels: multiclass multi-
label model that predicts each category value sep-
arately, hierarchical multiclass multilabel model
where the values of morphological features depend
on the value of the POS, and a sequence model
that generates morphological labels as sequences
of feature-value pairs.

3.1 Notation

Given a sentence w1, . . . , wn consisting of n words,
we want to predict the sequence t1, . . . , tn of mor-
phological labels for that sentence. Each label
ti = {fi0, fi1, . . . , fim} consists of a POS tag
(fi0 ≡ POS) and a sequence of m category val-
ues. For each word wi, the encoder computes a
contextual vector hi, which captures information
about the word and its left and right context.

3.2 Decoder Models

Multiclass Multilabel model (MCML) This
model formulates the morphological tagging as a
multiclass multilabel classification problem. For
each morphological category, a separate multiclass
classifier is trained to predict the value of that cate-
gory (Figure 1 (a)). Because not all categories are
always present for each POS (e.g., a noun does not
have a tense category), we extend the morphologi-
cal label of each word by adding all features that
are missing from the annotated label and assign
them a special value that marks the category as
“off”. Formally, the model can be described as:

p(t|h)MCML =

M∏
j=0

p(fj |h), (1)

where M is the total number of morphological cate-
gories (such as case, number, tense, etc.) observed
in the training corpus. The probability of each
feature value is computed with a softmax function:

p(fj |h)MCML = softmax(Wjh+ bj),

where Wj and bj are the parameter matrix and
bias vector for the jth morphological feature (j =
0, . . . ,M ). The final morphological label for a
word is obtained by concatenating predictions for
individual categories while filtering out off-valued
categories.

Hierarchical Multiclass Multilabel model
(HMCML) This is a hierarchical version of the
MCML architecture that models the values of
morphological categories as directly dependent on
the POS tag (Figure 1 (b)):

p(t|h)HMCML = p(POS|h)
M∏
j=1

p(fj |POS, h) (2)

The probability of the POS is computed from the
context vector h using the respective parameters:

p(POS|h) = softmax(WPOSh+ bPOS)

The POS-dependent context vector l is obtained by
concatenating the context vector h with the unnor-
malised log probabilities of the POS:

l = [h;WPOSh+ bPOS]

The probabilities of the morphological features are
computed using the POS-dependent context vector:

p(fj |POS, h) = softmax(Wjl+bj) j = 1, . . . ,M

Sequence model (SEQ) The SEQ model predicts
complex morphological labels as sequences of cate-
gory values. This approach is inspired from neural
sequence-to-sequence models commonly used for
machine translation (Cho et al., 2014; Sutskever
et al., 2014). For each word in a sentence, the
decoder uses a unidirectional LSTM network (Fig-
ure 1 (c)) to generate a sequence of morphological
category-value pairs based on the context vector h
and the previous predictions. The probability of a
morphological label t is under this model:

p(t|h)SEQ =

m∏
j=0

p(fj |f0, . . . , fj−1, h) (3)

Decoding starts by passing the start-of-sequence
symbol as input. At each time step, the decoder
computes the label context vector gj based on the
previously predicted category value, previous label
context vector and the word’s context vector.

gj = LSTM([fj−1;h], gj−1)
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Figure 1: Neural architectures for modeling complex morphological labels: a) Multiclass Multilabel model
(MCML), b) Hierarchical Multiclass Multilabel model (HMCML), c) Sequence model (SEQ) and d) Multiclass
baseline model (MC). Correct labels are shown with a green border, incorrect labels have a red dotted border.

The probability of each morphological feature-
value pair is then computed with a softmax.

p(fj |gj)SEQ = softmax(WSEQgj + bSEQ)

At training time, we feed correct labels as inputs
while at inference time, we greedily emit the best
prediction from the set of all possible feature-value
pairs. The decoding terminates once the end-of-
sequence symbol is produced.

3.3 Encoder

We adopt a standard sequence tagging encoder ar-
chitecture for all our models. It consists of a bidi-
rectional LSTM network that maps words in a sen-
tence into context vectors using character and word-
level embeddings. Character-level word embed-
dings are constructed with a bidirectional LSTM
network and they capture useful information about
words’ morphology and shape. Word level em-
beddings are initialised with pre-trained embed-
dings and fine-tuned during training. The character
and word-level embeddings are concatenated and
passed as inputs to the bidirectional LSTM encoder.
The resulting hidden states hi capture contextual
information for each word in a sentence. Similar en-
coder architectures have been applied recently with
notable success to morphological tagging (Heigold
et al., 2017; Yu et al., 2017) as well as several other
sequence tagging tasks (Lample et al., 2016; Chiu
and Nichols, 2016; Ling et al., 2015).

4 Experimental Setup

This section details the experimental setup. We
describe the data, then we introduce the baseline
models and finally we report the hyperparameters
of the models.

4.1 Data

We run experiments on the Universal Dependencies
version 2.1 (Nivre et al., 2017). We excluded cor-
pora that did not include train/dev/test split, word
form information2, or morphological features3. Ad-
ditionally, we excluded corpora for which pre-
trained word embeddings were not available.4 The
resulting dataset contains 69 corpora covering 49
different languages. Tagsets were constructed by
concatenating the POS and morphological annota-
tions of the treebanks. Table 1 gives corpus statis-
tics. We present type and token counts for both
training and test sets. For training set, we also
show the average and maximum number of tags
per word type and the size of the morphological
tagset. For the test set, we report the proportion
of out-of-vocabulary (OOV) words as well as the
number of OOV tag tokens and types.

In the encoder, we use fastText word embed-
dings (Bojanowski et al., 2017) pre-trained on
Wikipedia.5 Although these embeddings are un-
cased, our model still captures case information by

2French-FTB and Arabic-NYUAD
3Japanese
4Ancient Greek and Coptic
5
https://github.com/facebookresearch/fastText

https://github.com/facebookresearch/fastText
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Dataset
Train set Test set

Tokens Types Tags per word % Emb # Tags Tokens Types % OOV OOV Tags
Avg Max Tokens Types

Afrikaans 33894 5080 1.1 4 62.7 61 10065 2476 13.8 3 3
Arabic 254340 33225 1.8 10 90.1 349 32128 8754 9.8 6 6
Basque 72974 19222 1.4 13 53.8 884 24374 8896 17.8 71 61
Belarusian 5217 2303 1.4 6 74.6 346 1382 708 39.7 48 32
Bulgarian 124336 25047 1.1 7 65.7 432 15724 5974 12.3 4 3
Catalan 418494 31544 1.2 8 62.0 267 58017 9832 5.2 3 3
Chinese 98608 17610 1.3 6 65.8 31 12012 4055 12.5 1 1
Croatian 169283 34968 1.6 19 66.0 1105 13228 5513 14.1 13 13
Czech 1175374 125358 1.7 25 59.7 2630 174252 37727 7.0 127 94
Czech-CAC 473622 66272 1.7 21 72.4 1746 10900 4499 12.6 17 17
Czech-CLTT 27005 4336 1.5 21 73.3 418 4126 1169 17.2 39 30
Czech-FicTree 134059 25943 1.4 58 72.9 1464 16761 5691 12.8 46 43
Danish 80378 16330 1.2 5 62.3 157 10023 3424 15.3 3 2
Dutch 186046 26665 1.2 6 59.8 62 11046 3054 13.7 23 1
Dutch-LassySmall 81243 14622 1.1 5 54.7 60 10080 3573 7.4 0 0
English 204607 19672 1.4 10 58.3 117 25097 5630 9.1 3 3
English-LinES 50095 7436 1.2 4 79.8 17 15623 3530 10.3 0 0
English-ParTUT 43545 6963 1.3 8 74.7 133 3412 1136 9.3 3 3
Estonian 85567 23055 1.3 7 58.0 662 10618 4928 18.6 28 24
Finnish 162827 49210 1.1 9 59.4 2052 21070 9112 23.7 144 119
Finnish-FTB 127845 39755 1.2 8 59.3 1762 16311 8011 23.0 83 76
French 366371 42268 1.2 10 53.5 228 10298 3284 5.8 1 1
French-ParTUT 24922 3815 1.3 10 87.3 197 2693 831 11.2 2 2
French-Sequoia 51924 8463 1.2 5 73.2 200 10360 3023 8.9 0 0
Galician 86676 13236 1.1 4 73.5 27 32390 7169 9.9 3 2
Galician-TreeGal 5262 1873 1.3 9 77.7 173 10900 3182 26.8 81 41
German 268145 49472 2.3 38 25.3 684 16537 5406 11.7 28 26
Gothic 35024 6787 1.4 12 1.5 623 10182 2827 12.4 28 23
Greek 43440 9049 1.3 15 74.4 349 10922 3370 16.4 9 6
Hebrew 169360 29638 1.3 8 87.8 521 15134 5115 16.1 7 6
Hindi 281057 16974 2.4 55 79.3 939 35430 5335 4.6 23 23
Hungarian 20166 7767 1.4 5 75.7 580 10448 4558 37.1 108 85
Indonesian 97531 19223 1.2 6 45.3 21 11780 4354 13.8 0 0
Irish 3183 1257 1.5 8 62.3 236 10138 3245 36.1 276 113
Italian 288750 28915 1.2 11 70.1 278 11153 3533 5.6 0 0
Italian-ParTUT 52390 8323 1.1 6 82.0 205 3929 1318 9.1 1 1
Italian-PoSTWITA 53725 12363 1.2 9 48.7 201 6778 2550 17.3 6 4
Kazakh 547 343 1.2 2 73.2 72 10142 4559 71.9 2371 371
Korean 52328 27714 1.1 4 68.8 11 10926 7060 37.5 0 0
Latin 8018 3854 1.4 7 64.6 347 10954 4996 45.8 153 76
Latin-ITTB 270403 12526 1.5 13 63.1 985 10561 1642 2.2 14 12
Latin-PROIEL 147044 22258 1.4 21 50.6 993 12152 4331 9.8 15 13
Latvian 62397 17745 1.3 30 64.0 742 14490 5467 23.9 46 36
Lithuanian 3210 1522 1.2 3 73.2 297 1060 625 54.7 72 57
Marathi 3253 969 1.6 70 78.1 261 448 199 26.3 19 15
Norwegian-Bokmaal 243887 30072 1.2 6 61.8 203 29966 6616 11.3 4 3
Norwegian-Nynorsk 245330 29133 1.3 8 50.0 184 24773 5963 11.1 3 2
Old_Church_Slavonic 37432 7745 1.4 11 2.2 859 10031 3243 14.1 87 66
Persian 122180 13859 1.1 5 89.7 162 16122 3945 8.5 3 2
Polish 63070 21230 1.5 12 72.3 991 10906 5107 24.2 30 26
Portuguese 222070 27396 1.4 35 61.9 375 10942 3417 8.2 3 3
Portuguese-BR 273176 29944 1.2 8 58.5 22 33638 8047 6.8 0 0
Romanian 185113 30970 1.2 6 69.3 451 16324 5755 10.4 7 6
Russian 75964 25708 1.5 15 66.6 693 11548 5717 26.4 31 23
Russian-SynTagRus 871082 107891 1.4 12 74.7 723 117470 29078 9.5 14 14
Serbian 65764 14713 1.4 12 59.4 539 10891 4038 16.2 8 8
Slovak 80575 21104 1.4 39 63.7 1199 13028 6049 35.8 72 58
Slovenian 112530 29390 1.4 7 67.2 1101 14077 5856 19.9 20 19
Slovenian-SST 9487 2672 1.4 5 90.5 500 10000 2812 21.6 202 132
Spanish 389703 46979 1.4 12 56.7 399 12267 4114 7.4 3 3
Spanish-AnCora 446145 38456 1.2 8 68.3 295 52801 10615 5.6 4 2
Swedish 66645 12911 1.2 8 70.3 202 20377 5127 14.9 12 8
Swedish-LinES 48325 9659 1.2 6 77.3 168 15029 4150 15.0 875 16
Tamil 6849 3040 1.1 4 78.7 201 2183 1132 44.3 20 15
Telugu 5082 1743 1.1 4 0.3 14 721 387 25.0 0 0
Turkish 39169 14576 1.2 9 67.5 972 10256 5139 26.4 87 82
Ukrainian 75054 23970 1.4 23 72.6 1197 14939 6337 27.2 72 60
Urdu 108690 9547 2.7 52 73.9 1001 14806 2949 6.4 27 21
Vietnamese 20285 3625 1.2 4 33.7 15 11955 2684 17.1 1 1

Table 1: Descriptive statistics for all UDv2.1 datasets. For training sets we report the number of word tokens and types, the
average (Avg) and maximum (Max) tags per word type, the proportion of word types for which pre-trained embeddings were
available (% Emb) and the size of the morphological tagset (# Tags). For the test sets, we also give the total number of tokens
and types, the proportion of OOV words (% OOV) and the number of OOV tag tokens and types.
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means of character-level embeddings. In Table 1,
we also report for each language the proportion of
word types for which the pre-trained embeddings
are available.

4.2 Baseline Models

We use two models as baseline: the CRF-based
MARMOT (Müller et al., 2013) and the regular
neural multiclass classifier.

MarMoT (MMT) MARMOT6 is a CRF-based
morphological tagger which has been shown to
achieve competitive performance across several
languages (Müller et al., 2013). MARMOT approx-
imates the CRF objective using a pruning strategy
which enables training higher-order models and
handling large tagsets. In particular, the tagger first
predicts the POS part of the label and based on that,
constrains the set of possible morphological labels.
Following the results of Müller et al. (2013), we
train second-order models. We tuned the regular-
ization type and weight on German development
set and based on that, we use L2 regularization with
weight 0.01 in all our experiments.

Neural Multiclass classifier (MC) As the sec-
ond baseline, we employ the standard multiclass
classifier used by both Heigold et al. (2017) and
Yu et al. (2017). The proposed model consists
of an LSTM-based encoder, identical to the one
described above in section 3.3, and a softmax clas-
sifier over the full tagset. The tagset sizes for each
corpora are shown in Table 1. During preliminary
experiments, we also added CRF layer on top of
softmax, but as this made the decoding process con-
siderably slower without any visible improvement
in accuracy, we did not adopt CRF decoding here.
The multiclass model is shown in Figure 1 (d).

The inherent limitation of both baseline models
is their inability to predict tags that are not present
in the training corpus. Although the number of such
tags in our data set is not large, it is nevertheless
non-zero for most languages.

4.3 Training and Parametrisation

Since tuning model hyperparameters for each of
the 69 datasets individually is computationally de-
manding, we optimise parameters on Finnish—a
morphologically complex language with a reason-
able dataset size—and apply the resulting values to

6http://cistern.cis.lmu.de/marmot/

SEQ OTHER NN

Encoder
Word embedding size 300 300
Character embedding size 100 100
Character LSTM hidden layer size 150 150
Word embedding dropout 0.5 0.5
LSTM layers 1 1
LSTM hidden state size 400 400
LSTM input dropout 0.5 0.5
LSTM state dropout 0.3 0.3
LSTM output dropout 0.5 0.5

Decoder
LSTM hidden state size 800 800
Tag embedding size 150 –

Training
Initial learning rate 1.0 1.0
Batch size 5 20
Maximum epochs 400 400
Learning rate decay factor – 0.98

Table 2: Hyperparameters for neural models.

other languages. We first tuned the character em-
bedding size and character-LSTM hidden layer size
of the encoder on the SEQ model and reused the
obtained values with all other models. We tuned
the batch size, the learning rate and the decay fac-
tor for the SEQ and MC models separately since
these models are architecturally quite different. For
the MCML and HMCML models we reuse the val-
ues obtained for the MC model. The remaining
hyperparameter values are fixed. Table 2 lists the
hyperparameters for all models.

We train all neural models using stochastic gra-
dient descent for up to 400 epochs and stop early
if there has been no improvement on development
set within 50 epochs. For all models except SEQ,
we decay the learning rate by a factor of 0.98 after
every 2500 batch updates. We initialise biases with
zeros and parameter matrices using Xavier uniform
initialiser (Glorot and Bengio, 2010).

Words in training sets with no pre-trained em-
beddings are initialised with random embeddings.
At test time, words with no pre-trained embedding
are assigned a special UNK-embedding. We train
the UNK-embedding by randomly substituting the
singletons in a batch with the UNK-embedding
with a probability of 0.5.

5 Results

Table 3 presents the experimental results. We re-
port tagging accuracy for all word tokens and also
for OOV tokens only. A full morphological tag is
considered correct if both its POS and all morpho-
logical features are correctly predicted.

http://cistern.cis.lmu.de/marmot/
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Full tag (all words) Full tag (OOV words) POS (all words)
Dataset MMT Mc McMl HMcMl Seq MMT Mc McMl HMcMl Seq MMT Mc McMl HMcMl Seq

Afrikaans 94.17 95.17 94.46 94.65 95.45 79.77 84.67 81.93 82.72 84.88 96.47 97.40 97.62 97.48 97.66
Arabic 90.96 93.39 93.25 93.23 93.84 81.25 86.06 85.24 85.14 87.14 95.22 96.01 96.18 96.20 96.22
Basque 87.15 89.92 89.96 90.15 90.33 63.67 72.65 71.61 71.86 71.95 93.87 95.25 96.00 96.00 95.89
Belarusian 73.66 71.35 72.29 75.54 78.15 48.18 46.35 47.81 52.92 59.12 90.38 86.54 91.53 93.42 93.20
Bulgarian 95.90 97.03 96.76 96.76 97.04 82.62 88.74 86.66 86.72 88.22 98.04 98.64 98.76 98.82 98.79
Catalan 96.60 97.52 97.39 97.36 97.59 89.21 91.95 91.75 91.35 92.28 98.05 98.63 98.68 98.65 98.70
Chinese 90.91 92.97 92.79 92.47 93.27 77.90 82.24 81.71 81.17 82.91 91.89 93.84 93.70 93.44 94.11
Croatian 84.99 88.66 88.96 88.96 89.24 66.11 74.87 75.89 76.48 76.37 96.47 97.25 97.54 97.41 97.45
Czech 93.00 95.81 95.06 95.05 95.39 73.07 82.92 80.81 80.53 79.70 98.56 98.95 99.00 98.99 98.88
Czech-CAC 90.46 95.19 94.74 94.72 95.14 69.39 82.25 80.13 79.91 81.59 98.65 99.06 99.17 99.28 99.05
Czech-CLTT 89.21 89.63 90.45 91.01 91.37 73.00 77.78 78.48 78.20 80.03 98.01 97.99 98.91 99.05 98.67
Czech-FicTree 91.24 93.93 94.54 94.48 94.64 75.32 83.96 84.48 83.87 85.46 97.55 98.14 98.57 98.51 98.38
Danish 93.90 95.73 95.26 95.46 95.97 78.74 85.24 83.03 83.68 85.96 95.79 97.26 97.30 97.44 97.51
Dutch 91.84 94.62 93.70 93.81 94.73 70.49 81.23 77.65 77.52 80.57 94.39 96.23 96.22 96.11 96.35
Dutch-LassySmall 97.09 97.05 97.33 97.29 97.54 80.73 83.96 83.15 82.35 84.10 97.82 97.83 98.41 98.36 98.26
English 93.03 94.92 94.40 94.36 94.80 76.22 85.43 83.33 83.38 84.69 94.54 96.13 96.09 95.96 96.06
English-LinES 95.03 96.52 96.36 96.39 96.36 83.72 90.34 89.41 90.09 89.23 95.03 96.52 96.36 96.39 96.36
English-ParTUT 92.32 93.76 93.17 93.17 94.17 70.22 76.49 73.35 73.67 81.82 93.87 95.43 96.10 96.07 95.87
Estonian 91.40 93.28 93.17 93.25 93.30 79.25 84.78 84.42 84.32 85.13 95.54 96.61 96.74 96.85 96.68
Finnish 91.41 93.13 93.18 93.29 93.41 78.35 84.05 84.79 84.71 84.71 95.68 96.55 97.02 97.05 96.79
Finnish-FTB 90.59 93.91 94.13 93.88 91.93 76.06 84.65 85.50 85.24 80.85 93.36 95.73 96.28 96.19 94.56
French 95.68 96.36 95.97 96.17 96.39 82.67 87.02 86.36 85.19 87.85 96.93 97.48 97.43 97.50 97.49
French-ParTUT 92.91 93.50 93.28 92.94 93.95 71.10 73.42 70.10 70.10 72.43 95.77 96.10 96.77 96.73 96.77
French-Sequoia 95.99 96.66 96.51 96.31 96.91 76.99 83.64 80.82 80.39 82.23 97.68 98.06 98.33 98.17 98.32
Galician 96.97 97.65 97.72 97.70 97.76 84.94 88.66 88.98 88.85 89.01 97.10 97.80 97.87 97.84 97.90
Galician-TreeGal 86.31 83.83 85.00 85.31 86.61 68.40 66.77 67.83 68.28 71.80 90.13 88.36 91.99 92.00 91.48
German 80.81 87.98 87.11 87.16 88.32 63.12 78.53 75.00 76.14 78.37 92.60 94.47 94.56 94.62 94.35
Gothic 87.09 86.49 86.25 86.86 87.99 69.70 65.59 60.84 62.03 65.27 95.47 94.48 95.45 96.02 95.59
Greek 91.00 92.63 93.85 93.58 94.14 73.17 78.42 80.55 79.32 81.89 96.74 97.21 97.80 97.74 97.73
Hebrew 93.19 95.05 94.73 94.60 95.09 81.05 87.90 86.87 86.63 88.02 96.15 97.59 97.59 97.53 97.56
Hindi 89.00 91.78 91.47 91.34 91.75 62.35 72.37 69.99 68.77 71.70 96.20 97.00 97.32 97.22 97.03
Hungarian 71.47 80.96 82.89 82.45 84.12 49.42 67.14 70.08 68.87 72.01 92.78 93.94 95.30 95.31 95.44
Indonesian 93.56 93.79 93.73 93.74 93.65 88.22 88.04 88.53 88.16 87.67 93.57 93.81 93.81 93.85 93.69
Irish 67.99 60.73 62.02 61.95 65.81 35.48 28.05 29.50 28.70 34.50 83.62 79.10 84.01 84.22 83.63
Italian 97.06 97.53 97.31 97.31 97.61 86.61 88.87 86.61 86.29 88.71 97.74 98.16 98.19 98.32 98.26
Italian-ParTUT 96.13 97.12 96.79 96.84 97.12 80.22 90.81 86.35 85.79 88.30 97.28 97.86 98.14 98.12 98.12
Italian-PoSTWITA 91.92 93.79 93.23 93.36 93.69 75.85 82.34 80.20 80.80 81.83 93.54 95.32 95.72 95.68 95.16
Kazakh 37.19 31.63 28.84 28.70 34.35 20.97 13.52 10.45 10.38 17.84 52.73 48.94 52.38 54.74 54.57
Korean 93.98 95.82 95.55 95.49 95.87 90.48 93.51 93.12 92.90 93.33 93.98 95.82 95.55 95.50 95.87
Latin 64.94 64.10 65.35 65.88 67.45 41.05 42.54 42.58 43.30 46.99 80.73 80.97 84.84 85.57 84.81
Latin-ITTB 92.98 95.18 95.60 95.57 95.27 68.26 74.78 75.65 74.35 72.61 97.30 98.12 98.30 98.34 98.17
Latin-PROIEL 88.37 90.64 90.20 90.13 89.66 68.43 78.39 74.46 73.20 71.69 95.78 96.68 96.80 96.72 95.94
Latvian 85.59 87.67 87.14 87.14 87.79 67.91 73.59 71.94 71.94 73.88 92.80 94.38 94.87 94.88 94.55
Lithuanian 65.00 58.02 64.91 63.58 67.92 44.66 36.72 43.79 43.10 51.03 73.87 70.00 81.60 79.25 81.70
Marathi 66.07 68.75 64.06 64.96 70.09 39.83 49.15 33.05 36.44 44.92 82.14 82.81 84.15 84.82 84.60
Norwegian-Bokmaal 94.99 96.37 96.13 95.94 96.54 80.14 84.53 83.11 82.54 84.68 97.33 98.24 98.39 98.26 98.44
Norwegian-Nynorsk 94.65 96.25 95.69 95.69 96.07 81.32 85.30 81.93 82.11 83.82 97.08 98.12 98.22 98.14 98.08
Old_Church_Slavonic 87.58 86.96 87.01 86.87 87.96 60.31 60.59 57.49 57.13 58.83 94.98 94.40 95.38 95.61 94.94
Persian 95.84 96.75 96.38 96.38 96.79 79.36 86.09 84.04 83.67 85.43 96.39 97.13 97.11 97.10 97.30
Polish 86.04 90.46 90.99 90.78 90.99 69.13 81.21 79.36 79.81 80.87 96.65 97.73 98.25 98.11 98.04
Portuguese 94.21 95.59 95.34 95.59 95.75 79.48 86.66 86.66 86.77 86.43 97.21 97.72 98.06 97.95 98.04
Portuguese-BR 97.59 98.20 98.20 98.14 98.21 92.30 95.20 95.56 95.03 95.16 97.60 98.20 98.21 98.16 98.22
Romanian 96.30 97.00 96.72 96.61 97.16 85.15 89.51 88.10 87.92 89.75 97.18 97.61 97.74 97.78 97.77
Russian 85.99 90.21 90.73 90.93 91.05 66.91 77.85 78.24 78.90 79.26 95.42 96.43 96.72 96.84 96.50
Russian-SynTagRus 94.44 96.78 96.48 96.58 96.67 78.91 88.50 87.21 87.48 86.98 98.51 98.84 98.92 98.93 98.94
Serbian 91.17 93.25 93.32 93.58 93.93 77.32 83.22 82.20 82.48 83.50 97.47 97.89 98.25 98.17 98.19
Slovak 81.72 87.50 88.16 88.54 88.46 68.42 78.66 78.98 79.24 79.69 94.62 95.85 96.49 96.34 96.46
Slovenian 89.39 94.32 94.05 93.98 94.62 73.14 86.34 83.94 83.58 86.41 97.07 98.15 98.29 98.39 98.42
Slovenian-SST 78.71 75.75 79.18 80.02 80.44 45.45 44.06 48.40 49.88 52.24 88.44 87.54 92.04 92.38 90.99
Spanish 94.33 95.05 94.82 94.81 94.90 77.34 82.95 82.29 82.18 81.52 95.88 96.89 96.95 96.98 96.83
Spanish-AnCora 97.13 97.67 97.54 97.58 97.63 90.26 93.22 93.09 93.19 93.36 98.25 98.64 98.75 98.78 98.68
Swedish 94.28 95.41 95.07 95.25 95.65 82.72 86.11 84.20 84.07 86.37 96.38 97.49 97.69 97.72 97.66
Swedish-LinES 85.24 86.38 85.99 85.98 86.47 64.01 68.33 66.28 65.79 67.26 95.00 96.17 96.69 96.65 96.25
Tamil 81.40 82.18 83.05 81.26 85.75 67.87 71.90 72.42 70.56 75.83 86.39 87.49 91.07 90.24 90.75
Telugu 92.23 90.43 89.04 89.32 91.26 80.00 75.56 70.00 71.67 78.33 92.23 90.43 89.04 89.32 91.26
Turkish 86.09 89.47 90.69 90.51 90.70 63.97 74.85 79.83 79.02 79.13 92.86 94.67 95.54 95.51 95.19
Ukrainian 85.33 88.98 89.94 89.96 89.81 69.19 78.89 79.24 79.34 79.36 95.97 96.40 97.23 97.06 97.03
Urdu 77.37 80.09 79.52 78.54 80.66 54.99 64.54 60.30 61.68 65.07 92.56 93.29 93.87 93.71 93.81
Vietnamese 86.13 88.66 88.51 88.22 88.44 55.19 70.81 70.46 69.29 68.70 86.15 88.67 88.58 88.34 88.46

Average (>100K) 92.18 94.37 94.12 94.07 94.37 76.65 84.03 82.67 82.47 83.42 96.49 97.37 97.52 97.50 97.40
Average (50K-100K) 91.27 93.36 93.36 93.40 93.66 76.96 83.46 82.39 82.43 83.40 95.39 96.43 96.71 96.67 96.65
Average (20K-50K) 87.56 89.42 89.69 89.66 90.43 66.35 72.55 71.76 71.47 73.84 94.37 95.13 95.83 95.86 95.69
Average (<20K) 71.35 68.68 69.37 69.65 72.78 49.19 47.46 46.58 47.52 53.26 82.07 80.22 84.27 84.60 84.70

Overall average 88.18 89.58 89.61 89.64 90.42 71.12 76.74 75.62 75.64 77.52 93.76 94.27 95.11 95.14 95.08

Table 3: Morphological tagging accuracies on UDv2.1 test sets for MarMot (MMT) and MC baselines as well as for MCML,
HMCML and SEQ compositional models. The left section shows the full POS+MORPH tag results, the middle section gives
accuracies for OOV words only, the right-most section shows the POS tagging accuracy. The best result in each section for each
language is in bold. The languages are color-coded according to the training set size, lighter color denotes larger training set:
cyan (<20K), violet (20K-50K), magenta (50K-100K), pink (>100K).
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Feature SEQ MC # Feature SEQ MC #

POS 91.03 90.20 69 NumType 89.68 87.82 54
Number 94.02 93.05 63 Polarity 93.83 92.86 54
VerbForm 91.29 89.86 61 Degree 87.44 84.12 48
Person 89.02 87.52 60 Poss 94.52 93.60 44
Tense 92.96 91.31 59 Voice 88.40 82.85 42
PronType 89.83 88.81 58 Definite 95.26 94.10 37
Mood 87.34 85.40 58 Aspect 89.76 87.71 29
Gender 89.31 87.78 55 Animacy 86.22 83.73 19
Case 88.90 87.04 55 Polite 75.76 80.48 10

Table 4: Performance of SEQ and MC models on indi-
vidual features reported as macro-averaged F1-scores.

First of all, we can confirm the results of Heigold
et al. (2017) that the performance of neural morpho-
logical tagging indeed exceeds the results of a CRF-
based model. In fact, all our neural models perform
significantly better than MARMOT (p < 0.001).7

The best neural model on average is the SEQ

model, which is significantly better from both the
MC baseline as well as the other two compositional
models, whereby the improvement is especially
well-pronounced on smaller datasets. We do not
observe any significant differences between MCML

and HMCML models neither on all words nor OOV
evaluation setting.

We also present POS tagging results in the right-
most section of Table 3. Here again, all neural
models are better than CRF which is in line with the
results presented by Plank et al. (2016). For POS
tags, the HMCML is the best on average. It is also
significantly better than the neural MC baseline,
however, the differences with the MCML and SEQ

models are insignificant.
In addition to full-tag accuracies, we assess the

performance on individual features. Table 4 reports
macro-averaged F1-cores for the SEQ and the MC

models on universal features. Results indicate that
the SEQ model systematically outperforms the MC

model on most features.

6 Analysis and Discussion

OOV label accuracy Our models are able to pre-
dict labels that were not seen in the training data.
Figure 2 presents the accuracy of test tokens with
OOV labels obtained with our best performing SEQ

model plotted against the number of OOV label
types. The datasets with zero accuracy are omitted.
The main observation is that although the OOV la-
bel accuracy is zero for some languages, it is above
zero on ca. half of the datasets—a result that would
be impossible with MARMOT or MC baselines.

7As indicated by Wilcoxon signed-rank test.
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Figure 2: OOV label accuracies of the SEQ model.
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Figure 3: Average error rates of distinct morphological
categories for SEQ and MC models.

Error Analysis Figure 3 shows the largest error
rates for distinct morphological categories for both
SEQ and MC models averaged over all languages.
We observe that the error patterns are similar for
both models but the error rates of the SEQ model
are consistently lower as expected.

Stability Analysis To assess the stability of our
predictions, we picked five languages from differ-
ent families and with different corpus size, and
performed five independent train/test runs for each
language. Table 5 summarises the results of these
experiments and demonstrates a reasonably small
variance for all languages. For all languages, ex-
cept for Finnish, the worst accuracy of the SEQ

model was better than the best accuracy of the MC

model, confirming our results that in those lan-
guages, the SEQ model is consistently better than
the MC baseline.
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Dataset SEQ MC

Finnish 93.24 ± 0.12 93.20 ± 0.07
German 88.45 ± 0.21 87.74 ± 0.17
Hungarian 84.51 ± 0.54 80.68 ± 0.48
Russian 91.08 ± 0.18 90.13 ± 0.15
Turkish 90.29 ± 0.24 89.16 ± 0.27

Table 5: Mean accuracy with standard deviation over
five independent runs for SEQ and MC models.

Hyperparameter Tuning It is possible that the
hyperparameters tuned on Finnish are not optimal
for other languages and thus, tuning hyperparame-
ters for each language individually would lead to
different conclusions than currently drawn. To shed
some light on this issue, we tuned hyperparameters
for the SEQ and MC models on the same subset of
five languages. We first independently optimised
the dropout rates on word embeddings, encoder’s
LSTM inputs and outputs, as well as the number of
LSTM layers. We then performed a grid search to
find the optimal initial learning rate, the learning
rate decay factor and the decay step. Value ranges
for the tuned parameters are given in Table 6.

Parameter Values

Word embedding dropout {0, 0.1, . . . , 0.5}
LSTM input dropout {0, 0.1, . . . , 0.5}
LSTM input dropout {0, 0.1, . . . , 0.5}
Number of LSTM layers {1, 2}

Initial learning rate {0.01, 0.1, 1, 2}
Learning rate decay factor {0.97, 0.98, 0.99, 1}
Decay step {1250, 2500, 5000}

Table 6: The grid values for hyperparameter tuning.

Table 7 reports accuracies for the tuned models
compared to the mean accuracies reported in Ta-
ble 5. As expected, both tuned models demonstrate
superior performance on all languages, except for
German with the SEQ model. Hyperparameter tun-
ing has a greater overall effect on the MC model,
which suggests that it is more sensitive to the choice
of parameters than the SEQ model. Still, the tuned
SEQ model performs better or at least as good as
the MC model on all languages.

Comparison with Previous Work Since UD
datasets have been in rapid development and differ-
ent UD versions do not match, direct comparison
of our results to previously published results is diffi-
cult. Still, we show the results taken from Heigold
et al. (2017), which were obtained on UDv1.3, to
provide a very rough comparison. In addition, we
compare our SEQ model with a neural tagger pre-
sented by Dozat et al. (2017), which is similar to

Dataset SEQ Gain MC Gain

Finnish 93.44 +0.20 93.43 +0.23
German 88.35 −0.10 88.14 +0.40
Hungarian 85.56 +1.05 82.29 +1.61
Russian 91.44 +0.36 90.74 +0.61
Turkish 90.56 +0.27 89.32 +0.16

Table 7: Accuracies of the tuned SEQ and MC models
compared to the mean accuracies in Table 5.

Dataset SEQ Dozat Heigold

Arabic 93.84 92.85 93.78
Bulgarian 97.04 97.25 95.14
Czech 95.39 95.22 96.32
English 94.80 94.81 93.32
Estonian 93.30 93.90 94.25
Finnish 93.41 93.73 93.52
French 96.39 95.90 94.91
Hindi 91.75 92.36 90.84
Hungarian 84.12 82.84 77.59
Romanian 97.16 97.20 94.12
Russian-SynTagRus 96.67 96.20 96.45
Turkish 90.70 90.22 89.12

Average 93.71 93.54 92.45

Table 8: Accuracies for the SEQ model, Dozat et al.
(2017) and Heigold et al. (2017).

our MC model, but employs a more sophisticated
encoder. We train this model on UDv2.1 on the
same set of languages used by Heigold et al. (2017).

Table 8 reports evaluation results for the three
models. The SEQ model and Dozat’s tagger demon-
strate comparable performance. This suggests that
the SEQ model can be further improved by adopting
a more advanced encoder from Dozat et al. (2017).

7 Conclusion
We hypothesised that explicitly modeling the inter-
nal structure of complex labels for morphological
tagging improves the overall tagging accuracy over
the baseline with monolithic tags. To test this hy-
pothesis, we experimented with three approaches
to model composite morphological tags in a neural
sequence tagging framework. Experimental results
on 49 languages demonstrated the advantage of
modeling morphological labels as sequences of cat-
egory values, whereas the superiority of this model
is especially pronounced on smaller datasets. Fur-
thermore, we showed that, in contrast to baselines,
our models are capable of predicting labels that
were not seen during training.
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iğit, Giuseppe G. A. Celano, Savas Cetin, Fabri-
cio Chalub, Jinho Choi, Silvie Cinková, Çağrı Çöl-
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