Weakly-supervised Neural Semantic Parsing with a Generative Ranker

Jianpeng Cheng and Mirella Lapata
Institute for Language, Cognition and Computation
School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB
jianpeng.cheng@ed.ac.uk mlap@inf.ed.ac.uk

Abstract

Weakly-supervised semantic parsers are
trained on utterance-denotation pairs, treating
logical forms as latent. The task is chal-
lenging due to the large search space and
spuriousness of logical forms. In this paper
we introduce a neural parser-ranker system
for weakly-supervised semantic parsing. The
parser generates candidate tree-structured
logical forms from utterances using clues
of denotations. These candidates are then
ranked based on two criterion: their likelihood
of executing to the correct denotation, and
their agreement with the utterance semantics.
We present a scheduled training procedure
to balance the contribution of the two ob-
jectives. Furthermore, we propose to use
a neurally encoded lexicon to inject prior
domain knowledge to the model. Experiments
on three Freebase datasets demonstrate the
effectiveness of our semantic parser, achieving
results within the state-of-the-art range.

1 Introduction

Semantic parsing is the task of converting natural
language utterances into machine-understandable
meaning representations or logical forms. The
task has attracted much attention in the literature
due to a wide range of applications ranging from
question answering (Kwiatkowski et al., 2011;
Liang et al., 2011) to relation extraction (Krishna-
murthy and Mitchell, 2012), goal-oriented dialog
(Wen et al., 2015), and instruction understanding
(Chen and Mooney, 2011; Matuszek et al., 2012;
Artzi and Zettlemoyer, 2013).

In a typical semantic parsing scenario, a logical
form is executed against a knowledge base to pro-
duce an outcome (e.g., an answer) known as deno-
tation. Conventional semantic parsers are trained
on collections of utterances paired with annotated
logical forms (Zelle and Mooney, 1996; Zettle-
moyer and Collins, 2005; Wong and Mooney,

356

reconstruction likelihood

(

LSTM decoder

)
)

correct denotation likelihood

()

(

log-linear model stack-LSTM encoder

candidate
logical
forms

sample/beam search

(stack-LSTM decoder]

parser

(bidirectional-LSTM encoder]

Figure 1: Overview of the weakly-supervised neu-
ral semantic parsing system.

2006; Kwiatkowksi et al., 2010). However, the la-
beling of logical forms is labor-intensive and chal-
lenging to elicit at a large scale. As a result, al-
ternative forms of supervision have been proposed
to alleviate the annotation bottleneck faced by se-
mantic parsing systems. One direction is to train
a semantic parser in a weakly-supervised setting
based on utterance-denotation pairs (Clarke et al.,
2010; Kwiatkowski et al., 2013; Krishnamurthy
and Mitchell, 2012; Cai and Yates, 2013), since
such data are relatively easy to obtain via crowd-
sourcing (Berant et al., 2013a).

However, the unavailability of logical forms
in the weakly-supervised setting, renders model
training more difficult. A fundamental challenge
in learning semantic parsers from denotations is
finding consistent logical forms, i.e., those which
execute to the correct denotation. This search
space can be very large, growing exponentially as
compositionality increases. Moreover, consistent
logical forms unavoidably introduce a certain de-
gree of spuriousness — some of them will acci-
dentally execute to the correct denotation without
reflecting the meaning of the utterance. These spu-
rious logical forms are misleading supervision sig-

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 356-367
Brussels, Belgium, October 31 - November 1, 2018. (©)2018 Association for Computational Linguistics

mailto:jianpeng.cheng@ed.ac.uk
mailto:mlap@inf.ed.ac.uk

nals for the semantic parser.

In this work we introduce a weakly-supervised
neural semantic parsing system which aims to
handle both challenges. Our system, shown in
Figure 1, mainly consists of a sequence-to-tree
parser which generates candidate logical forms for
a given utterance. These logical forms are subse-
quently ranked by two components: a log-linear
model scores the likelihood of each logical form
executing to the correct denotation, and an inverse
neural parser measures the degree to which the
logical form represents the meaning of the utter-
ance. We present a scheduled training scheme
which balances the contribution of the two com-
ponents and objectives. To further boost perfor-
mance, we propose to neurally encode a lexicon,
as a means of injecting prior domain knowledge
to the neural parameters.

We evaluate our system on three Freebase
datasets which consist of utterance denotation
pairs: WEBQUESTIONS (Berant et al., 2013a),
GRAPHQUESTIONS (Su et al., 2016), and SPADES
(Bisk et al., 2016). Experimental results across
datasets show that our weakly-supervised seman-
tic parser achieves state-of-the-art performance.

2 The Neural Parser-Ranker

Conventional weakly-supervised semantic parsers
(Liang, 2016) consist of two major compo-
nents: a parser, which is chart-based and non-
parameterized, recursively builds derivations for
each utterance span using dynamic programming.
A learner, which is a log-linear model, defines fea-
tures useful for scoring and ranking the set of can-
didate derivations, based on the correctness of exe-
cution results. As mentioned in Liang (2016), the
chart-based parser brings a disadvantage since it
does not support incremental contextual interpre-
tation. The dynamic programming algorithm re-
quires that features of a span are defined over sub-
derivations in that span.

In contrast to a chart-based parser, a parameter-
ized neural semantic parser decodes logical forms
with global utterance features. However, training
a weakly-supervised neural parser is challenging
since there is no access to gold-standard logical
forms for backpropagation. Besides, it should be
noted that a neural decoder is conditionally gener-
ative: decoding is performed greedily conditioned
on the utterance and the generation history—it
makes no use of global logical form features. In

357

this section, we introduce a parser-ranker frame-
work which combines the best of conventional
and neural approaches in the context of weakly-
supervised semantic parsing.

2.1 Parser

Our work follows Cheng et al. (2017b, 2018) in
using LISP-style functional queries as the logical
formulation. Advantageously, functional queries
are recursive, tree-structured and can naturally en-
code logical form derivations (i.e., functions and
their application order). For example, the utter-
ance “who is obama’s eldest daughter” is sim-
ply represented with the function-argument struc-
ture argmax (daughterOf (Obama), ageOf). Table
1 displays the functions we use in this work; a
more detailed specifications can be found in the
appendix.

To generate logical forms, our system adopts a
variant of the neural sequence-to-tree model pro-
posed in Cheng et al. (2017b). During generation,
the prediction space is restricted by the grammar
of the logical language (e.g., the type and the num-
ber of arguments required by a function) in order
to ensure that output logical forms are well-formed
and executable. The parser consists of a bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
encoder and a stack-LSTM (Dyer et al., 2015) de-
coder, introduced as follows.

Bidirectional-LSTM Encoder The bidirec-
tional LSTM encodes a variable-length utterance
x = (x1, -+ ,x,) into a list of token representa-
tions [hy,--- ,hy,], where each representation is
the concatenation of the corresponding forward
and backward LSTM states.

Stack-LSTM Decoder After the utterance is en-
coded, the logical form is generated with a stack-
LSTM decoder. The output of the decoder consists
of functions which generate the logical form as a
derivation tree in depth-first order. There are three
classes of functions:

e (lass-1 functions generate non-terminal tree
nodes. In our formulation, non-terminal
nodes include language-dependent functions
such as count and argmax, as described in
the first four rows of Table 1. A special
non-terminal node is the relation placeholder

relation.

Class-2 functions generate terminal tree
nodes. In our formulation, terminal nodes in-

Function Utility Example
findAll | returns the entity set of a given type find all mountains
findAll (mountain)
filter— all mountains in Europe
filter< | filters an entity set with constraints filter= (findAll (mountain),
filters mountain_location, Europe)
count computes the cardinality of an entity set how many mountains are there
count (findAll (mountain))
argmax finds the subset of an entity set whose certain property | the highest mountain
argmin is maximum (or minimum) argmax (findAll (mountain),
mountain_altitude)
relation| denotes a KB relation; in generation, relation actsas | height of mountain
placeholder for all relations mountain_altitude
entity denotes a KB entity; in generation, entity acts as | Himalaya
placeholder for all entities Himalaya

Table 1: List of functions supported by our functional query language, their utility, and examples.

argmax

A

relation-daughterOf relation-ageOf

entity-Barack_Obama

Functions for generation (parser): argmax,
relation, entity, reduce, relation,
reduce

Functions for encoding (inverse parser): entity,

relation, reduce,
reduce

relation, argmax,

Figure 2: Derivation tree for the utterance “who is
obama’s eldest daughter” (top), and corresponding
functions for generation and encoding (bottom).

clude the relation placeholder relation and
the entity placeholder entity.

e Class-3 function reduce completes a subtree.
Since generation is performed in depth-first
order, the parser needs to identify when the
generation of a subtree completes, i.e., when
a function has seen all its required arguments.

The functions used to generate the example
logicalfornlarqmax(daughterof(obama), ageOf)
are shown in Figure 2. The stack-LSTM makes
two types of updates based on the functions it pre-
dicts:

e Update-1: when a Class-1 or Class-2 func-
tion is called, a non-terminal or terminal to-
ken [; will be generated, At this point, the
stack-LSTM state, denoted by g;, is updated
from its older state g,—; as in an ordinary
LSTM:

gt = LSTM(l4, g1—1) (D

The new state is additionally pushed onto the
stack marking whether it corresponds to a
non-terminal or terminal.

o Update-2: when the reduce function is called
(Class-3), the states of the stack-LSTM are
recursively popped from the stack until a
non-terminal is encountered. = This non-
terminal state is popped as well, after which
the stack-LSTM reaches an intermediate state
denoted by g;—1.;. At this point, we compute
the representation of the completed subtree z;
as:

2z =W, - [pz : Cz] ()

where p, denotes the parent (non-terminal)
embedding of the subtree, and c, denotes the
average embedding of the children (terminals
or already-completed subtrees). W, is the
weight matrix. Finally, z; serves as input for
updating g;—1.; to g¢:

gt = LSTM(Zu gt—lzt) 3)

Prediction At each time step of the decoding,
the parser first predicts a subsequent function f; 1
conditioned on the decoder state g; and the en-
coder states hj - - - h,. We apply standard soft at-
tention (Bahdanau et al., 2015) between g; and the
encoder states hq - - - h,, to compute a feature rep-
resentation A

up =V tanh(Wyh; + W,g;) 4)

al = softmax (u!) 5)

hi = aih; (6)
=1

where V', W), and W, are all weight parameters.
The prediction of the function f;;1 is computed
with a softmax classifier, which takes the concate-
nated features h; and gt as input:

fi+1 ~ softmax(W, tanh(Wy[ht, gi])) (7)

where W, and W, are weight parameters.
When f;1; is a language-dependent function (first
four rows in Table 1, e.g., argmax), it is directly
used as a non-terminal token l;4; to construct the
logical form. However, when f;; 1 isa relation or
entity placeholder, we further predict the specific
relation or entity l.y; with another set of neural
parameters:

li41 ~ softmax(W, tanh(W;[hs, ¢])) (8)

where W, and W, are weight matrices.

Note that in the weakly supervised setting, the
parser decodes a list of candidate logical forms Y
with beam search, instead of outputting the most
likely logical form y. During training, candidate
logical forms are executed against a knowledge
base to find those which are consistent (denoted
by Y.(z)) and lead to the correct denotation. Then,
the parser is trained to maximize the total log like-
lihood of these consistent logical forms:

D logplylx) =

yeYe(x)

> logp(fr,--

yEYe(z)

)

7fk7l17'” 7l0‘m)

where k denotes the number of functions used to
generate the logical form, and o (smaller than k)
denotes the number of tree nodes in the logical
form.

2.2 Ranker

It is impractical to rely solely on a neural decoder
to find the most likely logical form at run time in
the weakly-supervised setting. One reason is that
although the decoder utilizes global utterance fea-
tures for generation, it cannot leverage global fea-
tures of the logical form since a logical form is
conditionally generated following a specific tree-
traversal order. To this end, we follow previous
work (Berant et al., 2013b) and introduce a ranker
to the system. The role of the ranker is to score the
candidate logical forms generated by the parser;
at test time, the logical form receiving the high-
est score will be used for execution. The ranker

359

is a discriminative log-linear model over logical
form y given utterance x:

exp(¢(z,y)"0)
Zy’EY(x) eXp(¢(x7 y/

logg p(y|z) = (10)

)'0)
where Y (z) is the set of candidate logical forms;
¢ is the feature function that maps an utterance-
logical form pair onto a feature vector; and 6 de-
notes the weight parameters of the model.

Since the training data consists only of
utterance-denotation pairs, the ranker is trained
to maximize the log-likelihood of the correct an-
swer z by treating logical forms as a latent vari-
able:

log p(z (11)

= log Z

yEYe(x)

(ylx)p(z|7, y)

where Y. (x) denotes the subset of candidate logi-
cal forms which execute to the correct answer; and

p(z|x,y) equates to 1 in this case.

Training of the neural parser-ranker system in-
volves the following steps. Given an input ut-
terance, the parser first generates a list of candi-
date logical forms via beam search. The logical
forms are then executed and those which yield the
correct denotation are marked as consistent. The
parser is trained to optimize the total likelihood of
consistent logical forms (Equation (9)), while the
ranker is trained to optimize the marginal likeli-
hood of denotations (Equation (11)). The search
space can be further reduced by performing entity
linking which restricts the number of logical forms
to those containing only a small set of entities.

3 Handling Spurious Logical Forms

The neural parser-ranker system relies on beam
search to find consistent logical forms that exe-
cute to the correct answer. These logical forms are
then used as surrogate annotations and provide su-
pervision to update the parser’s parameters. How-
ever, some of these logical forms will be mislead-
ing training signals for the neural semantic parser
on account of being spurious: they coincidentally
execute to the correct answer without matching the
utterance semantics.

In this section we propose a method of remov-
ing spurious logical forms by validating how well
they match the utterance meaning. The intuition
is that a meaning-preserving logical form should
be able to reconstruct the original utterance with

high likelihood. However, since spurious logical
forms are not annotated either, a direct maximum
likelihood solution does not exist. To this end, we
propose a generative model for measuring the re-
construction likelihood.

The model assumes utterance = is generated
from the corresponding logical form y, and only
the utterance is observable. The objective is there-
fore to maximize the log marginal likelihood of x:

logp(z) =log Y _ p(a, y) (12)

Y
We adopt neural variational inference (Mnih and
Gregor, 2014) to solve the above objective, which

is equivalent to maximizing an evidence lower

bound:
(ylz)p(z|y)p(y)

q
lo =lo (13)
gp(x) g o)
p(y)
= Eqla) 108 p(ly) + Bq(ym log T 7

Since our semantic parser always outputs well-
formed logical forms, we assume a uniform con-
stant prior p(y). The above objective can be thus
reduced to:

IEq(y|:z:) logp(x‘y)_Eq(y\x) log q(y]:l:) = ﬁ(l’) (14)

where the first term computes the reconstruction
likelihood p(x|y); and the second term is the en-
tropy of the approximated posterior ¢(y|x) for
regularization. Specifically, we use the seman-
tic parser to compute the approximated posterior
q(y|z).! The reconstruction likelihood p(z|y) is
computed with an inverse parser which recovers
utterance x from its logical form y. We use p(z|y)
to measure how well the logical form reflects the
utterance meaning; details of the inverse parser are
described as follows.

Stack-LSTM Encoder To reconstruct utter-
ance z, logical form y is first encoded with a stack-
LSTM encoder. To do that, we deterministically
convert the logical form into a sequence of Class-1
to Class-3 functions, which correspond to the cre-
ation of tree nodes and subtrees. Slightly different
from the top-down generation process, the func-
tions here are obtained in a bottom-up order to fa-
cilitate encoding. Functions used to encode the ex-
ample 10gical form argmax (daughterOf (Obama) ,
ageof) are shown in Figure 2.

'In Section 2.1, we used a different notation for the output
distribution of the semantic parser as p(y|z).

360

The stack-LSTM sequentially processes the
functions and updates its states based on the class
of each function, following the same principle
(Update-1 and Update-2) described in Section 2.1.
We save a list of terminal, non-terminal and sub-
tree representations [g1, - - - , gs], where each rep-
resentation is the stack-LSTM state at the cor-
responding time step of encoding. The list es-
sentially contains the representation of every tree
node and the representation of every subtree (the
total number of representations is denoted by s).

LSTM Decoder Utterance x is reconstructed
with a standard LSTM decoder attending to tree
nodes and subtree representations. At each time
step, the decoder applies attention between de-
coder state r; and tree fragment representations

[91, e 798]:
vi = V' tanh(Wyrg; + W,rt) (15)
bi = softmax(v}) (16)
g =y big; (17)
=1

and predicts the probability of the next word as:

zy,q ~ softmax (W, tanh(Wp (g, 74])) (18)

where W's and V' are all weight parameters.

Gradients The training objective of the genera-
tive model is given in Equation (14). The param-
eters of the neural network include those of the
original semantic parser (denoted by 6) and the in-
verse parser (denoted by ¢). The gradient of Equa-
tion (14) with respect to ¢ is:

OL(x) 0log p(zy)
a¢ = Ef](y\ﬂﬁ) 6¢ (19)
and the gradient with respect to 0 is:
0L(x)

= Eq(yjw[(log p(z]y) — log q(y|x))

y alogQ(y\w)]

00

Both gradients involve expectations which we

estimate with Monte Carlo method, by sampling

logical forms from the distribution ¢(y|z). Recall

that in the parser-ranker framework these samples
are obtained via beam search.

00
(20)

4 Scheduled Training

Together with the inverse parser for removing spu-
rious logical forms, the proposed system consists
of three components: a parser which generates
logical forms from an utterance, a ranker which
measures the likelihood of a logical form execut-
ing to the correct denotation, and an inverse parser
which measures the degree to which logical forms
are meaning-preserving using reconstruction like-
lihood. Our semantic parser is trained following
a scheduled training procedure, balancing the two
objectives.

e Phase I: at the beginning of training when
all model parameters are far from optimal,
we train only the parser and the ranker as
described in Section 2; the parser generates
a list of candidate logical forms, we find
those which are consistent and update both
the parser and the ranker.

Phase 2: we turn on the inverse parser and
update all three components in one epoch.
However, the reconstruction loss is only used
to update the inverse parser and we pre-
vent it from back-propagating to the semantic
parser. This is because at this stage of train-
ing the parameters of the inverse parser are
sub-optimal and we cannot obtain an accurate
approximation of the reconstruction loss.

Phase 3: finally, we allow the reconstruc-
tion loss to back-propagate to the parser, and
all three components are updated as normal.
Both training objectives are enabled, the sys-
tem maximizes the likelihood of consistent
logical forms and the reconstruction likeli-
hood.

S Neural Lexicon Encoding

In this section we further discuss how the seman-
tic parser presented so far can be enhanced with a
lexicon. A lexicon is essentially a coarse mapping
between natural language phrases and knowledge
base relations and entities, and has been widely
used in conventional chart-based parsers (Berant
et al., 2013a; Reddy et al., 2014). Here, we show
how a lexicon (either hard-coded or statistically-
learned (Krishnamurthy, 2016)) can be used to
benefit a neural semantic parser.

The central idea is that relations or entities
can be viewed as a single-node tree-structured

361

logical form. For example, based on the lex-
icon, the natural language phrase “is influ-
enced by” can be parsed to the logical form
influence.influence_node.influenced.by. We
can therefore pretrain the semantic parser (and the
inverse parser) with these basic utterance-logical
form pairs which act as important prior knowl-
edge for initializing the distributions ¢(y|x) and
p(z|y). With pre-trained word embeddings cap-
turing linguistic regularities on the natural lan-
guage side, we also expect the approach to help
the neural model generalize to unseen natural lan-
guage phrases quickly. For example, by encod-
ing the mapping between the natural language
phrase “locate in” and the Freebase predicate
fb:location.location.containedby, the parser
can potentially link the new phrase “located at”
to the same predicate. We experimentally assess
whether the neural lexicon enhances the perfor-
mance of our semantic parser.

6 Experiments

In this section we evaluate the performance our se-
mantic parser. We introduce the various datasets
used in our experiments, training settings, model
variants used for comparison, and finally present
and analyze our results.

6.1 Datasets

We evaluated our model on three Freebase
datasets: WEBQUESTIONS (Berant et al., 2013a),
GRAPHQUESTIONS (Su et al., 2016) and SPADES
(Bisk et al., 2016). WEBQUESTIONS con-
tains 5,810 real questions asked by people on
the web paired by answers. GRAPHQUESTIONS
contains 5,166 question-answer pairs which were
created by showing 500 Freebase graph queries
to Amazon Mechanical Turk workers and asking
them to paraphrase them into natural language.
SPADES contains 93,319 question-answer pairs
which were created by randomly replacing entities
in declarative sentences with a blank symbol.

6.2 Training

Across training regimes, the dimensions of word
vector, logical form token vector, and LSTM hid-
den states (for the semantic parser and the inverse
parser) are 50, 50, and 150, respectively. Word
embeddings were initialized with Glove embed-
dings (Pennington et al., 2014). All other em-
beddings were randomly initialized. We used one

LSTM layer in the forward and backward direc-
tions. Dropout was used before the softmax acti-
vation (Equations (7), (8), and (18)). The dropout
rate was set to 0.5. Momentum SGD (Sutskever
et al., 2013) was used as the optimization method
to update the parameters of the model.

As mentioned earlier, we use entity linking to
reduce the beam search space. Entity mentions
in SPADES are automatically annotated with Free-
base entities (Gabrilovich et al., 2013). For WE-
BQUESTIONS and GRAPHQUESTIONS we per-
form entity linking following the procedure de-
scribed in Reddy et al. (2016). We identify po-
tential entity spans using seven handcrafted part-
of-speech patterns and associate them with Free-
base entities obtained from the Freebase/KG API.?
We use a structured perceptron trained on the enti-
ties found in WEBQUESTIONS and GRAPHQUES-
TIONS to select the top 10 non-overlapping entity
disambiguation possibilities. We treat each possi-
bility as a candidate entity and construct candidate
utterances with a beam search of size 300.

Key features of the log-linear ranker introduced
in Section 2 include the entity score returned by
the entity linking system, the likelihood score of
the relation in the logical form predicted by the
parser, the likelihood score of the the logical form
predicted by the parser, the embedding similarity
between the relation in the logical form and the
utterance, the similarity between the relation and
the question words in the utterance, and the an-
swer type as indicated by the last word in the Free-
base relation (Xu et al., 2016). All features are
normalized across candidate logical forms. For all
datasets we use average F1 (Berant et al., 2013a)
as our evaluation metric.

6.3 Model Variants

We experiment with three variants of our model.
We primarily consider the neural parser-ranker
system (denoted by NPR) described in Section 2
which is trained to maximize the likelihood of con-
sistent logical forms. We then compare it to a sys-
tem augmented with a generative ranker (denoted
by GRANKER), introducing the second objective
of maximizing the reconstruction likelihood. Fi-
nally, we examine the impact of neural lexicon en-
coding when it is used for the generative ranker,
and also when it is used for the entire system.

http://developers.google.com/
freebase/

362

Models F1
Berant et al. (2013a) 35.7
Berant and Liang (2014) 39.9
Berant and Liang (2015) 49.7
Reddy et al. (2016) 50.3
Yao and Van Durme (2014) 33.0
Bast and Haussmann (2015) 494
Bordes et al. (2014) 39.2
Dong et al. (2015) 40.8
Yih et al. (2015) 52.5
Xu et al. (2016) 53.3
Cheng et al. (2017b) 49.4
NPR 50.1
+ GRANKER 50.2
+ lexicon encoding on GRANKER 51.7
+ lexicon encoding on parser and GRANKER ~ 52.5

Table 2: WEBQUESTIONS results.

6.4 Results

Experimental results on WEBQUESTIONS are
shown in Table 2. We compare the performance of
NPR with previous work, including conventional
chart-based semantic parsing models (e.g., Berant
et al. (2013a); first block in Table 2), informa-
tion extraction models (e.g., Yao and Van Durme
(2014); second block in Table 2), and more recent
neural question-answering models (e.g., Dong
et al. (2015); third block in Table 2). Most neural
models do not generate logical forms but instead
build a differentiable network to solve a specific
task such as question-answering. An exception is
the neural sequence-to-tree model of Cheng et al.
(2017b), which we extend to build the vanilla NPR
model. A key difference of NPR is that it employs
soft attention instead of hard attention, which is
Cheng et al. (2017b) use to rationalize predictions.

As shown in Table 2, the basic NPR system
outperforms most previous chart-based semantic
parsers. Our results suggest that neural networks
are powerful tools for generating candidate logical
forms in a weakly-supervised setting, due to their
ability of encoding and utilizing sentential context
and generation history. Compared to Cheng et al.
(2017b), our system also performs better. We be-
lieve the reason is that it employs soft attention
instead of hard attention. Soft attention makes the
parser fully differentiable and optimization easier.
The addition of the inverse parser (+GRANKER) to
the basic NPR model yields marginal gains while

http://developers.google.com/freebase/
http://developers.google.com/freebase/

Models F1
SEMPRE (Berant et al., 2013a) 10.80
PARASEMPRE (Berant and Liang, 2014) 12.79
JACANA (Yao and Van Durme, 2014) 5.08
SCANNER (Cheng et al., 2017b) 17.02
UDEPLAMBDA (Reddy et al., 2017) 17.70
NPR 17.30
+ GRANKER 17.33
+ lexicon encoding on GRANKER 17.67
+ lexicon encoding on parser and GRANKER 18.22
Table 3: GRAPHQUESTIONS results.
Models F1
Unsupervised CCG (Bisk et al., 2016) 24.8
Semi-supervised CCG (Bisk et al., 2016) 28.4
Supervised CCG (Bisk et al., 2016) 30.9
Rule-based system (Bisk et al., 2016) 314
Sequence-to-tree (Cheng et al., 2017b) 31.5
Memory networks (Das et al., 2017) 39.9
NPR 32.4
+ GRANKER 33.1
+ lexicon encoding on GRANKER 35.5
+ lexicon encoding on parser and GRANKER 37.6

Table 4: SPADES results.

the addition of the neural lexicon encoding to the
inverse parser brings performance improvements
over NPR and GRANKER. We hypothesize that this
is because the inverse parser adopts an unsuper-
vised training objective, which benefits substan-
tially from prior domain-specific knowledge used
to initialize its parameters. When neural lexicon
encoding is incorporated in the semantic parser
as well, system performance can be further im-
proved. In fact, our final system (last row in Ta-
ble 2) outperforms all previous models except that
of Xu et al. (2016), which uses external Wikipedia
resources to prune out erroneous candidate an-
SWers.

Tables 3 and 4 present our results on
GRAPHQUESTIONS and SPADES, respectively.
Comparison systems for GRAPHQUESTIONS in-
clude two chart-based semantic parsers (Berant
etal., 2013a; Berant and Liang, 2014), an informa-
tion extraction model (Yao and Van Durme, 2014),
a neural sequence-to-tree model with hard atten-
tion (Cheng et al., 2017b) and a model based on
universal dependency to logical form conversion
(Reddy et al., 2017). On SPADES we compare

363

with the method of Bisk et al. (2016) which parses
an utterance into a syntactic representation which
is subsequently grounded to Freebase; and also
with Das et al. (2017) who employ memory net-
works and external text resources. Results on both
datasets follow similar trends as in WEBQUES-
TIONS. The best performing NPR variant achieves
state-of-the-art results on GRAPHQUESTIONS and
it comes close to the best model on SPADES with-
out using any external resources.

One of the claims put forward in this paper
is that the extended NPR model reduces the im-
pact of spurious logical forms during training.
Table 5 highlights examples of spurious logical
forms which are not semantically correct but are
nevertheless assigned higher scores in the vanilla
NPR (red colour). These logical forms become
less likely in the extended NPR, while the scores
of more semantically faithful representations (blue
colour) are boosted.

6.5 Discussion

The vanilla NPR model is optimized with con-
sistent logical forms which lead to correct de-
notations. Although it achieves competitive re-
sults compared to chart-based parsers, the train-
ing of this model can be misled by spurious logi-
cal forms. The introduction of the inverse parser
aims to alleviate the problem by scoring how a
logical form reflects the utterance semantics. Al-
though the inverse parser is not directly used to
rank logical forms at test time, the training ob-
jective it adopts encourages the parser to gener-
ate meaning-preserving logical forms with higher
likelihood. These probabilities are used as features
in the log-linear ranker, and therefore the inverse
parser affects the ranking results, albeit implicitly.

However, we should point out that the unsu-
pervised training objective is relatively difficult to
optimize, since there are no constraints to reg-
ularize the latent logical forms. This motivates
us to develop a scheduled training procedure; as
our results show, when trained properly the in-
verse parser and the unsupervised objective bring
performance gains. Moreover, the neural lexicon
encoding method we applied essentially produces
synthetic data to further regularize the latent space.

7 Related Work

Various types of supervision have been explored
to train semantic parsers. Early semantic parsers

which baseball teams were coached by dave eiland
baseball.batting.statistics.player:baseball.batting_statistics.team(ent.m.0c0x6v)
baseball.historical_coaching_tenure.baseball_coach:baseball.historical_coaching_tenure.

baseball_team(ent.m.0c0x6v)

who are coca-cola’s endorsers
food.nutrition_fact.food:food.nutrition_fact.nutrient (ent.m.0lyvs)

business.product_endorsement .product:business. .product_endorsement.endorser (ent.m.01lyvs)

what are the aircraft models that are comparable to airbus 380
aviation.aviation_incident_aircraft_relationship.flight_destination:aviation.aviation._

incident_aircraft_relationship.aircraft_model (ent.m.0gn2v)

aviation.comparable_aircraft_relationship(ent.m.018r12)

Table 5: Comparison between logical forms preferred by NPR before and after the addition of the inverse
parser. Spurious logical forms (red color) receive higher scores than semantically-correct ones (blue
color). The scores of these spurious logical forms decrease when they are explicitly handled.

have used annotated training data consisting of (Cheng et al., 2017a).
sentences and their corresponding logical forms .
(Kate and Mooney, 2006; Kate et al., 2005; Lu 8 Conclusions

et al., 2008; Kwiatk(?wksi gt al., 2010). In O In this work we proposed a weakly-supervised
der to scale semantic parsing to open-domain poural semantic parsing system trained on
problems, weakly-supervised semantic parsers are

trained on utterance-denotation pairs (Liang et al.,
2011; Krishnamurthy and Mitchell, 2012; Berant
etal., 2013b; Choi et al., 2015; Krishnamurthy and
Mitchell, 2015; Pasupat and Liang, 2016; Gard-
ner and Krishnamurthy, 2017; Reddy et al., 2017).
Most previous work employs a chart-based parser
to produce logical forms from a grammar which

utterance-denotation pairs. The system employs a
neural sequence-to-tree parser to generate logical
forms for a natural language utterance. The logi-
cal forms are subsequently ranked with two com-
ponents and objectives: a log-linear model which
scores the likelihood of correct execution, and a
generative neural inverse parser which measures
whether logical forms are meaning preserving. We
combines domain-general aspects with lexicons. proposed a scheduled training procedure to bal-

Recently, neural semantic parsing has attracted ance the two objectives, and a neural lexicon en-
a great deal of attention. Previous work has mostly coding method to initialize model parameters with
adopted fully-supervised, sequence-to-sequence prior knowledge. Experiments on three semantic
models to generate logical form strings from nat- parsing datasets demonstrate the effectiveness of
ural language utterances (Dong and Lapata, 2016; our system. In the future, we would like to train
Jia and Liang, 2016; Kocisky et al., 2016). Other our parser with other forms of supervision such as
work explores the use of reinforcement learning feedback from users (He et al., 2016; Iyer et al.,
to train neural semantic parsers from question- 2017) or textual evidence (Yin et al., 2018).
answer pairs (Liang et al., 2016) or from user

feedback (Iyer et al., 2017). More closely related Acknowledgments - This fesearch is supporFed
to our work, Goldman et al. (2018) adopt a neu- by a Google PhD Fellowship and an AdeptMind

. s Scolar Fellowship to the first author. We also
ral semantic parser and a discriminative ranker .
to solve a visual reasoning challenge. They at- gratefully acknowledge the financial support of
. - the European Research Council (award number
tempt to alleviate the search space and spurious-

ness challenges with abstractive examples. Yin 681760; Lapata).

et al. (2018) adopt a tree-based variational au-

toencoder for semi-supervised semantic parsing. References

Neural variational inference has also been used]

in other NLP tasks including relation discovery Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping

(Marcheggiani and Titov, 2016), sentence com- instructions to actions. Transactions of the Associa-
pression (Miao and Blunsom, 2016), and parsing tion for Computational Linguistics, 1(1):49-62.

364

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR 2015, San Diego, California.

Hannah Bast and Elmar Haussmann. 2015. More ac-
curate question answering on freebase. In Proceed-
ings of the 24th ACM International on Conference
on Information and Knowledge Management, pages
1431-1440. ACM.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013a. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533—1544, Seattle, Wash-
ington.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013b. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533—1544, Seattle, Wash-
ington, USA.

Jonathan Berant and Percy Liang. 2014. Semantic
parsing via paraphrasing. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1415-1425, Baltimore, Maryland.

Jonathan Berant and Percy Liang. 2015. Imitation
learning of agenda-based semantic parsers. Trans-
actions of the Association for Computational Lin-
guistics, 3:545-558.

Yonatan Bisk, Siva Reddy, John Blitzer, Julia Hock-
enmaier, and Mark Steedman. 2016. Evaluating in-
duced CCG parsers on grounded semantic parsing.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
20222027, Austin, Texas.

Antoine Bordes, Sumit Chopra, and Jason Weston.
2014. Question answering with subgraph embed-
dings. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 615-620, Doha, Qatar.

Qingging Cai and Alexander Yates. 2013. Large-scale
semantic parsing via schema matching and lexicon
extension. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 423-433, Sofia,
Bulgaria.

David L Chen and Raymond J Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the 25th
AAAI Conference on Artificial IntelligenceAAAI,
volume 2, pages 859-865, San Francisco, Califor-
nia.

Jianpeng Cheng, Adam Lopez, and Mirella Lapata.
2017a. A generative parser with a discriminative
recognition algorithm. In Proceedings of the 55th

365

Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
118-124, Vancouver, Canada.

Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and
Mirella Lapata. 2017b. Learning structured natural
language representations for semantic parsing. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 44-55, Vancouver, Canada.

Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and
Mirella Lapata. 2018. Learning an executable neural
semantic parser. Computational Linguistics.

Eunsol Choi, Tom Kwiatkowski, and Luke Zettle-
moyer. 2015. Scalable semantic parsing with par-
tial ontologies. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1311-1320, Beijing, China.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and
Dan Roth. 2010. Driving semantic parsing from the
world’s response. In Proceedings of the 14th Con-
ference on Computational Natural Language Learn-
ing, pages 18-27, Uppsala, Sweden.

Rajarshi Das, Manzil Zaheer, Siva Reddy, and Andrew
McCallum. 2017. Question answering on knowl-
edge bases and text using universal schema and
memory networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), volume 2,
pages 358-365.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33-43, Berlin, Germany.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015.
Question answering over Freebase with multi-
column convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 260-269,
Beijing, China.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 334-343, Beijing, China.

Evgeniy Gabrilovich, Michael Ringgaard, and Amar-
nag Subramanya. 2013. FACCI1: Freebase anno-
tation of ClueWeb corpora, version 1 (release date
2013-06-26, format version 1, correction level 0).

Matt Gardner and Jayant Krishnamurthy. 2017. Open-
Vocabulary Semantic Parsing with both Distribu-
tional Statistics and Formal Knowledge. In Pro-
ceedings of the 31st AAAI Conference on Artificial
Intelligence, pages 3195-3201, San Francisco, Cali-
fornia.

Omer Goldman, Veronica Latcinnik, Ehud Nave, Amir
Globerson, and Jonathan Berant. 2018. Weakly su-
pervised semantic parsing with abstract examples.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1809-1819, Melbourne, Aus-
tralia.

Luheng He, Julian Michael, Mike Lewis, and Luke
Zettlemoyer. 2016. Human-in-the-loop parsing. In
Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing, pages
2337-2342, Austin, Texas.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Srinivasan lIyer, Ioannis Konstas, Alvin Cheung,
Jayant Krishnamurthy, and Luke Zettlemoyer. 2017.
Learning a neural semantic parser from user feed-
back. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 963-973, Vancouver,
Canada.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12-22, Berlin, Germany.

Rohit J Kate and Raymond J Mooney. 2006. Us-
ing string-kernels for learning semantic parsers. In
Proceedings of the 21st International Conference
on Computational Linguistics and the 44th annual
meeting of the Association for Computational Lin-
guistics, pages 913-920, Sydney, Australia.

Rohit J. Kate, Yuk Wah Wong, and Raymond J.
Mooney. 2005. Learning to Transform Natural to
Formal Languages. In Proceedings for the 20th Na-
tional Conference on Artificial Intelligence, pages

1062-1068, Pittsburgh, Pennsylvania.

Tomas Kocisky, Gabor Melis, Edward Grefenstette,
Chris Dyer, Wang Ling, Phil Blunsom, and
Karl Moritz Hermann. 2016. Semantic parsing with
semi-supervised sequential autoencoders. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1078—
1087, Austin, Texas.

Jayant Krishnamurthy. 2016. Probabilistic models for
learning a semantic parser lexicon. In Proceed-
ings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
606-616.

366

Jayant Krishnamurthy and Tom Mitchell. 2012.
Weakly supervised training of semantic parsers. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and

Computational Natural Language Learning, pages
754-765, Jeju Island, Korea.

Jayant Krishnamurthy and Tom M Mitchell. 2015.
Learning a compositional semantics for freebase
with an open predicate vocabulary. Transactions
of the Association for Computational Linguistics,

3:257-270.

Tom Kwiatkowksi, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilis-
tic CCG grammars from logical form with higher-
order unification. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1223-1233, Cambridge, MA.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with
on-the-fly ontology matching. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1545—-1556, Seattle,
Washington, USA.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2011. Lexical generaliza-
tion in CCG grammar induction for semantic pars-
ing. In Proceedings of the 2011 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1512-1523, Edinburgh, Scotland.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D
Forbus, and Ni Lao. 2016. Neural symbolic
machines: Learning semantic parsers on Free-
base with weak supervision. arXiv preprint
arXiv:1611.00020.

Percy Liang. 2016. Learning executable semantic
parsers for natural language understanding. Com-
munications of the ACM, 59(9):68-76.

Percy Liang, Michael Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 590-599, Port-
land, Oregon.

Wei Lu, Hwee Tou Ng, Wee Sun Lee, and Luke S
Zettlemoyer. 2008. A generative model for pars-
ing natural language to meaning representations. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pages 783—
792, Honolulu, Hawaii.

Diego Marcheggiani and Ivan Titov. 2016. Discrete-
state variational autoencoders for joint discovery and
factorization of relations. Transactions of the Asso-
ciation for Computational Linguistics, 4:231-244.

Cynthia Matuszek, Nicholas FitzGerald, Luke Zettle-
moyer, Liefeng Bo, and Dieter Fox. 2012. A joint

model of language and perception for grounded at-
tribute learning. In Proceedings of the 29th Interna-
tional Conference on Machine Learning (ICML-12),
pages 1671-1678, Edinburgh, Scotland.

Yishu Miao and Phil Blunsom. 2016. Language as a
latent variable: Discrete generative models for sen-
tence compression. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 319-328, Austin, Texas.

Andriy Mnih and Karol Gregor. 2014. Neural vari-
ational inference and learning in belief networks.
In Proceedings of the 31st International Conference
on Machine Learning, pages 1791-1799, Bejing,
China.

Panupong Pasupat and Percy Liang. 2016. Inferring
logical forms from denotations. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
volume 1, pages 23-32, Berlin, Germany.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532-1543, Doha,
Qatar.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-
answer pairs. Transactions of the Association for
Computational Linguistics, 2:377-392.

Siva Reddy, Oscar Tackstrom, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming dependency
structures to logical forms for semantic parsing.
Transactions of the Association for Computational
Linguistics, 4:127-140.

Siva Reddy, Oscar Tiackstrom, Slav Petrov, Mark
Steedman, and Mirella Lapata. 2017. Universal se-
mantic parsing. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 89-101, Copenhagen, Denmark.

Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa,
Izzeddin Gur, Zenghui Yan, and Xifeng Yan. 2016.
On generating characteristic-rich question sets for
qa evaluation. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 562—-572, Austin, Texas.

Ilya Sutskever, James Martens, George Dahl, and Geof-
frey Hinton. 2013. On the importance of initializa-
tion and momentum in deep learning. In Proceed-
ings of the 30th International Conference on Ma-
chine Learning, pages 1139-1147, Atlanta, Georgia.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksi¢, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned LSTM-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical

367

Methods in Natural Language Processing, pages
1711-1721, Lisbon, Portugal.

Yuk Wah Wong and Raymond Mooney. 2006. Learn-
ing for semantic parsing with statistical machine
translation. In Proceedings of the Human Language
Technology Conference of the NAACL, Main Con-
ference, pages 439-446, New York City, USA.

Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2016. Question answering
on Freebase via relation extraction and textual ev-
idence. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 23262336, Berlin,
Germany.

Xuchen Yao and Benjamin Van Durme. 2014. Infor-
mation extraction over structured data: Question an-
swering with Freebase. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
956-966, Baltimore, Maryland.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and
Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1321-1331, Beijing, China.

Pengcheng Yin, Chunting Zhou, Junxian He, and Gra-
ham Neubig. 2018. StructVAE: Tree-structured la-
tent variable models for semi-supervised semantic
parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 754-765, Mel-
bourne, Australia.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the 13th National
Conference on Artificial Intelligence, pages 1050—
1055, Portland, Oregon.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to Map Sentences to Logical Form: Struc-
tured Classification with Probabilistic Categorial
Grammars. In Proceedings of 21st Conference in
Uncertainilty in Artificial Intelligence, pages 658—
666, Edinburgh, Scotland.

