
Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 345–355
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

345

Upcycle Your OCR: Reusing OCRs for Post-OCR Text Correction in
Romanised Sanskrit

Amrith Krishna#, Bodhisattwa Prasad Majumder*, Rajesh Shreedhar Bhat**,
and Pawan Goyal#

#Dept. of Computer Science and Engineering, IIT Kharagpur,
*Dept. of Computer Science, University of California, San Diego

**Walmart Labs, India
amrith@iitkgp.ac.in, bmajumde@eng.ucsd.edu,

rajeshbhatpesit@gmail.com, pawang@cse.iitkgp.ernet.in

Abstract

We propose a post-OCR text correction ap-
proach for digitising texts in Romanised San-
skrit. Owing to the lack of resources our ap-
proach uses OCR models trained for other lan-
guages written in Roman. Currently, there ex-
ists no dataset available for Romanised San-
skrit OCR. So, we bootstrap a dataset of 430
images, scanned in two different settings and
their corresponding ground truth. For training,
we synthetically generate training images for
both the settings. We find that the use of copy-
ing mechanism (Gu et al., 2016) yields a per-
centage increase of 7.69 in Character Recog-
nition Rate (CRR) than the current state of the
art model in solving monotone sequence-to-
sequence tasks (Schnober et al., 2016). We
find that our system is robust in combating
OCR-prone errors, as it obtains a CRR of
87.01% from an OCR output with CRR of
35.76% for one of the dataset settings. A hu-
man judgement survey performed on the mod-
els shows that our proposed model results in
predictions which are faster to comprehend
and faster to improve for a human than the
other systems1.

1 Introduction

Sanskrit used to be the ‘lingua franca’ for the sci-
entific and philosophical discourse in ancient In-
dia with literature that spans more than 3 millen-
nia. Sanskrit primarily had an oral tradition, and
the script used for writing Sanskrit varied widely
across the time spans and regions. With the ad-
vent of printing press, Devanagari emerged as the
prominent script for representing Sanskrit. With
standardisation of Romanisation using IAST in
1894 (Monier-Williams, 1899), printing in San-
skrit was extended to roman scripts as well. There

1The data and the codes for our system are avail-
able here - https://github.com/majumderb/
sanskrit-ocr

has been a surge in digitising printed Sanskrit
manuscripts written in Roman such as the ones
currently digitised by the ‘Krishna Path’ project2.

In this work, we propose a model for post-
OCR text correction for Sanskrit written in Ro-
man. Post-OCR text correction, which can be seen
as a special case of spelling correction (Schnober
et al., 2016), is the task of correcting errors that
tend to appear in the output of the OCR in the pro-
cess of converting an image to text. The errors
incurred from OCR can be quite high due to nu-
merous factors including typefaces, paper quality,
scan quality, etc. The text can often be eroded,
can contain noises and the paper can be bleached
or tainted as well (Schnober et al., 2016). Fig-
ure 1 shows the sample images we have collected
for the task. Hence it is beneficial to perform a
post-processing on the OCR output to obtain an
improved text.

Figure 1: Sample images from our test set with dif-
ferent stylistic parameters

In the case of Indic OCRs, there have been con-
siderable efforts in collection and annotation of
data pertaining to Indic Scripts (Kumar and Jawa-
har, 2007; Bhaskarabhatla et al., 2004; Govin-
daraju and Setlur, 2009; Krishnan et al., 2014).
Earlier attempts on Indian scripts were primar-
ily based on handcrafted templates (Govindan and
Shivaprasad, 1990; Chaudhuri and Pal, 1997) or
features (Arora et al., 2010; Pal et al., 2009) which
extensively used the script and language-specific

2http://www.krishnapath.org/library/

https://github.com/majumderb/sanskrit-ocr
https://github.com/majumderb/sanskrit-ocr
http://www.krishnapath.org/library/

346

information (Krishnan et al., 2014). Sequential la-
belling approaches were later proposed that take
the word level inputs and make character level pre-
dictions (Shaw et al., 2008; Hellwig, 2015). The
word based sequence labelling approaches were
further extended to use neural architectures, espe-
cially using RNNs and its variants such as LSTMs
and GRUs (Sankaran and Jawahar, 2012; Krish-
nan et al., 2014; Saluja et al.; Adiga et al., 2018;
Mathew et al., 2016). But, OCR is putative in ex-
hibiting few long-range dependencies (Schnober
et al., 2016). Singh and Jawahar (2015) find that
extending the neural models to process the text
at the sentence level (or a textline) leads to im-
provement in the performance of the OCR sys-
tems. This was further corroborated by Saluja
et al. where the authors found that using words
within a context window of 5 for a given input
word worked particularly well for the Post-OCR
text correction in Sanskrit. In the case of provid-
ing a text line as input, we are essentially pro-
viding more context about the input in compar-
ison to the word level models and the RNN (or
LSTM) cells are powerful enough to capture the
long-term dependencies. Particularly for Indian
languages, this decision is beyond a question of
performance. In Sanskrit, the word boundaries
are often obscured due to phonetic transformations
at the word boundaries known as Sandhi. Word
segmentation of Sanskrit constructions is a mat-
ter of research on its own (Krishna et al., 2016a;
Reddy et al., 2018). However, none of the existing
systems are equipped for incorrect spellings and
hence these systems may be brittle (Belinkov and
Bisk, 2018) when it comes to handling spelling
variations in the input. Hence, in our case, we as-
sume an unsegmented sequence as our input and
then we perform our Post-OCR text correction on
the text. We hypothesise that this will improve the
segmentation process and other downstream tasks
for Sanskrit in a typical NLP pipeline.

Our major contributions are:

1. Contrary to what is observed in Schnober
et al. (2016), an encoder-decoder model,
when equipped with copying mechanism (Gu
et al., 2016), can outperform a traditional se-
quence labelling model in a monotone se-
quence labelling task. Our model outper-
forms Schnober et al. (2016) in the Post-OCR
text correction for Romanised Sanskrit task
by 7.69 % in terms of CRR.

2. By making use of digitised Sanskrit texts, we
generate images as synthetic training data for
our models. We systematically incorporate
various distortions to those images so as to
emulate the settings of the original images.

3. Through a human judgement experiment, we
asked the participants to correct the mistakes
from a predicted output from the compet-
ing systems. We find that participants were
able to correct predictions from our system
more frequently and the corrections were
done much faster than the CRF model by
Schnober et al. (2016). We observe that pre-
dictions from our model score high on ac-
ceptability (Lau et al., 2015) than other meth-
ods as well.

2 Model Architecture

In principle, the output from any OCR which
recognises Romanised Sanskrit can be used as the
input to our model. Currently, there exist lim-
ited options for recognising Romanised Sanskrit
texts from scanned documents. Possibly, the com-
mercial OCR offering by Google as part of their
proprietary cloud vision API and SanskritOCR3

might be the only two viable options. Sanskri-
tOCR provides an online interface to the Tesseract
OCR, an open source multilingual OCR (Smith,
2007; Smith et al., 2009; Smith, 1987), trained
specifically for recognising Romanised Sanskrit.
Additionally, we trained an offline version of
Tesseract to recognise the graphemes in the Ro-
manised Sanskrit alphabet. In both the models we
find that many scanned images, especially similar
to the one shown in Figure 1b, were not recog-
nised by the system. We hypothesise this to be
due to lack of enough font styles available in our
collection, in spite of using a site with the rich-
est collection of Sanskrit fonts4. This leaves the
Google OCR as the only option.

Considering the fact that working with a com-
mercial offering from Google OCR may not be an
affordable option for various digitisation projects,
we chose to use Tesseract with models trained for
other languages written in Roman script. All the
Latin or Roman scripts in the pre-trained models

3https://sri.auroville.org/projects/
sanskrit-ocr/. It provides interface to tesseract and
Google OCR as well.

4More details about the training procedure in §1 of the
supplementary material

https://sri.auroville.org/projects/sanskrit-ocr/
https://sri.auroville.org/projects/sanskrit-ocr/

347

of Tesseract are trained on 400,000 text-lines span-
ning about 4500 fonts5.

Figure 2: Heatmap of occurrences of majorly con-
fusing character pairs between Ground Truth and
OCR

Use of OCR with pre-trained models for
other languages French alphabet has the high-
est grapheme overlap with that of the Sanskrit al-
phabet (37 of 50), while all other languages have
one less grapheme common with Sanskrit. Hence,
we arbitrarily take 5 of the languages in addition
to French and perform our analysis. Table 1 shows
the character recognition rate (CRR) for OCR us-
ing alphabets of different languages, when per-
formed on a dataset of 430 scanned images (§3.1).
The table also shows the count of error types made
by the OCR after alignment (Jiampojamarn et al.,
2007; D’hondt et al., 2016). All the languages
have a near similar CRR with English and French
leading the list. Based on our observations on the
OCR performance, we select English for our fur-
ther experiments.

Upcycling such a pre-trained model brings its
own challenges. For instance, the missing 14 San-
skrit graphemes6 in English are naturally mispre-
dicted to other graphemes. This leads to ambi-
guity as the correct and the mispredicted charac-
ters now share the same target. Figure 2 shows
the heat-map for such mis-predictions when we
used the OCR on the set of 430 scanned images.
Here, we zoom the relevant cases and show the

5https://github.com/tesseract-ocr/
tesseract/wiki/TrainingTesseract-4.00

6Detailed in §2 of the Supplementary Material

row-normalised proportion of predictions7.

2.1 System Descriptions
We formalise the task as a monotone seq2seq
model. We use an encoder-decoder framework
that takes in a character sequence as input and
the model finds embeddings at a sub-word level
both at the encoder and decoder side. Here the
OCR output forms input to the model. Keeping
the task in mind we make two design decisions for
the model. One is the use of copying mechanism
(Gu et al., 2016) and other is the use of Byte Pair
Encoding (BPE) (Sennrich et al., 2016) to learn a
new vocabulary for the model.

CopyNet (Gu et al., 2016): Since it is possible
that there will be reasonable overlap between the
input and output strings, we use the copying mech-
anism as mentioned in CopyNet (Gu et al., 2016).
The model essentially learns two probability dis-
tributions, one for generating an entry at the de-
coder and the other for copying the entry from the
encoder. The final prediction is based on the sum
of both the probabilities for the class. Given an
input sequence X = (x1, ...,xN) we define X ,
for all the unique entries in the input sequence.
We also define the vocabulary V = {v1, ..., vN}.
Let the out-of-vocabulary (OOV) words be repre-
sented with UNK. The probability of the generate
mode g and copy mode c are given by

p(yt, g|·)=


1

Z
eψg(yt), yt ∈ V
0, yt ∈ X − V

1

Z
eψg(UNK) yt 6∈ V ∪ X

p(yt, c|·)=

{ 1

Z

∑
j:xj=yt

eψc(xj), yt ∈ X
0 otherwise

where ψg(·) and ψc(·) are score functions for
generate-mode (g) and copy-mode (c), respec-
tively, and Z is the normalization term shared
by the two modes, Z =

∑
v∈V∪{UNK} e

ψg(v) +∑
x∈X eψc(x). The scoring function for both the

modes, respectively, are

ψg(yt = vi) = v>i Wost, vi ∈ V ∪ UNK

ψc(yt = xj) = σ
(
h>j Wc

)
st, xj ∈ X

where Wc ∈ Rdh×ds , and σ is a non-linear ac-
tivation function (Gu et al., 2016).

7A more detailed figure with all the cases are available in
the supplementary material in §3.

https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract-4.00
https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract-4.00

348

Language Bhagavad Gītā Sahaśranāma Combined
CRR Ins Del Sub CRR Ins Del Sub CRR

English 84.92 23 63 1868 64.06 73 696 1596 80.08
French 84.90 21 102 1710 63.91 91 702 1670 80.04
Finnish 82.61 15 141 1902 61.31 80 730 1821 78.81
Italian 83.45 20 73 1821 62.19 84 690 1673 79.03
Irish 84.52 12 78 1810 63.81 72 709 1841 79.93

German 84.40 33 72 1821 63.79 87 723 1874 79.12

Table 1: OCR performances for different languages with overall CRR, total Insertion, Deletion and Sub-
stitution errors.

BPE (Sennrich et al., 2016) : Sanskrit is a mor-
phologically rich language. A noun in Sanskrit
can have 72 different inflections and a verb may
have more than 90 inflections. Additionally, San-
skrit corpora generally express a compound rich
vocabulary (Krishna et al., 2016b). Hence, in a
typical Sanskrit corpus, the majority of the tokens
appear less than 5 times (§3.1). These are gener-
ally considered to be rare words in a corpus (Sen-
nrich et al., 2016). However, corpora dominated
by rare words are difficult to handle for a statis-
tical model like ours. To combat the sparsity of
the data, we convert the tokens into sub-word n-
grams using Byte Pair Encoding (BPE) (Sennrich
et al., 2016). Methods such as wordpiece (Schus-
ter and Nakajima, 2012) as well as Sennrich et al.
(2016) are means of obtaining a new vocabulary
for a given corpus. Every sequence in the cor-
pus is then re-written as a sequence of tokens in
terms of the sub-word units which forms the type
in the new vocabulary so obtained. These meth-
ods essentially use a data-driven approach to max-
imise the language-model likelihood of the train-
ing data, given an evolving word definition (Wu
et al., 2016).

We explicitly set the minimum count for a to-
ken in the new vocabulary to appear in the corpora
as 30. We learn a new vocabulary of size 82 with
22 of them having a length 1 and the rest with a
length 2. The IAST standardisation of the Roman-
ised Sanskrit contains 50 graphemes in Sanskrit
alphabet. About 12 of the graphemes are repre-
sented using 2 character roman character combi-
nations. Now, in the vocabulary learnt using BPE,
7 of the graphemes were not present. Hence, we
add them in addition to the 82 entries learnt as vo-
cabulary. This makes the total vocabulary to be 89.
By using the new vocabulary, it is guaranteed that
there will be no Out Of Vocabulary (OOV) words
in our model.

We use 3 stacked layers of LSTM at the encoder
and the decoder with the same settings as in Bah-

danau et al. (2015). To enable copying, we share
the embeddings of the source and the target vo-
cabulary. By eliminating OOV, we make sure that
copying always happens by virtue of the evidence
from the training data and not by the presence of
an OOV word.

3 Experiments

3.1 Dataset

Sanskrit is a low-resource language. It is ex-
tremely scarce to obtain datasets with scanned im-
ages and the corresponding aligned texts for Ro-
manised Sanskrit. We obtain 430 scanned images
as shown in Figure 1 and manually annotate the
corresponding text. We use this as our test dataset,
henceforth to be referred to as OCRTest. For train-
ing, we synthetically generate images from digi-
tised Sanskrit texts and use them as our training
set and development set. The images for train-
ing, OCRTrain, were generated by synthetically
adding distortions to those images to match the
settings of the real scanned documents.

OCRTest contains 430 images from 1) scanned
copy of Vishnu Sahaśranāma8 and 2) scanned
copy of Bhagavad Gı̄tā, a sample of each is shown
in Figure 1a and 1b. 140 out of these 430 are from
Sahaśranāma and the remaining are from Bha-
gavad Gı̄tā.

OCRTrain: Similar to Ul-Hasan and Breuel
(2013), we synthetically generate the images,
which are then fed to the OCR, to obtain our train-
ing data. We use the digitised text from Śrı̄mad
Bhāgavatam9 for generating the synthetic images.
The text contains about 14,094 verses in total, di-
vided into 50,971 text-lines. The dataset is divided
into 80-20 split as training set and development
set, respectively. The corpus contains a vocabulary
of 52,882 word types. 48,249 of the word types

8http://kirtimukha.com/
9https://www.vedabase.com/en/sb

http://kirtimukha.com/
https://www.vedabase.com/en/sb

349

in the vocabulary appear less than or equal to 5
times, of which 32,411 appear exactly once. This
is primarily due to the inflectional nature of San-
skrit. We find similar trends in the vocabulary of
Rāmāyan. a10 and Digital Corpus of Sanskrit (Hell-
wig, 2010-2016) as well.

3.2 Synthetic Generation of training set

Using the text-lines from Bhāgavatam, we gener-
ate synthetic images using ImageMagick11. The
images were generated with a quality of 60 Dots
Per Inch (DPI). The number of pixels along the
height for each textline was kept constant at 65
pixels. We add several distortions to the synthet-
ically generated images so as to visually match
with the same settings as that of OCRTest. Pre-
viously, Ul-Hasan and Breuel (2013) used the ap-
proach of synthetically generating training data for
multilingual OCR solution of theirs.

Table 2 shows the different parameters, namely,
gamma correction, noise addition, use of struc-
tural kernel for erosion and perspective distortion,
that we apply sequentially on the images so as
to distort and degrade the images (Chen et al.,
2014). We use grid search for the parameter es-
timation for these processes, where those param-
eters and the range of values experimented with
are provided in Table 2. Finally, we filter 7 (out
of 38,400 combinations) different configurations
based on the distribution of Character Recogni-
tion Rate (CRR) across the images compared with
that of the OCRTest using KL-divergence. Among
these seven configurations, four are closer to the
settings for Bhagavad Gı̄tā and the remaining three
for Sahaśranāma. Figure 3 shows the two differ-
ent settings (closer to each of the source textbook)
for the string “ajo durmars. an. ah. śāstā viśrutātmā
surārihā”, along with their corresponding param-
eter settings and KL-Divergence. Our training set
contains images from all the 7 settings for each of
the textline in OCRTrain12.

Evaluation Metrics We use three different met-
rics for evaluating all our models. We use Char-
acter Recognition Rate (CRR) and Word Recog-
nition Rate (WRR) averaged over each of the sen-
tences in the 430 lines in the test dataset (Sankaran

10https://sanskritdocuments.org/sites/
valmikiramayan/

11https://www.imagemagick.org/script/
index.php

12Samples of all the 7 seven configurations are shown in
the supplementary material in §4

Figure 3: Samples of synthetically generated im-
ages. The parameter settings for the distortions are
mentioned below the corresponding image.

and Jawahar, 2012). CRR is the fraction of char-
acters recognised correctly against the total num-
ber of characters in a line, whereas WRR is the
fraction of words correctly recognised against the
total number of words in a line. Additionally, we
use a sentence level metric, called the acceptabil-
ity score. The measure indicates the extent to
which a sentence is permissible or acceptable to
the speakers of the language (Lau et al., 2015).
From Lau et al. (2015), we use the NormLP formu-
lation for the task, as it is found to have a high cor-
relation with the human judgements in evaluating
acceptability. NormLP is calculated by obtaining
the likelihood of a predicted sentence as per the
model, and then normalising it by the likelihood of
the string as per a unigram language model trained
on a corpus with gold standard sentences. A nega-
tive sign is then given to the score. The higher the
score, the more acceptable the sentence is.

3.3 Baselines

Character Tagger - Sequence Labelling using
BiLSTMs This is a sequence labelling model
which uses BiLSTM cells and input is a character
sequence (Saluja et al.). We use categorical cross-
entropy as the loss function and softmax as the ac-
tivation function. For dropout, we employ spatial
dropout in our architecture. The model consists
of 3 layers with each layer having 128 cells. Em-
beddings of size 100 are randomly initialised and
the learnt representations are stored in a character
look-up table similar to Lample et al. (2016). In
addition to every phoneme in Sanskrit as a class,
we add an additional class ‘no change’ which sig-
nifies that the character remains as is. We also ex-
perimented with a variant where the final layer is
a CRF layer (Lafferty et al., 2001). We henceforth
refer to both the systems as BiLSTM and BiLSTM-
CRF, respectively.

Pruned CRFs (Schnober et al., 2016): They

https://sanskritdocuments.org/sites/valmikiramayan/
https://sanskritdocuments.org/sites/valmikiramayan/
https://www.imagemagick.org/script/index.php
https://www.imagemagick.org/script/index.php

350

Process Parameters Range Step
size

Gamma Correction (GM) gamma (γ) 4 64 4
Salt & Pepper Noise (SPN) (with 50% salt and 50%

pepper) percentage of pixels corrupted 0.1% 1% 0.1

Gaussian Noise (GN) (mean = 0) standard deviation 2.5 3.5 0.25
Erosion (E) (one iteration) kernel size (m × m) 2 5 1

Horizontal perspective distortion (HPD) image width by image height 0.3 1 0.05

Table 2: Image pre-processing steps and parameters

are higher order CRF models (Ishikawa, 2011)
that approximate the CRF objective function using
coarse-to-fine decoding. Schnober et al. (2016)
adapt the sequence labeling model as a seq2seq
model that can handle variable length input-output
pairs. Schnober et al. (2016) show that none of the
neural seq2seq models considered in their work
were able to outperform the Pruned CRF with
order-5. The features to the model are consecu-
tive characters within a window of size w in either
of the directions of the current position at which a
prediction is made. The model is designed to han-
dle 1-to-zero and 1-to-many matches, facilitated
by the use of alignment prior to training. We con-
sider all the three settings reported in Schnober
et al. (2016) and report the results for the best
setting. The order-5 model which uses 6-grams
within a window of 6 performs the best. Hence-
forth, this model is referred to as PCRF-seq2seq
(also referred to as PCRF interchangeably).

Encoder-Decoder Models: For the seq2seq
model (Sutskever et al., 2014), we use 3 stacked
layers of LSTM each at the encoder and the de-
coder. Each layer is of 128 dimensions and
weighted cross-entropy is used as the loss. We
also add residual connections among the layers in
a stack (Wu et al., 2016). To further capture the
entire input context for making each prediction at
the output, we make use of attention (Bahdanau
et al., 2015), specifically Luong’s attention mech-
anism (Luong et al., 2015). We experiment with
two variants where EncDec+Char uses character
level embeddings and EncDec+BPE uses embed-
dings with BPE.

CopyNet+BPE: The model discussed in §2. We
use CopyNet+BPE and CopyNet interchangeably
throughout the paper.

3.4 Results

Table 3 shows the results for all the competing
systems based on the predictions from OCRTest.
CopyNet performs the best among the competing

systems across all the three metrics and on both
the source texts. For the Gı̄tā dataset, the models
CopyNet and PCRF-Seq2Seq report similar per-
formances. However, Sahaśranāma is a noisier
dataset, and we find that CopyNet outperforms all
other models by a huge margin. The WRR for
the system is double that of the next best system
(EncDec) on this dataset.

System performances for various input lengths:
From Figure 4a, it can be observed that the perfor-
mance in terms of CRR for CopyNet and PCRF is
robust across all the lengths on strings from Gı̄tā
and never goes below 90%. For Sahaśranāma, as
shown in Figure 4b, CopyNet outperforms PCRF
across inputs of all the lengths except for one set-
ting. But, in the case of WRR, CopyNet is the best
performing model across all the lengths as shown
in Figure 4d.

30 40 43 44 45 46 50
(a) num of characters

80

90

100

M
ea

n
C
R
R

40 43 44 45 46 50
(b) num of characters

0

50

100
CopyNet PCRF EncDec(Char)

2 3 4 5 6
(c) num of words

25

50

75

100

M
ea

n
W
R
R

2 3 4 5 6
(d) num of words

0

25

50

75

Figure 4: (a) and (b) show CRR for Gı̄tā and
Sahaśranāma respectively, for the competing sys-
tems. (c) and (d) shows WRR for Gı̄tā and
Sahaśranāma, respectively. All the entries with in-
sufficient data-points were merged to the nearest
smaller number.

Error type analysis In Table 5, we analyse
the reduction in specific error types for PCRF

351

Model Bhagavad Gītā Sahaśranāma Combined
CRR WRR Norm LP CRR WRR Norm LP CRR WRR Norm LP

OCR 84.81% 64.40% – 35.76% 0.65% – 77.88% 23.84% –
BiLSTM 93.79% 68.60% -0.553 61.31% 7.28% -1.292 85.23% 45.60% -0.852

BiLSTM-CRF 94.68% 68.60% -0.548 65.31% 7.28% -1.281 85.82% 45.60% -0.847
PCRF-seq2seq 96.87% 70.56% -0.227 81.77% 9.34% -1.216 87.94% 57.17% -0.803
EncDec+Char 91.48% 68.00% -0.542 63.63% 15.74% -1.321 82.51% 47.37% -0.865
EncDec+BPE 90.92% 68.00% -0.496 61.53% 15.74% -1.384 83.14% 45.98% -0.842

CopyNet+BPE 97.01% 75.21% -0.165 87.01% 33.47% -0.856 89.65% 68.71% -0.551

Table 3: Performance in terms of CRR, WRR and Norm LP (acceptability) for all the competing models

CRR WRR
Bhagavad Gītā 96.80% 71.23%
Sahaśranāma 82.81% 26.01%

Combined 87.88% 60.91%

Table 4: Performance in terms of
CRR, WRR for Google OCR

Model Bhagavad Gītā Sahaśranāma System errors
Ins Del Sub Ins Del Sub Ins Del Sub

OCR 23 63 1868 73 696 1596 – – –
PCRF 22 57 641 72 663 932 0 73 209

CopyNet 22 45 629 72 576 561 10 5 52

Table 5: Insertion, Deletion and Substitution errors for OCR,
PCRF and CopyNet modes for both the datasets. The system er-
rors are extra errors added by the respective systems.

and CopyNet after the alignment of the predicted
string with that of the ground truth in terms of in-
sertion, deletion and substitution. We also report
the system induced errors, where a correct com-
ponent at the input (OCR output) is mispredicted
to a wrong output by the model. CopyNet outper-
forms PCRF in correcting the errors and it also in-
troduces lesser number of errors of its own. Both
CopyNet and PCRF (Schnober et al., 2016) are
seq2seq models and can handle varying length in-
put and output. Both the systems perform well in
handling substitution errors, the type which dom-
inated the strings in OCRTest, though neither of
the systems was able to correct the insertion er-
rors. Insertion can be seen as a special case of
1-to-many insertion matches, which both systems
are ideally capable of handling. We see that for
Sahaśranāma, CopyNet corrects about 17.24 % of
the deletion errors as against <5% of the deletion
errors corrected by PCRF.

Since there exist 14 graphemes in Sanskrit al-
phabet which are not present in the English alpha-
bet, all 14 of them get substituted to a different
grapheme by the OCR. While most of them get
substituted to an orthographically similar charac-
ter such as ā → a and h. → h, we find that ñ → i
does not fit the scheme, as shown in Figure 2. In
the majority of the cases, CopyNet predicts them
to the correct grapheme. But PCRF still fails to
correct the OCR induced confusion for ñ → i in
the majority of the instances. Additionally, we find
that PCRF introduces its own errors, for instance it
often mispredicts p→ s. Figure 5 shows the over-

all variations in both the systems as compared to
Figure 2 for OCR induced errors.

Copy or generate? For the 14 graphemes, miss-
ing at the encoder (input) but present at the de-
coder side during training, those predictions have
to happen with high values of generate probability
in general. We find that not only the average gen-
erate probability for such instances is high but also
the copy probability is extremely low. For the re-
maining cases, we find that both generate and copy
probability are higher. But it needs to be noted
that the prediction is made generally by summing
of both the distributions and the distributions are
not complementary to each other. A similar trend
can be observed in Figure 6 as well. For example
in the case of a→ ā, only the generate probability
is high. But, for a→ a, both the copy and generate
probability scores are high.

Effect of BPE and alphabet in the vocabulary
We further investigate the effect of our vocabulary
which is the union of the alphabet in Romanised
Sanskrit and what is learnt using BPE. We train
the model with only the alphabet as vocabulary
and find the CRR and WRR for the combined test
sentences to be 86.1% and 66.09%, respectively.
When using the original BPE vocabulary, we find
that there is a slight increase in the performance
than the current vocabulary with a CRR and WRR
of 89.53% and 68.11%, respectively13. We also
find that the current setting performs better than

13Please refer to §5 of the Supplementary material for the
performance table

352

(a)

(b)

Figure 5: Heatmap for occurrences of majorly con-
fusing character pairs between Ground Truth and
predictions of (a) PCRF model (b) CopyNet model

ā ū ṃ ṇ ñ ī
gen
copy

ṃū79 ṃū56 ṃū6 ṃū7ī ṃū59 ṃū7ī
ṃūṇ4 ṃūṇṇ ṃūṇī ṃūī ṃūṇ5 ṃūṇ8

ṃūṇ5 ṃū3ṃ ṃū45 ṃū6ṃ ṃū75

Figure 6: Heatmap of mean copy score (copy) and
mean generate score (gen), respectively for 6 (of
14) graphemes not present in the English alphabet.

a model that takes word level input. The word
level model shows a drop in the performance with
a CRR and WRR of 86.42% and 66.54%, respec-
tively.

a to a a to ā
gen
copy

0.87 0.92
0.89 0.34

s to s s to ṣ s to ś
0.87 0.97 0.98
0.9 0.ś2 0.ś9

0.4 0.5 0.6 0.7 0.8 0.9
āaṣ

0.ś5 0.30 0.45 0.60 0.75 0.90
ābṣ

Figure 7: mean copy and generate scores for differ-
ent predictions from (a) ‘a’ and (b) ‘s’.

Performance comparison to Google OCR:
Google OCR is probably the only available OCR
that can handle Romanised Sanskrit. We could
not find the architecture of the OCR or whether
the service employs post-OCR text correction. We
empirically compare the performance of Google
OCR on OCRTest with our model. Table 4 shows
the results for Google OCR. Overall we find that
CopyNet outperforms Google OCR across all the
metrics. We find that Google OCR reports a simi-
lar CRR for Gı̄tā with that of ours, but still reports
a lower WRR than ours. The system performs bet-
ter than PCRF in all the metrics other than CRR
for Gı̄tā.

Image quality: Our training set was generated
with a quality of 60 DPI for the images. We gener-
ate images corresponding to strings in OCRTrain
with DPI of 50 to 300 in step sizes of 50 for a sam-
ple of 500 images. We use noise settings as shown
in Figure 3. The OCR output of the said strings re-
mained as is with that of the one generated with a
DPI of 60. This experiment can be seen as a proxy
in evaluating the robustness of the OCR to various
scanning qualities of input. Our choice of DPI as
60 was based on the lowest setting we observed in
digitisation attempts in Sanskrit texts.

Effect of adding distortions to the synthetically
generated images: Table 3 shows the system
performance after training our model on data gen-
erated as per the procedure mentioned in Section
3.2. Here, we make an implicit assumption that
we can have access to a sample of textline im-
ages annotated with the corresponding text from
the manuscript for which the Post-OCR text cor-
rection needs to be performed. This also mandates
retraining the model for every new manuscript.
We attempted for a more generalised version of
our model, by using training data where the im-
age generation settings are not inspired from the
target manuscript for which the task needs to be
performed. Using the settings from (Chen et al.,
2014) for inducing noise, we generated 10 ran-
dom noise configurations. Here the step sizes were

353

fixed at values such that each parameter, except
erosion (E), can assume 5 values each uniformly
spread across the corresponding ranges consid-
ered. From a total of 2500 (5×5×5×5×4) con-
figuration options, 10 random settings were cho-
sen. Every textline was generated with each of the
10 different settings. The resulting model using
CopyNet produced a CRR of 89.02% (96.99% for
Gītā and 85.62% for Sahaśranāma) on the test set,
which is close to the reported CRR of 89.65 in Ta-
ble 3. The noise ranges chosen are used directly
from (Chen et al., 2014) and are not influenced by
the test data in hand.

We also experimented with a setting where no
noise was added to the synthetically generated im-
ages and the images were fed to the OCR. We ob-
tained a CRR of 80.12% from OCR, where the
errors arose mostly from the missing graphemes
in the alphabet getting mispredicted to a different
grapheme. CopyNet after training with the text so
generated reported a CRR of 86.81% (96.01% for
Gītā, 75.78% for Sahaśranāma) on the test data.

Human judgement survey: In this survey14, we
evaluate how often a human can recognise the
correct construction by viewing only the predic-
tion from one of the systems. We also evaluate
how fast a human can correct them. We selected
15 constructions from Sahaśranāma, and obtained
the system outputs from the OCR, CopyNet and
PCRF for each of these. The average length of a
sentence is 41.73 characters, all ranging between
23 and 47 characters. A respondent is shown a sys-
tem prediction (system identity anonymised) and
is asked to type the corrected string without re-
ferring to any sources. A respondent gets 15 dif-
ferent strings altogether, 5 each from each of the
three systems. We consider responses from 9 par-
ticipants where all of them at least have an under-
graduate degree in Sanskrit linguistics. Altogether
from 3 sets of questionnaires, we have 45 strings
(3 outputs for a given string). Every string ob-
tained 3 impressions. We find that a participant
on an average could identify 4.44 sentences out of
5 from the CopyNet, while it was only 3.56 for
PCRF and 3.11 for the OCR output. The average
time taken to complete the correction of a string
was 81.4 seconds, 106.6 seconds and 127.6 sec-
onds for CopyNet, PCRF and OCR, respectively.

14More details at §6 of Supplementary material

4 Conclusion

In this work, we proposed an OCR based solution
for digitising Romanised Sanskrit. Our work acts
as a Post-OCR text correction approach and is de-
void of any OCR-specific feature engineering. We
find that the use of copying mechanism in encoder-
decoder performs significantly better than other
seq2seq models for the task. Our model outper-
forms the commercially available Google OCR on
the Sahaśranāma texts. From our experiments, we
find that CopyNet performs stably even for OCR
outputs with a CRR as low as 36%. Our imme-
diate research direction will be to rectify insertion
errors which currently are not properly handled.
Also, there are 135 languages which directly share
the Roman alphabet but only 35 of them have OCR
system available. Our approach can be easily ex-
tended to provide a post-processed OCR for those
languages.

Acknowledgements

We are grateful to Amba Kulkarni, Arnab Bhat-
tacharya, Ganesh Ramakrishnan, Rohit Saluja,
Devaraj Adiga and Hrishikesh Terdalkar for help-
ful comments and discussions related to Indic
OCRs. We would like to thank Madhusoodan
Pai, Sanjeev Panchal, Ganesh Iyer and his students
for helping us with the human judgement survey.
We thank the anonymous reviewers for their con-
structive and helpful comments, which greatly im-
proved the paper.

References
Devaraj Adiga, Rohit Saluja, Vaibhav Agrawal, Ganesh

Ramakrishnan, Parag Chaudhuri, K Ramasubrama-
niam, and Malhar Kulkarni. 2018. Improving the
learnability of classifiers for sanskrit ocr corrections.
In The 17th World Sanskrit Conference, Vancouver,
Canada. IASS.

Sandhya Arora, Debotosh Bhattacharjee, Mita
Nasipuri, Dipak Kumar Basu, and Mahantapas
Kundu. 2010. Recognition of non-compound hand-
written devnagari characters using a combination
of mlp and minimum edit distance. International
Journal of Industrial Electronics and Electrical
Engineering.

Dzmitry Bahdanau, KyungHyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of the
Third International Conference on Learning Repre-
sentation (ICLR), San Diego, CA, USA.

354

Yonatan Belinkov and Yonatan Bisk. 2018. Syn-
thetic and natural noise both break neural machine
translation. In The Sixth International Conference
on Learning Representations (ICLR), New Orleans,
USA.

Ajay S Bhaskarabhatla, Sriganesh Madhvanath,
MNSSKP Kumar, A Balasubramanian, and
CV Jawahar. 2004. Representation and annotation
of online handwritten data. In Ninth International
Workshop on Frontiers in Handwriting Recognition,
pages 136–141, Tokyo, Japan. IEEE.

BB Chaudhuri and U Pal. 1997. An ocr system to read
two indian language scripts: Bangla and devnagari
(hindi). In Proceedings of the Fourth International
Conference on Document Analysis and Recognition,
volume 2, pages 1011–1015, Ulm, Germany. IEEE.

Guang Chen, Jianchao Yang, Hailin Jin, Jonathan
Brandt, Eli Shechtman, Aseem Agarwala, and
Tony X Han. 2014. Large-scale visual font recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages
3598–3605.

Eva D’hondt, Cyril Grouin, and Brigitte Grau. 2016.
Low-resource ocr error detection and correction in
french clinical texts. In Proceedings of the Seventh
International Workshop on Health Text Mining and
Information Analysis, pages 61–68, Auxtin, TX. As-
sociation for Computational Linguistics.

VK Govindan and AP Shivaprasad. 1990. Char-
acter recognitiona review. Pattern recognition,
23(7):671–683.

Venu Govindaraju and Srirangaraj Setlur. 2009. Guide
to OCR for Indic Scripts. Springer.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631–1640, Berlin, Germany. Association for
Computational Linguistics.

Oliver Hellwig. 2010-2016. DCS - The Digital Corpus
of Sanskrit. Berlin.

Oliver Hellwig. 2015. ind. senz–ocr software for hindi,
marathi, tamil, and sanskrit.

Hiroshi Ishikawa. 2011. Transformation of general bi-
nary mrf minimization to the first-order case. IEEE
transactions on pattern analysis and machine intel-
ligence, 33(6):1234–1249.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many alignments
and hidden markov models to letter-to-phoneme
conversion. In Human Language Technologies
2007: The Conference of the North American Chap-
ter of the Association for Computational Linguistics;

Proceedings of the Main Conference, pages 372–
379, Rochester, New York. Association for Compu-
tational Linguistics.

Amrith Krishna, Bishal Santra, Pavankumar Satuluri,
Sasi Prasanth Bandaru, Bhumi Faldu, Yajuvendra
Singh, and Pawan Goyal. 2016a. Word segmen-
tation in sanskrit using path constrained random
walks. In Proceedings of COLING 2016, the 26th
International Conference on Computational Lin-
guistics: Technical Papers, pages 494–504, Osaka,
Japan. The COLING 2016 Organizing Committee.

Amrith Krishna, Pavankumar Satuluri, Shubham
Sharma, Apurv Kumar, and Pawan Goyal. 2016b.
Compound type identification in sanskrit: What
roles do the corpus and grammar play? In
Proceedings of the 6th Workshop on South and
Southeast Asian Natural Language Processing (WS-
SANLP2016), pages 1–10, Osaka, Japan. The COL-
ING 2016 Organizing Committee.

Praveen Krishnan, Naveen Sankaran, Ajeet Kumar
Singh, and CV Jawahar. 2014. Towards a robust
ocr system for indic scripts. In Eleventh IAPR Inter-
national Workshop on Document Analysis Systems
(DAS), pages 141–145, Tours, France. IEEE.

Anand Kumar and CV Jawahar. 2007. Content-level
annotation of large collection of printed document
images. In Ninth International Conference on Docu-
ment Analysis and Recognition (ICDAR), volume 2,
pages 799–803, Parana, Brazil. IEEE.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the 18th Interna-
tional Conference on Machine Learning (ICML),
volume 951, pages 282–289, Williamstown, MA,
USA.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Jey Han Lau, Alexander Clark, and Shalom Lap-
pin. 2015. Unsupervised prediction of acceptabil-
ity judgements. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1618–1628, Beijing, China. Associ-
ation for Computational Linguistics.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the

355

2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Minesh Mathew, Ajeet Kumar Singh, and CV Jawa-
har. 2016. Multilingual ocr for indic scripts. In
Document Analysis Systems (DAS), 2016 12th IAPR
Workshop on, pages 186–191. IEEE.

Monier Monier-Williams. 1899. A sanskrit-english
dictionary.

Umapada Pal, Tetsushi Wakabayashi, and Fumitaka
Kimura. 2009. Comparative study of devnagari
handwritten character recognition using different
feature and classifiers. In Tenth International Con-
ference on Document Analysis and Recognition (IC-
DAR), pages 1111–1115. IEEE.

Vikas Reddy, Amrith Krishna, Vishnu Dutt Sharma,
Prateek Gupta, MR Vineeth, and Pawan Goyal.
2018. Building a word segmenter for sanskrit
overnight. In Eleventh Language Resources and
Evaluation Conference (LREC), Miyazaki, Japan.

Rohit Saluja, Devaraj Adiga, Parag Chaudhuri, Ganesh
Ramakrishnan, and Mark Carman. Error detection
and corrections in indic ocr using lstms. In 14th
IAPR International Conference on Document Anal-
ysis and Recognition (ICDAR).

Naveen Sankaran and CV Jawahar. 2012. Recognition
of printed devanagari text using blstm neural net-
work. In 21st International Conference on Pattern
Recognition (ICPR), pages 322–325, Tsukuba Sci-
ence City, JAPAN. IEEE.

Carsten Schnober, Steffen Eger, Erik-Lân Do Dinh, and
Iryna Gurevych. 2016. Still not there? comparing
traditional sequence-to-sequence models to encoder-
decoder neural networks on monotone string trans-
lation tasks. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 1703–1714.

M. Schuster and K. Nakajima. 2012. Japanese and ko-
rean voice search. In IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 5149–5152, Kyoto, Japan.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Bikash Shaw, Swapan Kumar Parui, and Malayap-
pan Shridhar. 2008. Offline handwritten devana-
gari word recognition: A holistic approach based
on directional chain code feature and hmm. In In-
ternational Conference on Information Technology
(ICIT), pages 203–208, Bhubaneswar, India. IEEE.

Ajeet Kumar Singh and CV Jawahar. 2015. Can
rnns reliably separate script and language at word
and line level? In 13th International Conference
on Document Analysis and Recognition (ICDAR),
pages 976–980. IEEE.

Ray Smith. 2007. An overview of the tesseract ocr en-
gine. In Ninth International Conference on Docu-
ment Analysis and Recognition, (ICDAR), volume 2,
pages 629–633. IEEE.

Ray Smith, Daria Antonova, and Dar-Shyang Lee.
2009. Adapting the tesseract open source ocr en-
gine for multilingual ocr. In Proceedings of the In-
ternational Workshop on Multilingual OCR, page 1.
ACM.

Raymond W Smith. 1987. The Extraction and Recog-
nition of Text from Multimedia Document Images.
Ph.D. thesis, University of Bristol.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Adnan Ul-Hasan and Thomas M. Breuel. 2013. Can
we build language-independent ocr using lstm net-
works? In Proceedings of the 4th International
Workshop on Multilingual OCR, MOCR ’13, pages
9:1–9:5, New York, NY, USA. ACM.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, ukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR,
abs/1609.08144.

