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Abstract

Inducing sparseness while training neural net-
works has been shown to yield models with a
lower memory footprint but similar effective-
ness to dense models. However, sparseness is
typically induced starting from a dense model,
and thus this advantage does not hold during
training. We propose techniques to enforce
sparseness upfront in recurrent sequence mod-
els for NLP applications, to also benefit train-
ing. First, in language modeling, we show how
to increase hidden state sizes in recurrent lay-
ers without increasing the number of parame-
ters, leading to more expressive models. Sec-
ond, for sequence labeling, we show that word
embeddings with predefined sparseness lead to
similar performance as dense embeddings, at a
fraction of the number of trainable parameters.

1 Introduction

Many supervised learning problems today are
solved with deep neural networks exploiting large-
scale labeled data. The computational and mem-
ory demands associated with the large amount of
parameters of deep models can be alleviated by us-
ing sparse models. Applying sparseness can be
seen as a form of regularization, as it leads to a
reduced amount of model parameters', for given
layer widths or representation sizes. Current suc-
cessful approaches gradually induce sparseness
during training, starting from densely initialized
networks, as detailed in Section 2. However, we
propose that models can also be built with pre-
defined sparseness, i.e., such models are already
sparse by design and do not require sparseness in-
ducing training schemes.

The main benefit of such an approach is mem-
ory efficiency, even at the start of training. Espe-
cially in the area of natural language processing, in

!The sparseness focused on in this work, occurs on the

level of trainable parameters, i.e., we do not consider data
sparsity.

324

line with the hypothesis by Yang et al. (2017) that
natural language is “high-rank”, it may be useful
to train larger sparse representations, even when
facing memory restrictions. For example, in order
to train word representations for a large vocabu-
lary using limited computational resources, prede-
fined sparseness would allow training larger em-
beddings more effectively compared to strategies
inducing sparseness from dense models.

The contributions of this paper are (i) a
predefined sparseness model for recurrent neu-
ral networks, (i) as well as for word embed-
dings, and (iii) proof-of-concept experiments on
part-of-speech tagging and language modeling, in-
cluding an analysis of the memorization capacity
of dense vs. sparse networks. An overview of re-
lated work is given in the next Section 2. We sub-
sequently present predefined sparseness in recur-
rent layers (Section 3), as well as embedding lay-
ers (Section 4), each illustrated by experimental
results. This is followed by an empirical investi-
gation of the memorization capacity of language
models with predefined sparseness (Section 5).
Section 6 summarizes the results, and points out
potential areas of follow-up research.

The code for running the presented experiments
is publically available.?

2 Related Work

A substantial body of work has explored the bene-
fits of using sparse neural networks. In deep con-
volutional networks, common approaches include
sparseness regularization, e.g., using decompo-
sition (Liu et al., 2015) or variational dropout
(Molchanov et al., 2017)), pruning of connections
(Han et al., 2016, 2015; Guo et al., 2016) and low
rank approximations (Jaderberg et al., 2014; Tai
et al., 2016). Regularization and pruning often

*https://github.com/tdmeeste/SparseSeqModels
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lead to mostly random connectivity, and therefore
to irregular memory accesses, with little practical
effect in terms of hardware speedup. Low rank
approximations are structured and thus do achieve
speedups, with as notable examples the works of
Wen et al. (2016) and Lebedev and Lempitsky
(2016).

Whereas above-cited papers specifically ex-
plored convolutional networks, our work focuses
on recurrent neural networks (RNNs). Similar
ideas have been applied there, e.g., see Lu et al.
(2016) for a systematic study of various new com-
pact architectures for RNNs, including low-rank
models, parameter sharing mechanisms and struc-
tured matrices. Also pruning approaches have
been shown to be effective for RNNs, e.g., by
Narang et al. (2017). Notably, in the area of audio
synthesis, Kalchbrenner et al. (2018) showed that
large sparse networks perform better than small
dense networks. Their sparse models were ob-
tained by pruning, and importantly, a significant
speedup was achieved through an efficient imple-
mentation.

For the domain of natural language processing
(NLP), recent work by Wang et al. (2016) pro-
vides an overview of sparse learning approaches,
and in particular noted that “application of sparse
coding in language processing is far from exten-
sive, when compared to speech processing”. Our
current work attempts to further fill that gap. In
contrast to aforementioned approaches (that either
rely on inducing sparseness starting from a denser
model, or rather indirectly try to impose sparse-
ness by enforcing constraints), we explore ways to
predefine sparseness.

In the future, we aim to design models where
predefined sparseness will allow using very large
representation sizes at a limited computational
cost. This could be interesting for training mod-
els on very large datasets (Chelba et al., 2013;
Shazeer et al., 2017), or for more complex applica-
tions such as joint or multi-task prediction scenar-
ios (Miwa and Bansal, 2016; Bekoulis et al., 2018;
Hashimoto et al., 2017).

3 Predefined Sparseness in RNNs

Our first objective is designing a recurrent network
cell with fewer trainable parameters than a stan-
dard cell, with given input dimension ¢ and hidden
state size h. In Section 3.1, we describe one way
to do this, while still allowing the use of fast RNN
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libraries in practice. This is illustrated for the task
of language modeling in Section 3.2.

3.1 Sparse RNN Composed of Dense RNNs

The weight matrices in RNN cells can be divided
into input-to-hidden matrices Wy, € RP¥# and
hidden-to-hidden matrices W, € R"*" (assum-
ing here the output dimension corresponds to the
hidden state size h), adopting the terminology
used in (Goodfellow et al., 2016). A sparse RNN
cell can be obtained by introducing sparseness in
W, and Wyp,;. Note that our experiments make
use of the Long Short-Term Memory (LSTM) cell
(Hochreiter and Schmidhuber, 1997), but our dis-
cussion should hold for any type of recurrent net-
work cell. For example, an LSTM contains 4 ma-
trices Wy, and Wj,;, whereas the Gated Recur-
rent Unit (GRU) (Chung et al., 2014) only has 3.

We first propose to organize the hidden dimen-
sions in several disjoint groups, i.e, [N segments
withlengths s, (n = 1,...,N),with)_ s, = h.
We therefore reduce Wy, to a block-diagonal ma-
trix. For example, a uniform segmentation would
reduce the number of trainable parameters in Wy,
to a fraction 1/N. Figure 1 illustrates an exam-
ple Wy, for N 3. One would expect that
this simplification has a significant regularizing ef-
fect, given that the number of possible interactions
between hidden dimensions is strongly reduced.
However, our experiments (see Section 3.2) show
that a larger sparse model may still be more ex-
pressive than its dense counterpart with the same
number of parameters. Yet, Merity et al. (2017)
showed that applying weight dropping (i.e., Drop-
Connect, Wan et al. (2013)) in an LSTM’s Wy,
matrices has a stronger positive effect on language
models than other ways to regularize them. Sparsi-
fying Wy, upfront can hence be seen as a similar
way to avoid the model’s ‘over-expressiveness’ in
its recurrent weights.

As a second way to sparsify the RNN cell, we
propose to not provide all hidden dimensions with
explicit access to each input dimension. In each
row of Wyp,; we limit the number of trainable pa-
rameters to a fraction v € |0, 1]. Practically, we
choose to organize the i trainable parameters in
each row within a window that gradually moves
from the first to the last input dimension, when ad-
vancing in the hidden (i.e., row) dimension. Fur-
thermore, we segment the hidden dimension of
W,,; according to the segmentation of Wy, and
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Figure 1: Predefined sparseness in hidden-to-

hidden (Wy,;,) and input-to-hidden (Wp;) matri-
ces in RNNs. Trainable parameters (yellow) vs.
zeros (white).

move the window of ¢ trainable parameters dis-
cretely per segment, as illustrated in Fig. 1(b).

Because of the proposed practical arrangement
of sparse and dense blocks in Wyp; and Wy,
the sparse RNN cell is equivalent to a composi-
tion of smaller dense RNN’s operating in paral-
lel on (partly) overlapping input data segments,
with concatenation of the individual hidden states
at the output. This will be illustrated at the end of
Section 5. As a result, fast libraries like CuDNN
(Chetlur et al., 2014) can be used directly. Fur-
ther research is required to investigate the poten-
tial benefit in terms of speed and total cell capac-
ity, of physically distributing computations for the
individual dense recurrent cells.

Note that this is only possible because of the ini-
tial requirement that the output dimensions are di-
vided into disjoint segments. Whereas inputs can
be shared entirely between different components,
joining overlapping segments in the h dimension
would need to be done within the cell, before ap-
plying the gating and output non-linearities. This
would make the proposed model less interesting
for practical use.

We point out two special cases: (i) dense Wy;
matrices (v = 1) lead to /N parallel RNNs that
share the inputs but with separate contributions to
the output, and (ii) organizing Wy, as a block ma-
trix (e.g., v = 1/N for N same-length segments),
leads to IV isolated parallel RNNs. In the latter
case, the reduction in trainable parameters is high-
est, for a given number of segments, but there is
no more influence from any input dimension in a
given segment to output dimensions in non-cor-
responding segments. We recommend option (1)
as the most rational way to apply our ideas: the
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sparse RNN output is a concatenation of individ-
ual outputs of a number of RNN components con-
nected in parallel, all sharing the entire input.

3.2 Language Modeling with Sparse RNNs

We apply predefined sparse RNNs to language
modeling. Our baseline approach is the AWD-
LSTM model introduced by Merity et al. (2017).
The recurrent unit consists of a three-layer
stacked LSTM (Long Short-Term Memory net-
work (Hochreiter and Schmidhuber, 1997)), with
400-dimensional inputs and outputs, and interme-
diate hidden state sizes of 1150. Since the vo-
cabulary contains only 10k words, most trainable
parameters are in the recurrent layer (20M out of
a total of 24M). In order to cleanly measure the
impact of predefined sparseness in the recurrent
layer, we maintain the original word embedding
layer dimensions, and sparsify the recurrent layer.>
In this example, we experiment with increasing
dimensions in the recurrent layer while maintain-
ing the number of trainable parameters, whereas
in Section 4.2 we increase sparseness while main-
taining dimensions.

Specifically, each LSTM layer is made sparse
in such a way that the hidden dimension 1150 is
increased by a factor 1.5 (chosen ad hoc) to 1725,
but the embedding dimensions and total number of
parameters remain the same (within error margins
from rounding to integer dimensions for the dense
blocks). We use uniform segments. The number
of parameters for the middle LSTM layer can be
calculated as:*

# params. LSTM layer 2

= 4(hq iq + h?, + 2hyg) (dense)
hs . h? hs
= 4N(nyzs + N2 + QN) (sparse)

in which the first expression represents the gen-
eral case (e.g., the dense case has input and state
sizes iq = hgq 1150), and the second part is
the sparse case composed of IV parallel LSTMs

3 Alternative models could be designed for comparison,
with modifications in both the embedding and output layer.
Straightforward ideas include an ensemble of smaller inde-
pendent models, or a mixture-of-softmaxes output layer to
combine hidden states of the parallel LSTM components, in-
spired by (Yang et al., 2017).

“This follows from an LSTM’s 4 W, and 4 W,; ma-
trices, as well as bias vectors. However, depending on the
implementation the equations may differ slightly in the con-
tribution from the bias terms. We assume the standard Py-
torch implementation (Paszke et al., 2017).



finetune  test perplexity
(Merity et al., 2017) no 58.8
baseline no 58.8 £0.3
sparse LSTM no 57.9+0.3
(Merity et al., 2017) yes 597.3
baseline yes 56.6 £ 0.2
sparse LSTM yes 57.0£0.2

Table 1: Language modeling for PTB
(mean =+ stdev).

with input size 7is, and state size hs/N (with
is = hs = 1725). Dense and sparse variants have
the same number of parameters for N = 3 and
v = 0.555. These values are obtained by identi-
fying both expressions. Note that the equality in
model parameters for the dense and sparse case
holds only approximately due to rounding errors
in (vis) and (hs/N).

Figure 1 displays Wy, and Wy, for the mid-
dle layer, which has close to 11M parameters out
of the total of 24M in the whole model. A dense
model with hidden size h = 1725 would require
46M parameters, with 24M in the middle LSTM
alone.

Given the strong hyperparameter dependence
of the AWD-LSTM model, and the known is-
sues in objectively evaluating language models
(Melis et al., 2017), we decided to keep all hy-
perparameters (i.e., dropout rates and optimiza-
tion scheme) as in the implementation from Mer-
ity et al. (2017)°, including the weight dropping
with p = 0.5 in the sparse Wy, matrices. Ta-
ble 1 shows the test perplexity on a processed
version (Mikolov et al., 2010) of the Penn Tree-
bank (PTB) (Marcus et al., 1993), both with and
without the “finetune’ step®, displaying mean and
standard deviation over 5 different runs. With-
out finetuning, the sparse model consistently per-
forms around 1 perplexity point better, whereas af-
ter finetuning, the original remains slightly better,
although less consistently so over different ran-
dom seeds. We observed that the sparse model
overfits more strongly than the baseline, especially
during the finetune step. We hypothesize that the

SOur implementation extends https://github.
com/salesforce/awd-1lstm-1m.

The ‘finetune’ step indicates hot-starting the Averaged
Stochastic Gradient Descent optimization once more, after
convergence in the initial optimization step (Merity et al.,
2017).
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regularization effect of a priori limiting interac-
tions between dimensions does not compensate for
the increased expressiveness of the model due to
the larger hidden state size. Further experimen-
tation, with tuned hyperparameters, is needed to
determine the actual benefits of predefined sparse-
ness, in terms of model size, resulting perplexity,
and sensitivity to the choice of hyperparameters.

4 Sparse Word Embeddings

Given a vocabulary with V' words, we want to
construct vector representations of length k for
each word such that the total number of parame-
ters needed (i.e., non-zero entries), is smaller than
k'V. We introduce one way to do this based on
word frequencies (Section 4.1), and present part-
of-speech tagging experiments (Section 4.2).

4.1 Word-Frequency based Embedding Size

Predefined sparseness in word embeddings
amounts to deciding which positions in the word
embedding matrix E € RY** should be fixed to
zero, prior to training. We define the fraction of
trainable entries in E as the embedding density
0p. We hypothesize that rare words can be
represented with fewer parameters than frequent
words, since they only appear in very specific
contexts. This will be investigated experimentally
in Section 4.2. Word occurrence frequencies have
a typical Zipfian nature (Manning et al., 2008),
with many rare and few highly frequent terms.
Thus, representing the long tail of rare terms with
short embeddings should greatly reduce memory
requirements.

In the case of a low desired embedding density
dp, we want to save on the rare words, in terms of
assigning trainable parameters, and focus on the
fewer more popular words. An exponential decay
in the number of words that are assigned longer
representations is one possible way to implement
this. In other words, we propose to have the num-
ber of words that receive a trainable parameter at
dimension j decrease with a factor o/ (a € ]0, 1]).
For a given fraction ¢ g, the parameter « can be de-
termined from requiring the total number of non-
zero embedding parameters to amount to a given
fraction d i of all parameters:

k—1
# embedding params. = Z AV =6gkV
j=0

and numerically solving for a.


https://github.com/salesforce/awd-lstm-lm
https://github.com/salesforce/awd-lstm-lm
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Figure 2: Visualization of sparse embedding ma-
trices for different densities o (with & = 20).
Colored region: non-zero entries. Rows represent
word indices, sorted from least frequent (LF) to
highly frequent (HF).

Figure 2 gives examples of embedding matrices
with varying dg. For a vocabulary of 44k terms
and maximum embedding length k£ = 20, the den-
sity 0 = 0.2 leads to 25% of the words with
embedding length 1 (corresponding o = 0.75),
only 7.6% with length of 10 or higher, and with
the maximum length 20 for only the 192 most fre-
quent terms. The particular configurations shown
in Fig. 2 are used for the experiments in Sec-
tion 4.2.

In order to set a minimum embedding length for
the rarest words, as well as for computational ef-
ficiency, we note that this strategy can also be ap-
plied on M bins of embedding dimensions, rather
than per individual dimensions. The width of
the first bin then indicates the minimum embed-
ding length. Say bin m has width k., (for m =
0,...,M —1,and ) K, = k). The multiplica-
tive decay factor « can then be obtained by solving

=
0p = Z Z Ema™,
m=0

while numerically compensating for rounding er-
rors in the number V o™ of words that are assigned
trainable parameters in the m™ bin.

)

4.2 Part-of-Speech Tagging Experiments

We now study the impact of sparseness in word
embeddings, for a basic POS tagging model, and
report results on the PTB Wall Street Journal data.
We embed 43,815 terms in 20-dimensional space,
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Figure 3: POS tagging accuracy on PTB data:
dense (red) vs. sparse (green). X-axis: embedding
size k for the dense case, and average embedding
size (or 20 &) for the sparse case. Shaded bands
indicate stdev over 4 randomly seeded runs.

as input for a BiLSTM layer with hidden state
size 10 for both forward and backward directions.
The concatenated hidden states go into a fully
connected layer with tanh non-linearity (down
to dimension 10), followed by a softmax classi-
fication layer with 49 outputs (i.e., the number
of POS tags). The total number of parameters
is 880k, of which 876k in the embedding layer.
Although character-based models are known to
outperform pure word embedding based models
(Ling et al., 2015), we wanted to investigate the ef-
fect of sparseness in word embeddings, rather than
creating more competitive but larger or complex
models, risking a smaller resolution in the effect of
changing individual building blocks. To this end
we also limited the dimensions, and hence the ex-
pressiveness, of the recurrent layer.” Our model is
similar to but smaller than the ‘word lookup’ base-
line by Ling et al. (2015).

Figure 3 compares the accuracy for variable
densities §g (for k = 20) vs. different embedding
sizes (with 6 = 1). For easily comparing sparse
and dense models with the same number of em-
bedding parameters, we scale dp, the x-axis for
the sparse case, to the average embedding size of
20 dg.

"With LSTM state sizes of 50, the careful tuning of
dropout parameters gave an accuracy of 94.7% when reduc-
ing the embedding size to k = 2, a small gap compared to
96.8% for embedding size 50. The effect of larger sparse em-
beddings was therefore much smaller in absolute value than
the one visualized in Fig. 3, because of the much more ex-
pressive recurrent layer.



Training models with shorter dense embeddings
appeared more difficult. In order to make a fair
comparison, we therefore tuned the models over a
range of regularization hyperparameters, provided
in Table 2.

We observe that the sparse embedding layer
allows lowering the number of parameters in
E down to a fraction of 15% of the original
amount, with little impact on the effectiveness,
provided E is sparsified rather than reduced in
size. The reason for that is that with sparse 20-
dimensional embeddings, the BiLSTM still re-
ceives 20-dimensional inputs, from which a signif-
icant subset only transmits signals from a small set
of frequent terms. In the case of smaller dense em-
beddings, information from all terms is uniformly
present over fewer dimensions, and needs to be
processed with fewer parameters at the encoder in-
put.

Finally, we verify the validity of our hypothe-
sis from Section 4.1 that frequent terms need to be
embedded with more parameters than rare words.
Indeed, one could argue in favor of the opposite
strategy. It would be computationally more ef-
ficient if the terms most often encountered had
the smallest representation. Also, stop words are
the most frequent ones but are said to carry little
information content. However, Table 3 confirms
our initial hypothesis. Applying the introduced
strategy to sparsify embeddings on randomly or-
dered words (‘no sorting’) leads to a significant de-
crease in accuracy compared to the proposed sort-
ing strategy (‘up’). When the most frequent words
are encoded with the shortest embeddings (‘down’
in the table), the accuracy goes down even further.

5 Learning To Recite

From the language modeling experiments in Sec-
tion 3.2, we hypothesized that an RNN layer be-
comes more expressive, when the dense layer is
replaced by a larger layer with predefined sparse-
ness and the same number of model parameters.
In this section, we design an experiment to further
investigate this claim. One way of quantifying an
RNN’s capacity is in measuring how much infor-
mation it can memorize. We name our experimen-
tal setup learning to recite: we investigate to what
extent dense vs. sparse models are able to learn an
entire corpus by heart in order to recite it after-
wards. We note that this toy problem could have
interesting applications, such as the design of neu-
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ral network components that keep entire texts or
even knowledge bases available for later retrieval,
encoded in the component’s weight matrices.?

5.1 Experimental Results

The initial model for our learning to recite exper-
iment is the baseline language model used in Sec-
tion 3.2 (Merity et al., 2017), with the PTB data.
We set all regularization parameters to zero, to fo-
cus on memorizing the training data. During train-
ing, we measure the ability of the model to cor-
rectly predict the next token at every position in
the training data, by selecting the token with high-
est predicted probability. When the model reaches
an accuracy of 100%, it is able to recite the entire
training corpus. We propose the following opti-
mization setup (tuned and tested on dense models
with different sizes): minibatch SGD (batch size
20, momentum 0.9, and best initial learning rate
among 5 or 10). An exponentially decaying learn-
ing rate factor (0.97 every epoch) appeared more
suitable for memorization than other learning rate
scheduling strategies, and we report the highest
accuracy in 150 epochs.

We compare the original model (in terms of net-
work dimensions) with versions that have less pa-
rameters, by either reducing the RNN hidden state
size h or by sparsifying the RNN, and similarly
for the embedding layer. For making the embed-
ding matrix sparse, M = 10 equal-sized segments
are used (as in eq. 1). Table 4 lists the results.
The dense model with the original dimensions has
24M parameters to memorize a sequence of in to-
tal ‘only’ 930k tokens, and is able to do so. When
the model’s embedding size and intermediate hid-
den state size are halved, the number of parameters
drops to 7M, and the resulting model now makes
67 mistakes out of 10k predictions. If A is kept,
but the recurrent layers are made sparse to yield
the same number of parameters, only 5 mistakes
are made for every 10k predictions. Making the
embedding layer sparse as well introduces new er-
rors. If the dimensions are further reduced to a
third the original size, the memorization capacity
goes down strongly, with less than 4M trainable
parameters. In this case, sparsifying both the re-
current and embedding layer yields the best re-
sult, whereas the dense model works better than

81t is likely that recurrent networks are not the best choice
for this purpose, but here we only wanted to measure the
LSTM-based model’s capacity to memorize with and with-
out predefined sparseness.



hyperparameter value(s)

optimizer Adam (Kingma and Ba, 2015)
learning rate 0.001

epochs 50

word level embedding dropout T [0.0, 0.1, 0.2]

variational embedding dropout f [0.0, 0.1, 0.2, 0.4]
DropConnect on Wy, T [0.0, 0.2, 0.4]

batch size 20

Table 2: Hyperparameters for POS tagging model (fas introduced in (Merity et al., 2017)). A list indicates

tuning over the given values was performed.

0 =1.0 o = 0.25 0p = 0.1
# params. (E; all)  876k; 880k  219k; 222k 88k ; 91k
up 96.1+0.1 956+0.1
no sorting 96.0+0.3 94.3+04 93.0£0.3
down 89.8 £2.2 90.6 £0.5

Table 3: Impact of vocabulary sorting on POS accuracy with sparse embeddings: up vs. down (most fre-
quent words get longest vs. shortest embeddings, resp.) or not sorted, for different embedding densities

op.
embeddings hidden state 4 parameters memorization
size k, density 0p size h P accuracy (%)
dense model (orig. dims.) 400 1 1150 24.22M 100.0
dense model (see Fig. 4(a)) 200 1 575 7.0"T™M 99.33
sparse RNN (see Fig. 4(b)) 200 1 1150 7.0TM 99.95
sparse RNN + sparse emb. 400 1/2 1150 7.07TM 99.74
dense model 133 1 383 3.59M 81.48
sparse RNN 133 1 1150 3.59M 76.37
sparse RNN + sparse emb. 400 1/3 1150 3.59M 89.98

Table 4: PTB train set memorization accuracies for dense models vs. models with predefined sparseness
in recurrent and embedding layers with comparable number of parameters.

the model with sparse RNNs only. A possible ex-
planation for that is the strong sparseness in the
RNNs. For example, in the middle layer only 1
out of 10 recurrent connections is non-zero. In this
case, increasing the size of the word embeddings
(at least, for the frequent terms) could provide an
alternative for the model to memorize parts of the
data, or maybe it makes the optimization process
more robust.

5.2 Visualization

Finally, we provide an illustration of the high-
level composition of the recurrent layers in two of
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the models used for this experiment. Figure 4(a)
sketches the stacked 3-layer LSTM network from
the ‘dense RNN’ model (see Table 4) with k =
200 and h = 575. As already mentioned, our
proposed sparse LSTMs are equivalent to a well-
chosen composition of smaller dense LSTM com-
ponents with overlapping inputs and disjoint out-
puts. This composition is shown in Fig. 4(b) for
the model ‘sparse RNN’ (see Table 4), which in
every layer has the same number of parameters as
the dense model with reduced dimensions.



layer 1 layer 2 layer 3
h=>5T75 h=5T75
k=200 k=200
(a) =
200 — 575 575 — 575 575 — 200
1.79M par. 2.65M par. 0.62M par.
h=1150 h=1150
f' [Rar]
=
k=200/ B2z |- k=200
B R172 | .
7 ) ; ARz |
(b) , HL G AR23 ||| 4 :
/ S R3o |
R \ : : :
: 5 : 675 — 100'
, B2l | :
| 1 |
99288 : i
: P U paas0s0: U :
‘sparse Rj ‘sparse R ‘sparse Rj
200 — 1150 11501150 1150 —200
“1.79M par. ‘2.65M par...” *0.62M par. -
Figure 4: Schematic overview of 3-layer stacked

(a) dense vs. (b) sparse LSTMs with the same
number of parameters (indicated with ‘par.).
Sparse layers are effectively composed of smaller
dense LSTMs. ‘R;;’ indicates component j
within layer ¢, and ‘675 — 100’ indicates an LSTM
compoment with input size 675 and output size
100.

6 Conclusion and Future Work

This paper introduces strategies to design word
embedding layers and recurrent networks with
predefined sparseness. Effective sparse word rep-
resentations can be constructed by encoding less
frequent terms with smaller embeddings and vice
versa. A sparse recurrent neural network layer can
be constructed by applying multiple smaller recur-
rent cells in parallel, with partly overlapping in-
puts and concatenated outputs.

The presented ideas can be applied to build
models with larger representation sizes for a given
number of parameters, as illustrated with a lan-
guage modeling example. Alternatively, they can
be used to reduce the number of parameters for
given representation sizes, as investigated with a
part-of-speech tagging model.
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We introduced ideas on predefined sparseness in
sequence models, as well as proof-of-concept ex-
periments, and analysed the memorization capac-
ity of sparse networks in the ‘learning to recite’
toy problem.

More elaborate experimentation is required to
investigate the benefits of predefined sparseness
on more competitive tasks and datasets in NLP.
For example, language modeling results on the
Penn Treebank rely on heavy regularization due
to the small corpus. Follow-up work could there-
fore investigate to what extent language models
for large corpora can be trained with limited com-
putational resources, based on predefined sparse-
ness. Other ideas for future work include the use
of predefined sparseness for pretraining word em-
beddings, or other neural network components be-
sides recurrent models, as well as their use in alter-
native applications such as sequence-to-sequence
tasks or in multi-task scenarios.
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