
Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 119–130
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

119

Uncovering Code-Mixed Challenges: A Framework for Linguistically
Driven Question Generation and Neural based Question Answering

Deepak Gupta‡, Pabitra Lenka†∗, Asif Ekbal‡, Pushpak Bhattacharyya‡
‡Indian Institute of Technology Patna, India

†International Institute of Information Technology Bhubaneswar, India
‡{deepak.pcs16, asif, pb}@iitp.ac.in

†pabitra.lenka18@gmail.com

Abstract

Existing research on question answering (QA)
and comprehension reading (RC) are mainly
focused on the resource-rich language like
English. In recent times, there has been a
rapid growth of multi-lingual contents on the
web, and this has posed several challenges
to the existing QA systems. Code-mixing is
one such challenge that makes the task even
more complex. In this paper, we propose a
linguistically motivated technique for code-
mixed question generation (CMQG) and a neu-
ral network based architecture for code-mixed
question answering (CMQA). For evaluation,
we manually create the code-mixed questions
for Hindi-English language pair. In order
to show the effectiveness of our neural net-
work based CMQA technique, we utilize two
benchmark datasets, viz. SQuAD andMMQA.
Experiments show that our proposed model
achieves encouraging performance on CMQG
and CMQA.

1 Introduction

The people who are multilingual in nature often
switch back and forth between their native lan-
guages and the foreign (popular) languages to ex-
press themselves on the web. This is very common
nowadays, particularly when people express their
opinions (or making any communication) through
various social media platforms. This phenomenon
of embedding the morphemes, words, phrases, etc.
of one language into another is popularly termed as
code-mixing (CM) (Myers-Scotton, 1997, 2002).
The recent study (Safran, 2015) has uncovered
that users frequently use question patterns, namely
‘how’ (38%), ‘why’ (24%), ‘where’ (15%), ‘what’
(11%), and ‘which’ (12%) in their queries as op-
posed to a ‘statement query’.

∗Work carried out during the internship at IIT Patna

Presently, the search engines have become
intelligent and are capable enough to pro-
vide precise answer to a natural language
query/question1.Several virtual assistants such as
Siri, Cortana, Alexa, Google Assistant, etc are also
equipped with these facilities. However, these
search engines and virtual assistants are efficient
only in handling the queries written in English.
Let us consider the following two representations
(English and code-mixed) of the same question.
(i) Q: “Who is the foreign secretary of USA?”
(ii) Q: “USA ke foreign secretary koun hai?”
(Trans:“Who is the foreign secretary of USA?”)
Search engines are able to provide the exact
answer to the first question. It is to be noted that
although both the questions are same, the search
engine is unable to return the exact answer for the
second question, which is code-mixed in nature.
It rather returns the top-most relevant web pages.
In this paper, we propose a framework for code-

mixed question generation (CMQG) as well as
code-mixed question answering (CMQA) involv-
ing English and Hindi. Firstly, we propose a lin-
guistically motivated technique for generating the
code-mixed questions. We followed this approach
as we did not have access to any labeled data
for code-mixed question generation. Thereafter,
we propose an effective framework based on deep
neural network for Code-mixed Question Answer-
ing (CMQA). In our proposed CMQA technique,
we use multiple attention based recurrent units to
represent the code-mixed questions and the En-
glish passages. Finally, our answer-type focused
network (attentive towards the answer-type of the
question being asked) extracts the answer for a
given code-mixed question. We summarize our
contributions as follows:
(i). Wepropose a linguistically motivated unsuper-

1The capability of handling factoid questions is higher
than the complex questions or descriptive questions.

120

vised algorithm for Code-mixed Question Genera-
tion (CMQG). (ii). We propose a bilinear attention
and answer-type focused neural framework to deal
with CMQA. (iii). We create two CMQA datasets
to further explore the research on CMQA. In addi-
tion to this, wemanually create a code-mixed ques-
tion dataset, and subsequently a code-mixed ques-
tion classification dataset. (iv)We provide a state-
of-the-art setup to extract answers from the English
passages for the corresponding code-mixed ques-
tions. The source code of our proposed systems
and the datasets can be found here2.

2 Related Work

Code-mixing refers to the mixing of more than
one language in the same sentence. Creating re-
sources and tools capable of handling code-mixed
languages is more challenging in comparison to
the traditional language processing activities that
are concerned with only one language. In recent
times, researchers have started investigating meth-
ods for creating tools and resources for various
Natural Language Processing (NLP) applications
involving code-mixed languages. Some of the ap-
plications include language identification (Chit-
taranjan et al., 2014; Barman et al., 2014), part-
of-speech (PoS) tagging (Vyas et al., 2014; Jama-
tia et al., 2015; Gupta et al., 2017), question clas-
sification (Raghavi et al., 2015), entity extraction
(Gupta et al., 2018a, 2016b), sentiment analysis
(Rudra et al., 2016; Gupta et al., 2016a) etc. De-
veloping QA system in a code-mixed scenario is,
itself, very novel in the sense that there have not
been very significant attempts towards this direc-
tion, except the few such as (Chandu et al., 2017).
Our literature survey shows that the existing meth-
ods of question generation (general) include both
rules Heilman and Smith (2010); Ali et al. (2010)
and machine learning (Serban et al., 2016; Wang
et al., 2017a) techniques. A joint model of ques-
tion generation and answering based on sequence-
to-sequence neural network model is proposed in
(Wang et al., 2017a).
In recent times, there have been several stud-

ies on deep learning based reading comprehen-
sion/ QA (Hermann et al., 2015; Cui et al., 2017;
Shen et al., 2017; Wang et al., 2017b; Gupta et al.,
2018c; Wang and Jiang, 2016; Berant et al., 2014;
Maitra et al., 2018; Cheng et al., 2016; Trischler

2http://www.iitp.ac.in/~ai-nlp-ml/
resources.html

et al., 2016). To the best of our knowledge, this is
the very first attempt to automatically generate the
code-mixed questions (i.e. question generation),
as well as provide a robust solution by developing
an end-to-end neural network model for CMQA.

3 Code-Mixed Question Generation

We focus on a code-mixed scenario involving two
languages, viz. English and Hindi. Due to the
scarcity of labeled data, we could not employ any
sophisticatedmachine learning technique for ques-
tion generation. Rather, we propose an unsuper-
vised algorithm that automatically formulates the
code-mixed questions. The algorithm makes use
of several NLP components such as PoS tagger,
transliteration and lexical translation. We con-
struct Hindi-English code-mixed question from a
given Hindi question. Let us consider the follow-
ing three questions:

• Q1: What is the name of the baseball team in
Seattle?

• Q2: िसएटल मӒ बसेबॉल दल का नाम Թा ह?ै
(Trans: What is the name of the baseball
team in Seattle?)
(Transliteration: Seattle mai baseball dal ka
naam kya hai?)

• Q3:Seattle mein baseball team ka naam kya
hai?
(Trans: What is the name of the baseball
team in Seattle?)

All the three questions are same but are asked in
English, Hindi and the code-mixed English-Hindi
languages. It can be seen that Q2 and Q3 are sim-
ilar and share many false cognates (Moss, 1992)
[(Seattle, िसएटल), (naam, नाम), (kya, Թा), (mai,
मӒ), (baseball, बसेबॉल)]. The question Q3 has the
direct transliteration of theHindi words (िसएटल→
Seattle), (नाम→ naam), (Թा→ kya), (मӒ→mai)
and (बसेबॉल → baseball). There are some words
(e.g. ‘team’) in Q3 which are the English lexical
translations from Hindi. We perform a thorough
study of Hindi sentences and their corresponding
code-mixed Hindi-English sentences, and observe
the following:

(1) Named entities (NEs) of type person (PER)
remain same in both Hindi as well as the code-
mixed English-Hindi (EN-HI) sentence. These
NEs are only transliterated. E.g.
Hindi: महाͤमा गांधी का जͨम कब हुआ था?
(Trans: When was Mahatma Gandhi born?)

121

Code-Mixed (EN-HI):Mahatma Gandhi ka birth
kab hua tha?
TheNEMahatmaGandhi of type ‘PER’ is translit-
erated in code-mixed sentence.

(2) NEs of type location (LOC) and organization
(ORG) present in a Hindi sentence are replaced
with their best lexical translations in English. For
example:
Hindi: लखनऊ ўदթी से ўकतनी दरू ह?ै
(Trans: How far Lucknow is from Delhi?)
Code-Mixed (EN-HI): Lucknow New Delhi se
kitni dur hai?
The ‘PER’ type NEs are only transliterated as the
names do not have any variation in Hindi or En-
glish. For example,सѠचन तӒदलुकर (Trans: Sachin
Tendulkar)→ ‘Sachin Tendulkar’. It is just needed
to be written in Roman script. However, same
does not hold for ‘LOC’ and ‘ORG’. For example,
transliterating भारतीय अतंѝर̯ अनसुधंान सगंठन
(Trans: Indian Space Research Organisation) →
‘Bharatiya Antriksh Anushandhan Sangathan’ is
incorrect.

(3) PoS tags such as singular or plural noun
(NN), proper noun (NNP), spatio-temporal noun
(NST) and adjective (JJ) present in a Hindi sen-
tence are often replaced with their context aware
lexical translation in English. For example:
Hindi: ͲयџЭयӖ को उनकҴ रचनाͤमकता के Ѡलए
कौन से अѠधकार ўदए जाते हӔ?
(Trans: Which rights are given to individuals for
their creativity?)
Code-Mixed (EN-HI): Individuals ko unki
creativity ke liye koun se rights diya jate hain?

The underlined words in the Hindi sentence
have noun (NN) PoS tags, therefore the cor-
responding words are replaced with their best
lexical translations in their respective code-mixed
sentence.

(4) The remaining words in the Hindi sentence
are transliterated (in English) and a code-mixed
EN-HI sentence is formed. For example, the re-
maining words of the previous Hindi sentence are
transliterated (in underlines) and the code-mixed
EN-HI sentence is formed.
Code-Mixed (EN-HI): Individuals ko unki cre-
ativity ke liye koun se rights diye jate hain?

The main challenge of automatic CMQG is to
find the best lexical translation which suits the

most in the given context of the particular ques-
tion. Let us consider the various lexical translation
choices tri = {tr(i, 1), tr(i, 2), . . . , tr(i, li)} for the
token (ti), where li is the number of lexical transla-
tions available for the token ti. The lexical trans-
lation disambiguation algorithm selects the most
probable lexical translation of token ti from a set
of li possible translations. We generate a query
by adding the previous token ti−1 and the next to-
ken ti+1 with the token of interest designated by
ti. The context within a query provides impor-
tant clues for choosing the right transliteration of
a given query word. For example, for a query
S ={शहर, पवू,˨ ःकॉटलӔड} (Trans: {city, east,
Scotland}), where the word ‘पवू’˨ is the word in in-
terest for which the most probable lexical transla-
tion needs to be identified from the list {BC, East}.
Here, based on the context, we can see that the
choice of translation for the word ‘पवू’˨ is ‘east’
since the combinations {city, east} and {east, Scot-
land} are more likely to co-occur in the corpus
than {city, BC} and {BC, Scotland}. We follow
the iterative disambiguation algorithm (Monz and
Dorr, 2005) which judges a pair of items to gather
partial evidences for the likelihood of a translation
in a given context. An occurrence graph is con-
structed using the query term S and the translation
set TR, such that the translation candidates of dif-
ferent query terms are connected with the associ-
ated Dice Co-efficient weight between them. At
the same time, it is also ensured that there should
not be any edge between the different translation
candidates of the same query term. We initialize
each translation candidate with equal likelihood of
a translation. After initialization, the weight of
each translation candidate is iteratively updated us-
ing the weights of the translation candidate linked
to it and the weight of the link connecting them. At
the end of the iteration the weight of each transla-
tion candidate is normalized to ensure that these all
sum up to 1.

4 Proposed Approach for CMQA

Given a code-mixed question Q with tokens
{q1, q2 . . . , qm} and an English passage P hav-
ing tokens {p1, p2 . . . , pn}, wherem and n are the
number of tokens in the question and the passage,
respectively. The task is to identify answerA with
tokens {pi, pi+1 . . . , pj} of length j− i+1, where
1 ≤ i ≤ n and i ≤ j ≤ n.
Each model component is described below:

122

Figure 1: Illustrations of the proposed CMQG. The English transliterations are given in the bracket. The
right part of the image shows the basic steps to select the best lexical translation. The red color tags in
PoS and NER tags list denote the tags of the words that qualify to the next step.

4.1 Token and Sequence Encoding
From the given code-mixed question Q and pas-
sage P , we first obtain the respective token-
level embeddings {xQt }mt=1 and {xPt }nt=1 from the
pre-trained word embedding matrix. Due to the
code-mixed nature, our model faces the out-of-
vocabulary (OOV) word issue. To tackle this,
we adopt character-level embedding to represent
each token of the question and passage. These
are denoted by {cQt }mt=1 and {cPt }nt=1 for question
and passage, respectively. The character-level em-
beddings are generated by taking the final hidden
states of a bi-directional gated recurrent units (Bi-
GRU) (Chung et al., 2014) applied to the character
embedding of the tokens. The final representations
of each token uQt and uPt of question and passage,
respectively, are obtained through the Bi-GRU as
follows:

uQt = Bi-GRU(uQt−1, [x
Q
t ⊕ cQt])

uPt = Bi-GRU(uPt−1, [x
P
t ⊕ cPt])

(1)

where, ⊕ is the concatenation operator. In order
to encode the token sequence, we apply convo-
lution followed by Bi-GRU operation as follows:
First, the convolution operation is performed on
the zero-padded sequence ūP over the passage se-
quence uP , where ūPt ∈ Rd. A set of k filters
F ∈ Rk×l×d, is applied to the sequence. We ob-
tain the convoluted features cPt at given time t for
t = 1, 2, . . . , n by the following formula.

cPt = tanh(F [ūP
t− l−1

2

. . . ūPt . . . ūP
t+ l−1

2

]) (2)

The feature vector C̄P = [c̄P1 , c̄
P
2 . . . c̄Pn] is gen-

erated by applying the max pooling on each ele-
ment cPt ofCP . This sequence of convolution fea-
ture vector C̄P is passed through a Bi-GRU net-
work. The same convolution operations are also
performed over the question sequence uQ and the
convolution feature vector C̄Q is obtained. Simi-
lar to e.q. 1, we compute Bi-GRU outputs vPt (vQt)
by giving the inputs vPt−1 (v

Q
t−1) and c̄Pt (c̄Qt). We

represent the question and passage representation
matrix by V Q ∈ Rm×h and V P ∈ Rn×h, respec-
tively, where h is the number of hidden units of the
Bi-GRUs.

4.2 Question-aware Passage Encoding

When a single passage contains the answer of two
or more than two different questions then the pas-
sage encoding obtained from the previous layer
(c.f. section 4.1) will not be effective enough to
provide the answer of each question. It is because
the obtained passage encoding does not take into
account the question information. In this layer first
we compute an attentionmatrixM ∈ Rn×m as fol-
lows:

Mi, j = 1/(1 + dist(V P [i, :], V Q[j, :])) (3)

Mi, j is the similarity score between the ith ele-
ment of the passage encoding V P and jth element
of the question encoding V Q. The dist(x, y) func-
tion is an euclidean distance3 between x and y.

3We observe that e.q. 3 performs well, when dist is an
euclidean distance.

123

Thereafter, the normalization of element Mi,j of
matrixM is performed with respect to the ith row.

M i, j =
Mi, j∑m
k=0Mi, k

(4)

Intuitively, it calculates the relevance of a word
in the given passage with each word in the ques-
tion. We compute the question vector Q ∈ Rn×h

corresponding to all the words in the passage as
Q = M × V Q. Each row t of the question vector
Q denotes the encoding of the passage word twith
respect to all the words in the question. The ques-
tion aware passage encoding will be computed by
theword-level concatenation of the passage encod-
ing vPt and question vector of the tth rowQt. More
formally, the question aware passage encoding at
of the word at time twill be at = vPt ⊕Qt. Finally,
we apply a Bi-GRU to encode the question aware
information over time. It is computed as follows:

st = Bi-GRU(st−1, at) (5)

We can represent the question aware passage en-
coding matrix as S ∈ Rn×h.

4.3 Bilinear Attention on Passage
Question aware passage encoding accounts the rel-
evance of the words in a question with the given
passage. If the answer spans more than one token
(i.e. a multi-word tokens), it is important to com-
pute the relevance between the constituents of the
multi-word tokens. We calculate the bilinear atten-
tion matrix B ∈ Rn×n on question aware passage
encoding S ∈ Rn×h as follows:

B = S ×Wb × ST (6)

where, Wb ∈ Rh×h is a bilinear weight matrix.
Similar to e.q. 4, normalization is performed on
B, and the normalized attention matrix is denoted
asB. The elementBi,j is the measure of relevance
between the ith and jth words of the passage. Sim-
ilar to the question vectorQ, we calculate the pas-
sage vectorR ∈ Rn×h as computed onR = B×S.
The concatenation (word wise) of question depen-
dent passage encoding vector st and passage vec-
tor rt is performed to obtainRt and form thematrix
R ∈ Rn×2h. Similar toWang et al. (2017b), we in-
troduce a gating mechanism to control the impact
of R and denote it as the G ∈ Rn∈2h. In order
to identify the start and end indices of the answer
from the passage, we employ two Bi-GRUwith in-
put as G. Similar to e.q. 1, output of the Bi-GRUs
is computed as Ps ∈ Rn×h and Pe ∈ Rn×h.

4.4 Answer-type Focused Answer Extraction
The answer-type of a question provides the clues
to detect the correct answer from the passage.
Consider a code-mixed question Q: Kaun sa Por-
tuguese player, Spanish club Real Madrid ke liye
as a forward player khelta hai? (Trans: Which
Portuguese player plays as a forward for Spanish
club Real Madrid?.) The answer-type of the ques-
tion Q is ‘person’. Even though the network has
the capacity to capture this information up to a cer-
tain degree, it would be better if the model takes
into account this information in advance while se-
lecting the answer span. Li and Roth (2002) pro-
posed a hierarchical question classification based
on the answer-type of a question. Based on the
coarse and fine classes of Li and Roth (2002),
we train two separate answer-type detection net-
works on the Text REtrieval Conference (TREC)
question classification dataset4. First, we trans-
late5 5952 TREC English questions into Hindi
and thereafter transform the Hindi questions into
the code-mixed questions by using our proposed
CMQG algorithm. We train the answer-type detec-
tion network with code-mixed questions and their
associated labels using the technique as discussed
in (Gupta et al., 2018b). The network learns the
encoding of coarse (Cat ∈ Rh) and fine class
(Fat ∈ Rh) of answer-types obtained from the
answer-type detection network. The attention ma-
trix M calculated in e.q. 3 undergoes the max-
pooling over the columns to capture the most rele-
vant parts of the question.

Qj
p = max-pool(M [:, j]) (7)

The max-pooled representation of question and
answer-type representation are concatenated in the
following way:

Qf = Qp.V
P ⊕ Cat ⊕ Fat (8)

A feed-forward neural network with tanh activa-
tion function is used to obtain the final output
Qf ∈ Rh. The probability distribution of the be-
ginning of answer As and the end of answer Ae is
computed as:

prob(As) = softmax(Qf × Ps)

prob(Ae) = softmax(Qf × Pe)
(9)

4http://cogcomp.org/Data/QA/QC/
5We use Google Translate because of its better perfor-

mance on EN→ HI translation.

http://cogcomp.org/Data/QA/QC/

124

of CM Questions 5,535 # of Hindi Words 37,300

of words 59,733 Average # of Hindi
Words/Question 6.7389

Average Length of
CM Questions 10.79 # of English Words 22,433

Code-Mixing Index
(CMI) Score 37.14 Average # of English

Words/Question 4.05

Table 1: Statistics of manually formulated CM
questions

To train the network, we minimize the sum of the
negative log probabilities of the ground truth start
and end position by the predicted probability dis-
tributions.

5 Datasets and Experiments

In this section, we report the datasets and the ex-
perimental setups.

5.1 Datasets (CMQG)
For CMQG task, we require the input question to
be in Hindi. We use the manually created Hindi
questions obtained from the Hindi-English ques-
tion answering dataset (Gupta et al., 2018b). We
generate the code-mixed questions by our pro-
posed approach (c.f. Section 3). In order to eval-
uate the performance of our proposed CMQG al-
gorithm, we also manually formulate6 the Hindi-
English code-mixed questions. Details of this
dataset are shown in Table 1. We compute
the complexity of code-mixing using the metric,
Code-mixing Index (CMI) score (Gambäck and
Das, 2014). We name this code-mixed question
dataset as ‘HinglishQue’. We observe that our
HinglishQue dataset has higher CMI score as com-
pared to the FIRE7 2015 (CMI=11.65) and ICON8

2015 (5.73) CM corpus (Soumil Mandal and Das,
2018)9. This implies that our HinglishQue dataset
is more complex and challenging in comparison to
the other Hindi-English codemixing (CM) dataset.
The CMI score of the system generated code-
mixed questions is 37.22.

5.2 Datasets (CMQA)
(1) CM-SQuAD: We generate the CMQA
dataset from the portion of SQuAD (Rajpurkar
et al., 2016) dataset. We translate the English

6The question formulators are the undergraduate and post-
graduate students having good proficiencies in English and
Hindi.

7http://fire.irsi.res.in/fire/2015/home
8http://ltrc.iiit.ac.in/icon2015/
9Please note that these two datasets are not related to QA

Datasets Train Dev Test Total
CM-SQuAD 16,632 2,080 2,080 20,792
CM-MMQA 2,746 341 341 3,428

Table 2: Detailed statistics (# of question-passage
pairs) of the derived CMQA datasets

questions into Hindi and use our approach of
CMQG (c.f. Section 3) to transform the Hindi
questions into the code-mixed questions. We
manually verify the questions to ensure the qual-
ity. We use the corresponding English passage to
find the answer pair of the code-mixed question.
Detailed statistics of the dataset are shown in
Table 2. We randomly split the dataset into
training, development and test set.
(2) CM-MMQA: We experiment with a recently
released multilingual QA dataset (Gupta et al.,
2018b). It provides Hindi questions along with
their English passages. Similar to the CM-SQuAD
dataset, we create code-mixed questions and their
respective answer pairs. Details of the dataset are
shown in Table 2.

5.3 Experimental Setup for CMQG
The tokenization and PoS tagging are per-
formed using the publicly available Hindi Shal-
low Parser10. The Polyglot11 Named Entity Rec-
ognizer (NER) (Al-Rfou et al., 2015) is used for
named entity recognition. The lexical transla-
tion set is obtained by the lexical translation ta-
ble generated as an intermediate output of Sta-
tistical Machine Translation (SMT) training by
Moses (Koehn et al., 2007) on publicly avail-
able12 English-Hindi (EN-HI) parallel corpus (Bo-
jar et al., 2014). We aggregate the output proba-
bility p(e|h) and inverse probability p(h|e) along
with their associated words in both English (e) and
Hindi (h) languages. We choose a threshold (5)
to filter out the least probable translations. The
co-occurrence weight (Dice Co-efficient) is calcu-
lated on the available13 n-gram dataset consisting
of unique 2, 86, 358 bigrams and 3, 33, 333 uni-
grams. For Devanagari (Hindi) to Roman (En-
glish) transliteration, we use the transliteration sys-
tem14 based on Ekbal et al. (2006). We evaluate

10http://ltrc.iiit.ac.in/showfile.php?
filename=downloads/shallow_parser.php

11http://polyglot.readthedocs.io/en/latest/
NamedEntityRecognition.html

12http://ufal.mff.cuni.cz/hindencorp
13http://norvig.com/ngrams/
14https://github.com/libindic/indic-trans

http://fire.irsi.res.in/fire/2015/home
http://ltrc.iiit.ac.in/icon2015/
http://ltrc.iiit.ac.in/showfile.php?filename=downloads/shallow_parser.php
http://ltrc.iiit.ac.in/showfile.php?filename=downloads/shallow_parser.php
http://polyglot.readthedocs.io/en/latest/NamedEntityRecognition.html
http://polyglot.readthedocs.io/en/latest/NamedEntityRecognition.html
http://ufal.mff.cuni.cz/hindencorp
http://norvig.com/ngrams/
https://github.com/libindic/indic-trans

125

Figure 2: Proposed CMQA model architecture. The green color column denotes the character embed-
dings.

the performance of CMQG in terms of accuracy,
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) score.

5.4 Experimental Setup for CMQA

CMQA datasets contain the words both in Roman
script and English. For English, we use the fast-
Text (Bojanowski et al., 2016) word embedding
of dimension 300. We use the Hindi sentences
from Bojar et al. (2014), and then transliterate it
into the Roman script. These sentences are used
to train the word embeddings of dimension 300 by
the word embedding algorithm (Bojanowski et al.,
2016). Finally, we align monolingual vectors of
English and Roman words in an unified vector
space using a linear transformation matrix learned
by the approach as discussed in Smith et al. (2017).
Other optimal hyper-parameters are set to: char-
acter embedding dimension=50, GRU hidden unit
size=150, CNN filter size=150, filter size=3, 4,
batch size=60, # of epochs=100, initial learning
rate=0.001. Optimal values of the hyperparame-
ters are decided based on the model performance
on the development set of CM-SQuAD dataset.
Adam optimizer (Kingma and Ba, 2014) is used to
optimize the weights during training. For the eval-
uation of CMQA, we adopt the exact match (EM)
and F1-score (Rajpurkar et al., 2016).

5.5 Baselines

5.5.1 Baselines (CMQG)
We portray the problem of code-mixed question
generation with respect to sequence to sequence
learning where the input sequence comprises of
Hindi question and the output sequence is the code-
mixed EN-HI question. A seq2seq with attention
(Sutskever et al., 2014; Bahdanau et al., 2014) net-
work is trained using the default parameters of Ne-
matus (Sennrich et al., 2017). The training dataset
of the pair of Hindi translated question and code-
mixed questions from CM-SQuAD dataset (c.f.
Section 5.2) is used for training the seq2seq net-
work. We evaluate the network on the manually
created CMQG dataset (c.f. Section 5.1).

5.5.2 Baselines (CMQA)
To compare the performance of our proposed
CMQA model, we define the following baseline
models.
1) IR based model: This baseline is our imple-
mentation of the WebShodh (Chandu et al., 2017)
with improvements in some existing components.
We replaced WebShodh’s support vector machine
based (SVM) based question classification with
our recurrent CNN based answer-type detection
network (c.f. Section 4.4). In spite of searching
the answer on the web (as WebShodh does), we
search it within the passage. We choose the high-

126

Datasets→ CM-SQuAD (1) CM-MMQA (2)
Dev Test Test (2) Dev Test

Models EM F1 EM F1 EM F1 EM F1 EM F1
IR (Chandu et al., 2017) 5.82 9.51 5.02 8.92 - - 5.52 9.66 6.10 10.64
BiDAF (Seo et al., 2016) 21.44 29.18 21.63 28.45 22.26 37.54 22.38 33.10 22.09 32.82
R-Net (Wang et al., 2017b) 24.17 31.12 23.76 30.74 24.47 39.15 24.27 37.33 23.72 36.86

Proposed Approach 31.12 37.78 31.05 36.97 30.91 46.18 28.14 46.25 30.56 46.10
Table 3: Performance comparison of the proposed CMQA algorithm with the IR-based and neural-based
baselines. Test (2) refers the test set of CM-MMQA.

Models Accuracy Bleu ROUGE-1 ROUGE-2 ROUGE-L
Seq2Seq 39.24 52.18 53.28 56.05 52.11
Proposed
Algorithm 67.11 86.17 95.15 90.53 95.13

Table 4: Performance comparison of the proposed
CMQG algorithm with seq2seq baseline.

est ranked answer as our final answer.
2) R-Net (Wang et al., 2017b): This is a deep
neural network based comprehension reading (RC)
model. We train the R-Net model with the hyper-
parameters as described in Wang et al. (2017b).
3) BiDAF (Seo et al., 2016): This is another
state-of-the-art neural model for RC. We trained
this model with the same hyperparameters as given
in (Seo et al., 2016).

6 Results and Analysis

We demonstrate the evaluation results of our
proposed CMQG algorithm on the HinglishQue
dataset in Table 4. For evaluation, we employed
three annotators who were instructed to assign the
label (same or different) depending upon whether
the system generated and manually created ques-
tions are similar or dissimilar. The agreement
among the annotators was calculated by Cohen’s
Kappa (Cohen, 1960) coefficient, and it was found
to be 92.45%. Evaluation of question generation

Model
Components

CM-SQuAD CM-MMQA
EM F1 EM F1

Proposed 31.12 37.78 28.14 46.25
(-) Convolution 29.46 36.14 26.19 43.76

(-) Bilinear Attention 26.42 33.31 25.36 41.29
(-) Answer-type Focused 28.41 35.14 26.69 42.37

Table 5: Effect of the various components of the
CMQA model on the development set of CM-
SQuAD and CM-MMQA dataset. (-) X denotes
the model architecture after removal of ‘X’.

shows that our proposed CMQG algorithm per-
forms better than the seq2seq based baseline. One
reason could be the insufficient amount (16, 632)

of training instances and the out-of-vocabulary
(only 62.35% words available in the vocab) is-
sue. Performance improvement in our proposed
model over the baseline is statistically significant
as p < 0.05. In literature, we find only one
study on English-Hindi code-mixed question clas-
sification i.e. Raghavi et al. (2015). They used
only 1, 000 code-mixed questions, and used Sup-
port Vector Machine (SVM) to classify the ques-
tions into coarse and fine-grained answer-types.
They reported to achieve 63% and 45% accura-
cies for coarse and fine-grained answer-type de-
tection, respectively under 5-fold cross validation
setup. In contrast, we manually create 5, 535 code-
mixed questions and train a CNNmodel that shows
87.21% and 83.56% accuracies for coarse and fine
answer types, respectively, for the 5-fold cross val-
idation.
Results of CMQA for both the datasets are

shown in Table 3. Performance of IR based base-
line (Chandu et al., 2017) on both the datasets are
poor. This may be because Chandu et al. (2017)’s
system was mainly developed to answer pure fac-
toid questions based only on the named entities
denoting person, location and organization. How-
ever, the datasets used in this experiment have dif-
ferent types of answers beyond the basic factoid
questions. We also perform a cross-domain exper-
iment, where the test data of CM-MMQA is used to
evaluate the system trained on CM-SQuAD. Per-
formance improvements in our proposed model
over the baselines are statistically significant as
p < 0.05. Experiments show that the perfor-
mance of CM-MMQA is better than CM-SQuAD.
This might be due to the relatively smaller length
passages in CM-MMQA, extracting answers from
which are easier.
We perform ablation study to observe the effects

of various components of the CMQA model. Re-
sults are shown in Table 5. The component con-
volution refers to the convolution operation per-

127

Sr.
No. Reference Questions System Generated Questions

1 Maharaja Ranjit Singh ne Mandi par kab occupy kar
liya tha?

Maharaja Ranjit Singh ne Mandi par kab Czechoslo-
vakia kar liya tha?

2 Babur kaa death kab ho gaya tha? Babur kaa died kab ho gaya tha?
3 IMF kaa primary purpose kya hai? Imef kaa primary purpose kya hai?
4 Demographics kya hai? Population kya hai?

Table 6: Some examples from the HinglishQue dataset depicting the errors occurred. The correct and
incorrect words in the questions are denoted with bold and italic fonts, respectively.

formed before the Bi-GRUs in sequence encoding.

6.1 Error Analysis
We analyze the errors encountered by our CMQG
and CMQA systems. The CMQG algorithm uses
several NLP components such as PoS tagger, NE
tagger, translation, transliteration etc. The errors
occurred in these components propagate towards
the final question generation. We list some of the
major causes of errors with examples in Table 6.
As in (1), the algorithm could not find the correct
lexical translation from the lexical table itself and
therefore selected an irrelevant word ‘Czechoslo-
vakia’ instead of ‘occupy’. In (2) and (4), the algo-
rithm picked the words ‘died’ and ‘population’ in-
stead of ‘death’ and ‘demographics’, respectively.
It could be because the word ‘died’ and ‘popu-
lation’ have higher n-gram frequencies compared
to the words ‘death’ and ‘demographics’ in the n-
gram corpus. In (3), the system generated incorrect
word (‘imef’) instead of ‘IMF’. Here, the Hindi
word ‘आईएमएफ’ is incorrectly tagged as ‘Other’
instead of ‘Organization’. Thereafter, the translit-
eration system provides an incorrect transliteration
(‘imef’) of the abbreviated Hindi word ‘आईएमएफ’
(Trans: IMF).
We observe that sometimes our CMQA sys-

tem incorrectly predicts the answer words which
are actually very close to some other word in the
shared embedding space ((c.f. section 5.4), and
hence gets high attention score in the bilinear atten-
tion module. For example, in this passage ‘...India
was ruled by the Bharata clan and ...’, the system
predicted the answer ‘India’ instead of ‘Bharata’
(reference answer) because the word ‘Bharata’ is
the transliteration form ofभारत andभारत is the cor-
rect translation form of the word ‘India’.
Our close analysis to the prediction of CM-

SQuAD and CM-MMQA development data re-
veals that the systems suffer mostly due to the er-
rors where the answer strings are relatively longer.
The CM-MMQA dataset has some definitional

questions (requires at least one-sentence long an-
swer). We evaluate the performance on CM-
MMQA dataset after removing those questions
(92), and obtain the EM and F1 scores of 40.50%
and 53.73%, respectively. These are much higher
(28.14%, 46.25%) than the model where all the
questions are considered. Due to ambiguity in se-
lecting answers (between two candidate answers,
location type answer) the system sometimes pre-
dicts incorrectly. We also observed some other
types of errors which were mainly due to the con-
text mismatch as well as long-distance dependence
between the answer and the context words.

7 Conclusion

In this work, we have proposed a linguisticallymo-
tivated unsupervised algorithm for CMQG and a
neural framework for CMQA. We have proposed
a bilinear attention and answer-type focused neu-
ral framework to deal with CMQA. We have eval-
uated the performance of CMQG on manually cre-
ated code-mixed questions involving English and
Hindi. For CMQA, we have created two CMQA
datasets. Experiments show that our proposed
models attain state-of-the-art performance. In the
future, we would like to scale our work for other
code-mixed languages.

8 Acknowledgment

Asif Ekbal acknowledges the Young Faculty Re-
search Fellowship (YFRF), supported by Visves-
varaya PhD scheme for Electronics and IT, Min-
istry of Electronics and Information Technology
(MeitY), Government of India, being implemented
by Digital India Corporation (formerly Media Lab
Asia). We would like to thank Sukanta Sen, IIT
Patna for extending his support in machine trans-
lation experiment.

128

References
Rami Al-Rfou, Vivek Kulkarni, Bryan Perozzi, and
Steven Skiena. 2015. Polyglot-NER: Massive Mul-
tilingual Named Entity Recognition. Proceedings of
the 2015 SIAM International Conference on Data
Mining, Vancouver, British Columbia, Canada,
April 30 - May 2, 2015.

HusamAli, Yllias Chali, and SadidAHasan. 2010. Au-
tomation of Question Generation From Sentences.
In Proceedings of QG2010: The Third Workshop on
Question Generation, pages 58–67.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural Machine Translation by Jointly
Learning to Align and Translate. arXiv preprint
arXiv:1409.0473.

Utsab Barman, Amitava Das, Joachim Wagner, and
Jennifer Foster. 2014. Code Mixing: A Challenge
for Language Identification in the Language of So-
cial Media. In Proceedings of the First Workshop
on Computational Approaches to Code Switching,
pages 13–23.

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen,
Abby Vander Linden, Brittany Harding, Brad
Huang, Peter Clark, and Christopher D. Man-
ning. 2014. Modeling Biological Processes for
Reading Comprehension. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1499–1510,
Doha, Qatar. Association for Computational Lin-
guistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching Word Vec-
tors with Subword Information. arXiv preprint
arXiv:1607.04606.

Ondřej Bojar, Vojtěch Diatka, Pavel Rychlý, Pavel
Straňák, Vít Suchomel, Aleš Tamchyna, and Daniel
Zeman. 2014. HindEnCorp - Hindi-English and
Hindi-only Corpus for Machine Translation. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
Reykjavik, Iceland. European Language Resources
Association (ELRA).

Khyathi Raghavi Chandu, Manoj Chinnakotla, Alan W
Black, and Manish Shrivastava. 2017. WebShodh:
A Code Mixed Factoid Question Answering Sys-
tem for Web. In International Conference of the
Cross-Language Evaluation Forum for European
Languages, pages 104–111. Springer.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long Short-Term Memory-Networks for Machine
Reading. In Proceedings of the 2016 Conference
on EmpiricalMethods in Natural Language Process-
ing, pages 551–561, Austin, Texas. Association for
Computational Linguistics.

Gokul Chittaranjan, Yogarshi Vyas, Kalika Bali, and
Monojit Choudhury. 2014. Word-level Language

Identification using CRF: Code-switching Shared
Task Report of MSR India System. In Proceed-
ings of The First Workshop on Computational Ap-
proaches to Code Switching, pages 73–79.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical Evaluation
of Gated Recurrent Neural Networks on Sequence
Modeling. arXiv preprint arXiv:1412.3555.

Jacob Cohen. 1960. A Coefficient of Agreement for
Nominal Scales. Educational and psychological
measurement, 20(1):37–46.

Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang,
Ting Liu, and Guoping Hu. 2017. Attention-over-
Attention Neural Networks for Reading Comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 593–602. Association
for Computational Linguistics.

Asif Ekbal, Sudip Kumar Naskar, and Sivaji Bandy-
opadhyay. 2006. A Modified Joint Source-Channel
Model for Transliteration. In Proceedings of the
COLING/ACL on Main conference poster sessions,
pages 191–198. Association for Computational Lin-
guistics.

Björn Gambäck and Amitava Das. 2014. On Measur-
ing the Complexity of Code-Mixing. In Proceedings
of the 11th International Conference on Natural Lan-
guage Processing, Goa, India, pages 1–7.

Deepak Gupta, Asif Ekbal, and Pushpak Bhat-
tacharyya. 2018a. A Deep Neural Network based
Approach for Entity Extraction in Code-Mixed In-
dian Social Media Text. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Deepak Gupta, Surabhi Kumari, Asif Ekbal, and Push-
pak Bhattacharyya. 2018b. MMQA: A Multi-
domain Multi-lingual Question-Answering Frame-
work for English and Hindi. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Deepak Gupta, Ankit Lamba, Asif Ekbal, and Pushpak
Bhattacharyya. 2016a. Opinion Mining in a Code-
Mixed Environment: A Case Study with Govern-
ment Portals. In International Conference on Natu-
ral Language Processing, pages 249–258. NLP As-
sociation of India.

Deepak Gupta, Rajkumar Pujari, Asif Ekbal, Push-
pak Bhattacharyya, Anutosh Maitra, Tom Jain, and
Shubhashis Sengupta. 2018c. Can Taxonomy Help?
Improving Semantic QuestionMatching usingQues-
tion Taxonomy. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,

129

pages 499–513. Association for Computational Lin-
guistics.

Deepak Gupta, Shubham Tripathi, Asif Ekbal, and
Pushpak Bhattacharyya. 2016b. A Hybrid Approach
for Entity Extraction in Code-Mixed Social Media
Data. MONEY, 25:66.

Deepak Gupta, Shubham Tripathi, Asif Ekbal, and
Pushpak Bhattacharyya. 2017. SMPOST: Parts of
Speech Tagger for Code-Mixed Indic Social Media
Text. arXiv preprint arXiv:1702.00167.

Michael Heilman and Noah A Smith. 2010. Good
Question! Statistical Ranking for Question Gener-
ation. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 609–617. Association for Computational Lin-
guistics.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching Ma-
chines to Read and Comprehend. In Advances
in Neural Information Processing Systems, pages
1693–1701.

Anupam Jamatia, Björn Gambäck, and Amitava Das.
2015. Part-of-Speech Tagging for Code-Mixed
English-Hindi Twitter and Facebook ChatMessages.
In Proceedings of the International Conference Re-
cent Advances in Natural Language Processing,
pages 239–248.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open Source
Toolkit for Statistical Machine Translation. In Pro-
ceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
pages 177–180. Association for Computational Lin-
guistics.

Xin Li and Dan Roth. 2002. Learning Question Clas-
sifiers. In Proceedings of the 19th International
Conference on Computational Linguistics, COLING
2002, pages 1–7. Association for Computational
Linguistics.

Chin-Yew Lin. 2004. ROUGE: A Package for Auto-
matic Evaluation of Summaries. In Text Summa-
rization Branches Out: Proceedings of the ACL-04
workshop, volume 8. Barcelona, Spain.

Anutosh Maitra, Shubhashis Sengupta, Deepak
Gupta, Rajkumar Pujari, Asif Ekbal, Pushpak
Bhattacharyya, Anutosh Maitra, Mukhopadhyay
Abhisek, and Tom Jain. 2018. Semantic Question
Matching in Data Constrained Environment. In
Proceedings of the 21st International Conference
on Text, Speech and Dialogue (TSD-2018).

Christof Monz and Bonnie J Dorr. 2005. Iterative
Translation Disambiguation for Cross-language In-
formation Retrieval. In Proceedings of the 28th An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 520–527. ACM.

Gillian Moss. 1992. Cognate Recognition: Its Impor-
tance in the Teaching of ESP Reading Courses to
Spanish Speakers. English for specific purposes,
11(2):141–158.

Carol Myers-Scotton. 1997. Duelling Languages:
Grammatical Structure in Codeswitching. Oxford
University Press.

Carol Myers-Scotton. 2002. Contact Linguistics:
Bilingual Encounters and Grammatical Outcomes.
Oxford University Press on Demand.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting on Association for Com-
putational Linguistics, pages 311–318. Association
for Computational Linguistics.

Khyathi Chandu Raghavi, Manoj Kumar Chinnakotla,
and Manish Shrivastava. 2015. Answer ka type kya
he? Learning to Classify Questions in Code-Mixed
Language. In Proceedings of the 24th International
Conference on World Wide Web, pages 853–858.
ACM.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. SQuAD: 100,000+ Ques-
tions for Machine Comprehension of Text. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2383–
2392. Association for Computational Linguistics.

KoustavRudra, Shruti Rijhwani, Rafiya Begum, Kalika
Bali, Monojit Choudhury, and Niloy Ganguly. 2016.
Understanding Language Preference for Expression
of Opinion and Sentiment: What do Hindi-English
Speakers do on Twitter? In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1131–1141.

Nathan Safran. 2015. Psychology of the Searcher: Pat-
terns in How Searchers Formulate Queries. Blue
Nile Research.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Läubli, Antonio Vale-
rio Miceli Barone, Jozef Mokry, and Maria Nade-
jde. 2017. Nematus: a Toolkit for Neural Machine
Translation. In Proceedings of the Software Demon-
strations of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 65–68, Valencia, Spain. Association
for Computational Linguistics.

130

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional Attention
Flow for Machine Comprehension. arXiv preprint
arXiv:1611.01603.

Iulian Vlad Serban, Alberto García-Durán, Caglar
Gulcehre, Sungjin Ahn, Sarath Chandar, Aaron
Courville, and Yoshua Bengio. 2016. Generating
Factoid Questions With Recurrent Neural Networks:
The 30M Factoid Question-Answer Corpus. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 588–598. Association for Computa-
tional Linguistics.

Yelong Shen, Po-SenHuang, JianfengGao, andWeizhu
Chen. 2017. ReasoNet: Learning to Stop Read-
ing in Machine Comprehension. In Proceedings of
the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
1047–1055. ACM.

Samuel L. Smith, David H. P. Turban, Steven Ham-
blin, and Nils Y. Hammerla. 2017. Offline Bilingual
Word Vectors, Orthogonal Transformations and the
Inverted Softmax. CoRR, abs/1702.03859.

Sainik Kumar Mahata Soumil Mandal and Dipankar
Das. 2018. Preparing Bengali-English Code-Mixed
Corpus for Sentiment Analysis of Indian Languages.
In Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Paris, France. European Language Resources
Association (ELRA).

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Advances in Neural Information Process-
ing Systems, pages 3104–3112.

Adam Trischler, Zheng Ye, Xingdi Yuan, Philip Bach-
man, Alessandro Sordoni, and Kaheer Suleman.
2016. Natural Language Comprehension with the
EpiReader. In Proceedings of the 2016 Conference
on EmpiricalMethods in Natural Language Process-
ing, pages 128–137, Austin, Texas. Association for
Computational Linguistics.

Yogarshi Vyas, Spandana Gella, Jatin Sharma, Kalika
Bali, and Monojit Choudhury. 2014. POS Tagging
of English-Hindi Code-Mixed Social Media Con-
tent. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 974–979.

Shuohang Wang and Jing Jiang. 2016. Machine
Comprehension Using Match-LSTM and Answer
Pointer. CoRR, abs/1608.07905.

Tong Wang, Xingdi Yuan, and Adam Trischler. 2017a.
A Joint Model for Question Answering and Question
Generation. CoRR, abs/1706.01450.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,
and Ming Zhou. 2017b. Gated Self-Matching Net-
works for Reading Comprehension and Question

Answering. InProceedings of the 55th AnnualMeet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 189–198.

