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Abstract

We investigate the relation between the trans-

position and deletion effects in word read-

ing, i.e., the finding that readers can success-

fully read “SLAT” as “SALT”, or “WRK”

as “WORK”, and the neighborhood effect.

In particular, we investigate whether lexi-

cal orthographic neighborhoods take into ac-

count transposition and deletion in determin-

ing neighbors. If this is the case, it is more

likely that the neighborhood effect takes place

early during processing, and does not solely

rely on similarity of internal representations.

We introduce a new neighborhood measure,

rd20, which can be used to quantify neigh-

borhood effects over arbitrary feature spaces.

We calculate the rd20 over large sets of words

in three languages using various feature sets

and show that feature sets that do not allow

for transposition or deletion explain more vari-

ance in Reaction Time (RT) measurements.

We also show that the rd20 can be calculated

using the hidden state representations of an

Multi-Layer Perceptron, and show that these

explain less variance than the raw features. We

conclude that the neighborhood effect is un-

likely to have a perceptual basis, but is more

likely to be the result of items co-activating

after recognition. All code is available at:

www.github.com/clips/conll2018

1 Introduction

Despite their many disagreements and differences,

a common thread among many models of word

reading is that they attempt to explain differ-

ences in reading speeds by assuming that sim-

ilarity between words modulate reading speed.

There is good reason for this assumption; many

experiments have shown that responses on tri-

als are modulated by a word’s similarity to other

words, be it semantic (Rodd et al., 2002, 2004),

orthographic (Andrews, 1997; Perea and Pollat-
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Figure 1: This diagram shows the two positions con-

trasted in this paper. The left model is the early model,

in which the neighborhood effect arises before percep-

tual uncertainty is resolved; this causes transposition

and substitution neighbors to count as neighbors. In

the late model, the neighborhood effect only arises af-

ter perceptual uncertainty is resolved, and transposi-

tion and substitution neighbors do not count towards

the neighborhood.

sek, 1998), or phonological similarity (Van Orden,

1987; Rastle and Brysbaert, 2006).

In psycholinguistic research on word reading,

this has led to the common practice of including

a measure of orthographic neighborhood similar-

ity as a control variable, as these neighborhood

measures explain variance in word reading even

when controlling for frequency and length (Colt-

heart, 1977; Yarkoni et al., 2008).

Orthographic neighborhood measures are usu-

ally operationalized using edit distance metrics,

such as the Levenshtein distance (Levenshtein,

1966). The most well-known measure of neigh-

borhood size is Coltheart’s N (Coltheart, 1977),

which is the number of types within a substitution

distance of 1. Yarkoni et al. (2008) show that N

is nearly always 0 for longer words, as long words

tend are less frequent, and present an alternative

to N , called old20, which is the mean Levenshtein

distance to the 20 closest neighbors. old20 corre-

www.github.com/clips/conll2018
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lates well with reaction time (RT) measures on two

experiments, and explains more variance than N

after accounting for length and frequency, and is

therefore considered superior to N , and often used

as a de facto replacement for N (Yarkoni et al.,

2008).

Despite its ubiquity as a control variable, the

cause for the neighborhood effect is unknown or

disputed (Perea, 2015). One aspect, which we ex-

plore in the current work, is that it is currently un-

known whether the neighborhood effect is early

or late. If the neighborhood effect is early, it is

caused by the visual stimulus co-activating mul-

tiple representations. If it is late, the effect is

caused by an already activated representation co-

activating similar representations.

Of particular interest regarding this question

is the finding that skilled readers are remarkably

proficient in reading words that contain trans-

posed letters, e.g. “SLAT” versus “SALT” (Davis

and Bowers, 2006; Grainger, 2008), or words

from which letters are deleted, e.g. “WRK” and

“WORK” (Schoonbaert and Grainger, 2004). In

this work, we refer to these two effects in tandem

as flexible letter encoding. Examples of models

that try to explain flexible letter encoding include

the open bigram family of models (Whitney, 2001;

Grainger and Van Heuven, 2004; Schoonbaert and

Grainger, 2004; Whitney and Cornelissen, 2008),

the SOLAR model (Davis, 2001), the overlap

model (Gomez et al., 2008), and, most recently,

the spatial coding model (Davis, 2010b).

Taking into consideration both the neighbor-

hood effect and flexible letter encoding, we define

the following research question: are the neighbor-

hoods also defined using flexible letter encoding?

That is, if we know that readers activate “SALT”

upon reading “SLAT”, does this also imply that

the lexical neighborhood of “THREE” includes

“THERE”?

To answer this question, we calculate the neigh-

borhood density using a variety of feature sets, in-

cluding features that do not allow for flexible let-

ter encoding, and those that do. If lexical neigh-

borhoods calculated using flexible letter encod-

ings account for less variance in word reading

times than neighborhoods based on slot-based fea-

tures, we can surmise that it is more likely that

the neighborhood effect is late in origin. This fol-

lows from the fact that flexible letter encodings are

most likely to be an intermediate encoding step to-

wards a concrete internal representation. Hence, if

neighborhoods with flexible letter encodings ex-

plain less variance, flexible letter encoding most

likely does not play a role in the neighborhood ef-

fect. This, in turn implies that the neighborhood

effect is likely a late effect, and is caused by con-

crete representations co-activating similar repre-

sentations. These two positions are contrasted in

Figure 1.

2 Main Contributions

To quantify the effect of different forms of repre-

sentations and their respective neighborhoods, we

introduce the Representation Distance 20 (rd20),

a generalization of old20 which operates on arbi-

trary feature spaces.

We first replicate the original findings of

Yarkoni et al. (2008) regarding old20 and N

on Dutch, British English, and French lexical

databases. As old20 uses the Levenshtein met-

ric, which encodes flexible letter position by al-

lowing deletions and transpositions, the neighbor-

hoods defined by old20 in principle support the

idea of flexible letter encoding.

Comparing to old20 and N , we show that rd20

can be used to create neighborhood measures for

various feature sets. Furthermore, we use regres-

sion models to quantify the relation between word

length, frequency and rd20 on the one hand, and

Reaction Times (RT) in lexical decision exper-

iments on the other. We do this for four dif-

ferent feature sets on all aforementioned lexical

databases. Two of the four feature sets are slot-

based feature sets used in older models of com-

putational psycholinguistics, and two of them are

used by models that assume some kind of flexible

letter encoding. We can therefore use rd20 to as-

sess the effect of the representational assumptions

in models of flexible letter encoding, as well as

provide a direct comparison to old20.

We show that rd20 using one hot encoded let-

ter features explains slightly more variance in lex-

ical decision experiments than old20. The fact that

rd20 takes much less time to compute and is more

flexible in the choice of inputs shows that it is a

practical alternative to old20. Additionally, we

show that the rd20 of feature sets which specifi-

cally encode letters in a flexible manner explains

far less variance in RT than the rd20 of encod-

ings which do not support flexible letter encoding.

This leads us to hypothesize that lexical neighbor-
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hoods are not defined using flexible letter encod-

ing, and that, consequently, the neighborhood ef-

fect itself is a late effect, that is, an effect caused

by co-activation of similar representations, and not

caused by the visual likeness of stimuli.

To provide additional evidence regarding the

statement that the neighborhood effect follows

from internal representations, we perform an ex-

periment using Multi-Layer Perceptrons. After

training the network on each feature set, we cal-

culate rd20 of the hidden states of these networks,

and use these distances as a predictor in a linear

regression experiment

2.1 Representation Distance 20

Representation Distance 20 (rd20) is a measure

that does not assume a particular representational

format, and thus applies to any kind of vector rep-

resentation. It is therefore well-suited to quantify-

ing the effect feature sets have on lexical decision

experiments.

The rd20 for a featurized word x given a set of

featurized words X , where x ∈ X , is defined as

follows:

s(x,X) = sort(cos(x,X)) (1)

Where sort is a sorting operator, cos is the co-

sine distance, x is featurized item, and X is the set

of featurized items. We then take the mean of the

20 first items, excluding the item itself.

rd20(x,X) =

∑
21

i=1
s(x,X)i

20
(2)

We use the 20 closest neighbors to be able to

compare to old20, which also uses 20 neighbors.

As Yarkoni et al. (2008) note, the value of 20 is

quite arbitrary, and values between 5 and 50 seem

to work well for most experiments. Because rd20

uses the cosine distance, it directly applies to any

vector representation. It is therefore suitable for

inspecting both external phenomena, i.e. featur-

ized string representations, and internal represen-

tations, e.g. weight matrices of neural networks.

3 Materials

This section describes the materials used in the pa-

per: the corpora, reaction time datasets, and the

various feature sets.

3.1 Corpora

Throughout the paper we use three different lex-

ical databases derived from subtitle corpora as

the source of our words and frequency counts.

For Dutch we use SUBTLEX-NL (Keuleers

et al., 2010a), for English we use SUBTLEX-

UK (Van Heuven et al., 2014), and for French

we use Lexique 3 (New et al., 2007). Frequency

counts from subtitle corpora account for sub-

stantially more variance in Reaction Time mea-

surements, and are based on far larger corpora,

than previously available databases (Brysbaert and

New, 2009; Brysbaert and Cortese, 2011), such as

CELEX (Baayen et al., 1993) and previous ver-

sions of Lexique (New et al., 2001).

For all three languages, we use reaction times

(RT) from megastudies (Seidenberg and Waters,

1989). For Dutch we extract the reaction times

from the Dutch Lexicon Project 2 (DLP) (Keuleers

et al., 2010b; Brysbaert et al., 2016), for En-

glish we use the British Lexicon project (BLP)

(Keuleers et al., 2012), and for French we use

the French Lexicon project (FLP) (Ferrand et al.,

2010). As with the subtitle corpora, these megas-

tudies provide us with a more accurate estimate

of Reaction Times than previous studies with a

smaller number of participants and a smaller set

of items.

We extract a subset of these corpora accord-

ing to the following procedure: for each lan-

guage, we take all words from the SUBTLEX cor-

pora and lexicon projects, removing any words

which were shorter than 2 characters, or words

which contained non-alphabetic characters, such

as ‘#’ and ‘-’. We then remove any words from

the lexicon project database which are not in the

SUBTLEX database, such that the words extracted

from the lexicon project were a subset of those in

the SUBTLEX database.

Additionally, for all languages we remove any

diacritic markers, transforming e.g. the French

word ‘très’ to ‘tres’. This was done because not all

feature sets can appropriately featurize these dia-

critic markers.

For each language, this leaves us with a set of

SUBTLEX words, for which we only have fre-

quency counts, and a set of words from the lexicon

project, for which we have both frequency counts

and Reaction Time measurements. The sizes of

the resulting corpora are listed in Table 1.
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Dutch English French

SUBTLEX 117,789 157,378 115,550

Lexicon project 24,908 28,530 36,677

Table 1: The number of words left over in the

SUBTLEX and Lexicon projects after filtering. Note

that we removed any words from the Lexicon project

which were not in the SUBTLEX database, so that the

words from the lexicon project are an exact subset of

those in the SUBTLEX database.

3.2 Features

We use four different orthographic feature sets.

All the feature sets were previously implemented

in wordkit (Tulkens et al., 2018).

3.2.1 Slots

The two slot-based feature encodings are cre-

ated by left-justifying strings, padding them with

spaces to the length of the longest word in our cor-

pus, and then replacing each letter in each result-

ing slot by a feature vector. These feature vec-

tors are then concatenated to create a final fea-

ture vector. As noted in the introduction, these

types of encodings are thought to be unrealistic

(Grainger and Van Heuven, 2004; Davis and Bow-

ers, 2006), as they predict that words which are not

aligned have low similarity. The words “STAR”

and “TAR”, for example, have a similarity of 0 ac-

cording to a naive slot-based encoding. Despite

this shortcoming, the influence of slot-based en-

codings on contemporary models of word reading

can not be understated (Miikkulainen, 1997; Mc-

Clelland and Rumelhart, 1981; Harm and Seiden-

berg, 2004; Coltheart et al., 2001).

One hot encoded characters One hot encoded

character featurization assigns a single orthogonal

vector to each character, and hence assumes that

there is no underlying similarity, visual or other-

wise, between letters. This encoding is closest to

the encoding implicitly used by the Levenshtein

distance, and used by old20. In this encoding we

treat the space character as a separate character,

and not as a zero vector.

Fourteen segment encoding The fourteen seg-

ment encoding was first introduced by Rumelhart

and Siple (1974), and is used in the original ver-

sion of the Interactive Activation model (McClel-

land and Rumelhart, 1981). As its name implies,

it uses fourteen binary segments, each of which

denotes a specific vertical, horizontal, or diago-

nal line segment. Because the encoding is sub-

symbolic, words with different letters in the same

slot might still have some overlap in their similar-

ity. In this encoding, we treat the space character

as a zero vector.

3.2.2 Wickelgraphs

Wickelgraphs were first introduced as Wickel-

phones in the context of phonological representa-

tions (Seidenberg and McClelland, 1989) and are

named after, and based on the work of, Wickelgren

(1969). As we saw above, slot-based encodings

predict that words which are not aligned are com-

pletely dissimilar. Wickelgraphs attempt to over-

come this downside by representing words as sets

of contiguous ngrams, where n is usually set to

3, and n − 1 padding characters are added to the

start and end of each word. For example, the word

“SALT” has the following wickelgraph represen-

tation: {##S, #SA, SAL, ALT, LT#, T##}.

3.2.3 Weighted Open bigrams

Another way of representing flexible letter cod-

ing in reading is the open bigram family of fea-

ture encodings. Open bigrams were first pro-

posed by Whitney (2001) to account for read-

ers’ resilience to letter transposition effects, al-

though earlier accounts of transposition-like en-

codings can be found in work by Mozer (1987).

For a criticism of open bigrams, see work by Davis

(2010a) and Kinoshita and Norris (2013).

Open bigrams are constructed by taking the or-

dered set of 2-combinations of all letters in a word.

For example, the word ‘SALT’ becomes {SA, SL,

ST, AL, AT, LT} in an open bigram encoding

scheme. This scheme can account for transpo-

sition and deletion effects because most bigrams

survive the transposition or deletion of two letters.

The weighted open bigram scheme attaches a

weight to each bigram combination depending on

the distance between the constituent letters of the

bigram in the word (Schoonbaert and Grainger,

2004; Whitney and Cornelissen, 2008; Whitney,

2001). This encoding scheme was introduced to

account for the observation that participants expe-

rience more inhibition to transpositions which are

further apart. Following Whitney et al. (2012) we

used weights of 1.0, .7, and .2 for bigrams with 0,

1, or 2 intervening letters in all our experiments.

Bigrams with more than 2 intervening letters get

a weight of 0, and are therefore discarded in the

distance computation.
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Figure 2: rd20, N and old20, plotted against word

length for three languages. The figure shows the mea-

sures behave the same across languages. The y-axes

denote the scaled quantities, as the old20 and N mea-

sures are expressed on a different scale than the various

rd20 measures.

4 Experiment 1: empirical validation of

rd20

Using the materials defined in Section 3, we carry

out comparative experiments of old20, N , and the

rd20 of the four feature sets described above.

Figure 2 shows the word length versus the mean

distance for each of the measures for all three

languages. The figure shows that old20 and the

measures based on slot-based encodings correlate

strongly with length, while flexible encodings do

not correlate with length. We observe the same
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Figure 3: The correlations between the control vari-

ables (length and frequency), the various distance mea-

sures, and RT. All correlations are significant (p < .05).

pattern of performance for all three languages. As

a similar pattern of performance was observed in

Yarkoni et al. (2008), we consider this to be an

empirical validation of our datasets.

Figure 3 shows the Spearman correlations be-

tween the different predictor variables (length, fre-

quency), and the various measures for all lan-

guages. As the figure indicates, the pattern of

correlations is consistent across all surveyed lan-

guages, and only differs in magnitude, not di-

rection. Additionally, because the results corre-
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Dutch English French

Predictor β R2

adj ∆R2

adj β R2

adj ∆R2

adj β R2

adj ∆R2

adj

base length .025 .252 .0 .083 .344 .0 .263 .314 .0

freq -.494 -.558 -.414

rd20 - fourteen length -.058 .270 .018 .053 .346 .002 .209 .339 .025

freq -.472 -.553 -.421

score .161 .059 .164

rd20 - one hot length -.305 .292 .040 -.066 .353 .011 .003 .353 .039

freq -.459 -.552 -.417

score .397 .181 .326

rd20 - bigrams length .044 .273 .021 .079 .349 .005 .292 .342 .028

freq -.438 -.536 -.401

score .154 .076 .167

rd20 - wickel length .006 .289 .037 .096 .351 .007 .333 .350 .036

freq -.417 -.533 -.397

score .206 .088 .200

old20 length -.240 .283 .022 -.051 .352 .008 .035 .349 .035

freq -.457 -.550 -.412

score .329 .166 .295

N length .087 .259 .007 .078 .344 .000 .261 .314 .0

freq -.510 -.557 -.414

score .110 -.007 -.005

Table 2: The coefficients, explained variance, and change in explained variance of the regression analyses. The

rd20 measure using one hot features explains the most variance across all languages, although the difference is not

significant for English.

spond with those from Yarkoni et al. (2008), this

provides additional evidence for old20 and our

datasets. Given that old20 is considered to be a

good neighborhood measure, and the various rd20

measures show the same type of effects, i.e., ef-

fects in the same direction, this indirectly validates

rd20 as a good measure.

As an aside, while we see the same direction

of effects as in Yarkoni et al. (2008), we do see

that the magnitude of the correlations between the

scores and RT are lower for all corpora, which was

reported to be .612 for the English Lexicon Project

stimuli used in Yarkoni et al. (2008).

4.1 Regression analyses

In addition to the zero-order correlations above,

we also conduct stepwise regression analyses.

We use the RT values from the various lexicon

projects, as explained in Section 3 as dependent

variables, and consider the length, frequency, and

the distance measures as independent variables.

We first start by adding the control variables,

length and frequency in this case. Then, for each

defined measure, we add the score predictor as an

additional variable, while measuring the effect this

addition has on model fit.

The difference between the adjusted R-squared,

or R2

adj from here on, of the model with the con-

trol variables and the model with the extra predic-

tor is called the ∆R2

adj , and explains how much

additional variance is explained by the added pre-

dictor. Because all measures were calculated using

the same data, we can simply compare the ∆R2

adj

of each of the regression models to determine the

effect of that particular measure.

The results of the regression analyses are shown

in Table 2. The rows above the horizontal line

show the base model, i.e. the model with only

the control variables as predictors, while the rows

below the line denote the various statistics of the

different models with respect to the base model.

All score predictors for each model but the N

model show positive effect of score on RT, indicat-

ing that words in denser neighborhoods, i.e. words

with a lower average distance to nearest neighbors,

have shorter Reaction Times. These scores thus

predict a positive effect of neighborhood density.

For N we expect a negative correlation, as the
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measure is inverted, i.e. words with denser neigh-

borhoods have higher figures. Nevertheless we see

a positive effect of N for Dutch, which is unex-

pected.

In all three corpora the one hot encoded features

explain the most variance out of all the measures,

with the wickelfeatures following in second place

for Dutch and French, and OLD20 following in

second place for English. To see if these differ-

ence were significant, we bootstrapped the differ-

ence between the R2

adj estimates of one hot en-

coded rd20 and other feature sets with an α of

.05. For Dutch, we bootstrapped the differences

between the one hot encoded and wickelfeatures;

which led to intervals of [0.0004, 0.0058], indicat-

ing a significant, albeit really small, difference be-

tween the one hot encoded and wickelfeatures. For

English and French, we compared old20 to both

the rd20 of the one hot and the wickelfeatures.

Because of multiple comparisons, we used Bon-

ferroni correction to correct our α of .05 to .025.

For English, the confidence interval of the boot-

strapped differences between the one hot encoding

and wickelgraphs was [-0.0028, -.0003], indicat-

ing significance, while the same confidence inter-

val for one hot encoding and old20 was [0.0003,

0.0020], again indicating a significant difference.

For French, the confidence intervals for the dif-

ferences between one hot encoding and wickel-

graphs were [-0.0011, 0.0032], indicating a non-

significant difference, while the confidence inter-

val for the differences between one hot encoding

and old20 was [0.0029, 0.0061], again indicating

significance.

In a practical sense, the significance is not that

important: as all of these values are really small,

there seems to be little reason to prefer one of the

metrics over the other. That is, even though the

difference between old 20 and the rd20 of a one

hot encoded representation is significant, the dif-

ference in explained variance is so small to not re-

ally matter.

Theoretically, these results point towards a

smaller role for transposition effects than previ-

ously assumed, for two reasons:

First, given that the main difference between

the one-hot encoded features and the Levenshtein-

based old20 is that the Levenshtein metric allows

for transpositions and deletions, we can view the

difference in explained variance between these

two measures as the net transposition effect. If
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Figure 4: The correlations between the control vari-

ables, length and frequency, and the various distance

measures for representations learned by the MLP.

transpositions and deletions played a large role

during lexical access, then we would expect to see

a large positive net transposition effect. In our ex-

periments, we see exactly the opposite: a small

but significant negative net transposition effect in

all corpora. Second, we observe that the bigrams,

the feature set specifically constructed for model-

ing transposition effects during word reading, ex-

plains less variance than the slot-based encodings

in all cases.

Both of these results lead us to hypothesize that
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Dutch English French

Predictor β R2

adj ∆R2

adj β R2

adj ∆R2

adj β R2

adj ∆R2

adj

base length .025 .252 .0 .08 .344 .0 .263 .315 .0

freq -.493 -.55 -.414

fourteen length -.054 .257 .005 .031 .348 .004 .143 .327 .012

freq -.484 -.556 -.400

score .110 .083 .168

one hot length -.068 .274 .022 .041 .356 .012 .144 .347 .032

freq -.475 -.551 -.390

score .179 .119 .221

bigrams length .020 .252 .0 .061 .346 .002 .23 .319 .004

freq -.492 -.554 -.403

score .008 .051 .075

wickel length .008 .254 .002 .067 .345 .001 .256 .315 .000

freq -.493 -.560 -.412

score .041 .047 .016

Table 3: The coefficients, adjusted explained variance, and change in adjusted explained variance of the regression

analyses on the hidden state representations learned by an MLP.

transposition and deletions play a smaller role in

defining lexical neighborhoods than previously as-

sumed.

5 Experiment 2: internal

Representations

In the previous experiment, we showed that rd20

can be used to assess the neighborhood of featur-

ized words. Calculating the rd20 over the raw fea-

tures, however, assumes that our internal represen-

tations are exemplars instead of learned abstract

representations, such as those found in a neural

network. To assess whether rd20 can also be used

with hidden state representations, we performed

an additional experiment using a Multi-Layer Per-

ceptron (MLP).

For each feature set, we trained an MLP to pre-

dict the identity of the word based on the input fea-

tures, which is similar to experiments conducted

by Dandurand et al. (2010). Each MLP had one

hidden layer with 500 hidden units and a Sigmoid

activation function, while the output layer had a

softmax activation function, and a dimensionality

of the vocabulary size. We used cross-entropy as a

loss function, and optimized using Adam (Kingma

and Ba, 2014). Our training regime was as fol-

lows: we shuffled before each epoch, and then

presented all featurized words to the MLP. As in

the previous experiment, we used the whole cor-

pus for each language during training. We trained

each model until convergence, where we defined

convergence as there being no change in the loss

for 20 epochs in a row. After convergence, we cal-

culated the accuracy score for each of the models

in each language. Each of the models achieved an

accuracy of .95 or higher, showing that each model

has correctly learned to predict nearly every word.

We then presented the words for which we

had RTs (i.e. the words which were both in the

SUBTLEX database and in the Lexicon Project for

each language) to the network again, and stored

the hidden unit activations in response to the in-

put. Following the neural network literature (e.g.

(Elman, 1991)), we assume these internal repre-

sentations are the representations learned during

the task of attempting to predict the word identity.

We then calculated rd20 for each representation,

and used these as input to the same analyses as the

previous experiment.

Comparing the MLP results in Figure 4 to the

results from Figure 3, we see that the MLP has

a normalizing effect; as far as these statistics

are concerned, the differences between the differ-

ent feature sets have become smaller. The most

prominent change is that all rd20 measures now

correlate with length, whereas before only the

rd20 based on slot-based values correlated with

length. Similarly, the rd20 based on the one hot

features did not correlate with the rd20 based on

the bigram and wickelgraphs in experiment 1, but

does correlate in the present experiment.

We also conducted regression analyses, using
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the distances between the hidden layer represen-

tations as a predictor, as in experiment 1. Table

3 shows the results of these regression analyses.

These analyses confirm that the MLP has a nor-

malizing effect; whereas the effect of frequency

and length differed in magnitude and sign between

feature sets in Experiment 1, nearly all feature sets

see a positive effect of length and a negative effect

of frequency. The regression analysis shows that

the R2

adj was generally lower for the representa-

tions in the MLP, with the wickelgraphs especially

suffering in comparison to Experiment 1.

6 Discussion and conclusion

Jointly, our experiments show that one hot en-

coded characters outperform other feature rep-

resentations in explaining variance beyond fre-

quency and length. In Experiment 1, we showed

that transposition effects play a smaller role than

previously thought; rd20 over a one hot encoded

character representation explains significantly, al-

beit small amounts, more variance than old20. The

rd20 of open bigrams, a feature set specifically

constructed for a representation which takes into

account transposition effects, does not explain a

lot of variance. Returning to the main research

question of this paper, i.e. whether the neighbor-

hood effect is influenced by transposition neigh-

bors, our evidence shows that it more likely the

case that they do not.

Counter to what we found, experiments have

shown that human subjects do take into account

transposition neighbors in their neighborhoods

(Davis et al., 2009; Acha and Perea, 2008). This

raises an interesting conundrum, and shows that

more research is required.

Furthermore, while the effect of denser neigh-

borhoods was uniformly positive throughout all

experiments and measures, this is not the case

in human processing, where dense neighborhoods

can sometimes have an inhibitory effect due to

competition (Perea, 2015).

This leads us to another point of concern: the

theoretical status of the neighborhood metric, be

it old20, N , or rd20. Should these metrics be

conceived of as purely diagnostic instruments, or

as full-fledged, albeit limited, models of word

processing? As our research shows, varying the

neighborhood metric allows us to advance theo-

retical claims, like any model would allow us to

do. In the future, we would like to investigate how

much of a model one can build out of the neigh-

borhood metric.

Experiment 2 shows the validity of using rd20

on internal representations learned by a neural net-

work. This opens up new avenues for research,

and allows us to quantitatively determine the ef-

fect of neighborhood density in neural networks

on behavioral measures.

7 Implementation details

All statistical analyses were carried out us-

ing R (Team et al., 2013), some of the Fig-

ures were made in ggplot2 (Wickham et al.,

2008). rd20, old20 and N were implemented in

Python (Van Rossum and Drake Jr, 1995), us-

ing Numpy (Walt et al., 2011), while the MLP

was implemented using PyTorch (Paszke et al.,

2017). Some Figures were made in Matplotlib

(Hunter, 2007).
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