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Abstract

This paper presents our submissions for
the CoNLL 2017 UD Shared Task. Our
parser, called UParse, is based on a neural
network graph-based dependency parser.
The parser uses features from a bidirec-
tional LSTM to produce a distribution over
possible heads for each word in the sen-
tence. To allow transfer learning for low-
resource treebanks and surprise languages,
we train several multilingual models for
related languages, grouped by their genus
and language families. Out of 33 partici-
pants, our system achieves rank 9th in the
main results, with 75.49 UAS and 68.87
LAS F-1 scores (average across 81 tree-
banks).

1 Introduction

Dependency parsing aims to automatically ex-
tract dependencies between words in a sentence,
in the form of tree structure. These dependen-
cies define the grammatical structure of the sen-
tence, which makes it beneficial for many natural
language applications, such as question answer-
ing (Cui et al., 2005), machine translation (Car-
reras and Collins, 2009), and information extrac-
tion (Angeli et al., 2015). The most common ap-
proaches for dependency parsing are transition-
based (Nivre et al., 2006) or graph-based (Mc-
Donald et al., 2005). Recent works also apply
neural network approaches for dependency pars-
ing (Chen and Manning, 2014; Dyer et al., 2015;
Kiperwasser and Goldberg, 2016; Zhang et al.,
2017), particularly for learning rich feature repre-
sentations that improve parser accuracy.

To train a high-quality parser, one typically
needs a large treebank, annotated with some lin-
guistic information, such as part of speech (POS)

tags, lemmas, and morphological features. How-
ever, human annotations are expensive. As a re-
sult, most of the work has been focused on few
languages, such as English, Czech, or Chinese.

The Universal Dependencies (UD; Nivre et al.
(2016)) is an initiative to develop consistent tree-
bank annotations across many languages. It pro-
vides an opportunity to perform model transfer —
using model trained on high-resource languages
to parse low-resource languages, allowing the de-
velopment of treebanks for many more languages.
Several works (McDonald et al., 2011; Zhang
and Barzilay, 2015; Duong et al., 2015a,b; Guo
et al., 2015, 2016) have shown that this technique
can help improve accuracy for low-resource lan-
guages, and in fact recent work of Ammar et al.
(2016) demonstrated that it is possible to train a
single multilingual model that works well both in
low-resource and high-resource settings.

The CoNLL 2017 UD Shared Task (Zeman
et al., 2017) uses Universal Dependencies version
2.0 (Nivre et al., 2017), with training data con-
sists of 64 treebanks from 45 languages. Some of
the challenges are the truly low-resource treebanks
(e.g., Kazakh and Uyghur with only 30 and 100
training sentences, respectively), small treebanks
without development data (e.g., Irish, French-
ParTUT, Galician-TreeGal, Ukrainian), and the
surprise languages and treebanks needed to be
parse during test phase.

To address these challenges, we designed our
system for the shared task to use both monolingual
and multilingual models. In particular:

* We train one monolingual model per high-
resource treebank in the training set.

¢ For low-resource treebanks, we train several
multilingual models, each for related lan-
guages grouped by their genus and language
families.
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* For surprise languages, we train several
delexalized parsers using treebanks that are
closest to the surprise languages in terms of
language family.

Our parsing model uses pretrained word vectors,
gold universal POS tags (UPOS), and gold mor-
phological analysis (XFEATS, if available). For
the multilingual models, we also use language 1D
and replace pre-trained word vectors with multi-
lingual word vectors. For the delexicalized mod-
els, we remove the word vectors from our feature
set because we want to use the model for other
languages which use different vocabularies.

We submitted three systems, which are de-
scribed in Section 5. The final ranking of the
shared task brings our parser to the ninth place,
with average UAS and LAS, 75.49 and 68.87, re-
spectively. On the surprise languages, our system
reaches the 6th rank, with 39.17 LAS.

2 System Description

Our system, called UParse, is a combination
of monolingual, multilingual, and delexicalized
models. In this section, we describe our parsing
model which extends DENSE, the neural network
graph-based parser of Zhang et al. (2017).

2.1 DENSE Parser

DENSE (Dependency Neural Selection) is a neu-
ral graph-based parser which generates depen-
dency tree by predicting the heads of each word
in a sentence. Given an input sentence of length
N, the parser first produces N (head, dependent)
dependency arcs by greedily selecting the most
likely head word. If the predicted dependency arcs
do not result a (projective) tree structure, a maxi-
mum spanning tree algorithm will be used to ad-
just the output to a (projective) tree. In the follow-
ing, we will describe the DENSE parser in details.

Token Representations. In the first step, the
parser computes the representation of each word
in the sentence. The objective is to encode both
local (lexical meaning and POS tag) and global
information (word position and context). To do
this, the parser uses a bidirectional LSTM (bi-
LSTMs), which have shown to be effective in cap-
turing long-term dependencies. More formally, let

'As the convention in dependency parsing, we add a
dummy ROOT token to the sentence. Therefore, the result-
ing length of the sentence will be N + 1.
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S = (wp,wr,...,wy) be the input sentence of
length N, where wq denotes the artificial ROOT
token. Each input token wj is represented by x;,
which is a concatenation of its word and POS tag
embeddings, e(w;) and e(t;), respectively.

X; = [e(ws); e(t;)] (D
These representations are the input to a bi-LSTM,
which produces a sentence-specific representation
of token w; computed by concatenating the hidden
states of a forward and a backward LSTM:

a; = [h/;h!

1771

]

where hlf and h® denotes the hidden states of the
forward and backward LSTMs.

2

Head Predictions. For each token w;, the
parser computes the probability of w; being the
head as:

ex a;,a;
Pheqd(wjlw;, S) = plg(a;, a))

— 3
S op(gana)) )

where a; and a; are the word representations of
w; and wj, respectively. Function g is a neural
network with a single layer which computes the
associative score between the two words:

“4)

g(aj,a;) = v! -tanh(U, -a; + W, - a;)
Note that, this step is similar to the neural atten-
tion mechanism in the sequence-to-sequence mod-
els (Bahdanau et al., 2015). The model is trained
to minimize the negative log likelihood of the gold
standard (head, dependent) arcs of all the training
sentences. At test time, the parser greedily choose
the most probable head for each word in the sen-
tence.

Adjusting Tree Outputs. In many cases, the
individual predictions form a tree. However, if this
is not the case, a maximum spanning tree (MST)
algorithm is used to constrain the set of predic-
tions to form a tree. DENSE can use two algo-
rithms: Chu-Liu-Edmonds (Chu and Liu, 1965;
Edmonds, 1967) algorithm to generating non-
projective trees; and the Eisner algorithm (Eisner,
1996) to generate projective trees. The decision
of the MST algorithms depends on the language’s
treebank. For the shared task, we assume that each
language can produce non-projective trees.



Model Word | Multi- | UPOS | XFEATS | LID
Word

MONO v v v

MULTI v v v v

DELEX v v

Table 1: Feature set used for each type of model
in UParse. Multi-Word denotes the multilingual
word embeddings. XFEATS feature is only used
if the annotation is available in the training data.

Label Predictions. After obtaining the unla-
beled dependency trees, the parser needs to predict
labels. To do this, a two-layer rectifier network
(Glorot et al., 2011) is used. More formally, to
predict the arc label between w; and wj, the clas-
sifier takes as input the concatenation of the local
(Eq. 1) and global (Eq. 2) vector representations
of both words, [a;;a;;X;;X;] and predicts a valid
dependency label.

Zhang et al. (2017) presents more detailed ac-
count of the parsing model.

2.2 UParse

Next, we describe UParse, the extended version of
DENSE which we use for the UD shared task. As
mentioned in Section 1, UParse is a combination
of monolingual, multilingual, UDPipe baseline,
and delexicalized models. In general, the key dif-
ference between DENSE and UParse is in the type
of features used for training. UParse uses richer
linguistic features, namely word embeddings, uni-
versal POS tag (UPOS), morphological analysis
(XFEATS), and language ID (LID). This design
is mostly inspired by the work of Ammar et al.
(2016) and Straka et al. (2016) for monolingual
and multilingual parsing models. Each feature is
represented by its vector representations and we
concatenate them together to represent each in-
put token which will be fed into the bi-LSTMs.
Specifically, we modify Eq. 1 to
X; = [e(wi);e(ti);e(mi);e(lidi)] (5)
where e(m;) and e(lid;) denotes the embeddings
of XFEATS and language ID, respectively.> Dur-
ing training our system uses gold annotations (to-
kenization, UPOS, and XFEATS) provided in the
data. At test time, it uses predicted annotations
produced by UDPipe (Straka et al., 2016).
Table 1 shows different feature set used in
each type of model in the UParse. We employ

>We treat XFEATS as an atomic symbol.
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the original DENSE architecture for the mono-
lingual models in UParse, with an additional fea-
ture (XFEATS, if available). For the multilingual
models, we replace the standard word embeddings
with multilingual word embeddings (Section 2.3).
This is important since we need to project word
vectors of different languages to the same vector
space. We also use language ID as a feature, to
inform the parser about the language of the sen-
tence it is currently parsing. This allows the model
to learn not only transferable dependency features
across languages, but also the language-specific
features.

2.3 Multilingual Word Embeddings

Following Ammar et al. (2016), we adapt the ro-
bust projection approach of Guo et al. (2016) to
build our multilingual word embeddings. The idea
is to train word embeddings of a source language
and project them to obtain word embeddings for
the target languages. For the shared task, we use
English pre-trained word vectors trained on the
Wikipedia data (Bojanowski et al., 2016) as our
source embeddings. Next, we use OPUS data
(Tiedemann, 2012, 2009) to build alignment dic-
tionaries for languages that have parallel text with
English. Specifically, we use parallel corpora of
Europarl, Global Voices, Wikipedia, and hrWaC
(for Croatian).

To build the alignment dictionaries, we use
fast_align toolkit (Dyer et al.,, 2013). We
then compute vector for each target word using the
weighted average of its aligned English word em-
beddings, weighted by the alignment probabilities.
A limitation of this approach is that it creates em-
beddings for target words that appear in the par-
allel data. Thus, the final step of this approach
also compute embeddings for other target words
not aligned with the source words by averaging the
embeddings of all aligned target words within an
edit distance of 1. The token level embeddings are
shared across languages.

3 Preliminary Experiments

Prior to our participation in the shared task, we
ran a number of preliminary experiments that in-
formed the design of the final system. Our shared
task submission is based on these results.

In our preliminary experiments, our main goal
is to evaluate the multilingual model of UParse.
These experiments are mainly inspired by the



Type Model de en es Lan%}rlages it pt sV Average

MONO | UDPipe | 82.9 | 87.5 | 87.1 | 84.5 | 90.2 | 87.2 | 86.2 86.5
UParse | 86.8 | 88.7 | 89.2 | 87.1 | 91.4 | 88.0 | 88.2 | 88.5

MULTI | UParse | 85.9 | 87.4 | 88.3 | 87.6 | 91.8 | 89.0 | 88.8 88.4

Table 2: UAS results for monolingual and multilingual model of UParse on the Universal Dependencies

version 1.2.
Type Model Languages Average
de en es fr it pt sV
MONO | UDPipe 78.6 | 85.0 | 84.5 | 81.0 | 88.1 | 84.7 | 83.2 83.6
UParse 80.4 | 85.5 | 85.5 | 83.1 | 88.9 | 84.2 | 82.7 84.3
MULTI | MALOPA | 78.9 | 85.4 | 84.3 | 82.4 | 89.1 | 86.2 | 84.5 84.4
UParse 779 | 85.1 | 843 | 81.9 | 89.0 | 86.5 | 81.1 83.7

Table 3: LAS results for monolingual and multilingual model of UParse on the Universal Dependencies
version 1.2. MALOPA is the multilingual parser of Ammar et al. (2016).

work of Ammar et al. (2016). To compare our
results, we use the same datasets from Univer-
sal Dependencies version 1.2 (Nivre et al., 2015),
for seven languages: English, French, German,
Italian, Spanish, Swedish, and Portuguese. The
training data for the first five languages consists
of more than 10K training sentences, while for
Portuguese and Swedish, there are 8.8K and 4.3K
training sentences, respectively. For simplicity, we
also follow their experimental setup for training
optimization (more detail is reported in Section 4).
In addition, we also compare our parser perfor-
mance for the monolingual models with UDPipe
parser.

Table 2 and 3 present the performance of our
parser compared to UDPipe (monolingual) and
MALOPA (multilingual) parsers. In terms of
UAS, our multilingual model achieves the best
scores, except for English, German, and French.
The results for LAS are slightly different. We
found that for languages where we have more than
10K training sentences, our monolingual model
outperforms the other models, with an exception
on Italian. For the smaller treebanks, although
we see UAS improvements for Portuguese and
Swedish when we use multilingual model, we only
obtain LAS improvement on Portuguese. We be-
lieve that these mixed results are due to poor accu-
racy of our label classifier, since the UAS results
demonstrate that the parser itself is quite effective
in predicting the dependency arcs.
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4 Experiments

This section describes the experimental design,
training, and also our submissions to the shared
task. After looking at the results of our prelimi-
nary experiments, we decided to train both mono-
lingual and multilingual parsers, evaluate them on
the shared task development data and choose the
best settings for our submissions.

4.1 Language Groups

To build the multilingual models, we first group
the treebanks such that treebanks of related lan-
guages will be trained in a single model. We use
genus and language family information taken from
the World Atlas of Language Structures(WALS;
Dryer and Haspelmath (2013)) to group the lan-
guages. For each treebank in which the language
is not related to any other treebanks, it will be in
a singleton group, hence the same as a monolin-
gual model. For classic languages like Ancient
Greek, Latin, Gothic, and Old Church Slavonic,
we group them to the same group, instead of using
the WALS information. Table 4 shows the lan-
guage groups used in UParse.

4.2 Training

In the preprocessing step, following the common
setup in parsing, we remove multiword tokens and
language specific dependency relations. For the
multilingual training, we also combine treebanks
of the same language in the same training data.
We also use two additional datasets: pre-trained



Group Languages

Classic Ancient Greek, Latin, Gothic
Old Church Slavonic

Finnic Finnish

Germanic | Danish, Dutch, English, German
Norwegian, Swedish

Indic Hindi, Urdu

Romance | Catalan, French, Italian
Portuguese, Spanish

Slavic Bulgarian, Croatian, Czech
Polish, Russian, Slovak
Slovenian, Ukrainian

Semitic Arabic, Hebrew

Turkic Kazakh, Turkish, Uyghur

Table 4: Language groups used for building UP-
arse multilingual models. Finish language has two
treebanks, we group them together in the same

group.

word embeddings from Bojanowski et al. (2016)
and OPUS parallel data (Tiedemann, 2012, 2009).

Unless we explicitly mention in the description,
we follow the same training configurations as de-
scribed in Zhang et al. (2017). We use two-layer
bi-LSTMs with 150 hidden units, and set embed-
ding size for {words, UPOS, XFEATS, LID} to
{300, 30, 40, 10}, respectively. The word em-
bedding size matches that of the pre-trained em-
beddings. We did not use the Czech-CLLT or any
ParTUT treebanks for training since they contain
many long sentences (the longest sentence in the
Czech-CLLT treebank consists of 534 words). At
test time, we parse these treebanks using the mod-
els trained on the same language. We trained our
models on an Nvidia GPU card; training a mono-
lingual model takes 1-2 hours, while training a
multilingual model takes 4-5 hours.

Word embeddings. For monolingual training,
we initialize the embeddings with the pre-trained
ones and keep them fixed during training. For the
multilingual models, we first create multilingual
word embeddings as described in Section 2.3, us-
ing OPUS parallel data and English as the source
language. Unlike Ammar et al. (2016) and Guo
et al. (2016), we also share representations for
words which are used by more than one language.
For example, if system appears in the English and
German data, we only use a single vector to repre-
sent it. Of course, this means we allow param-
eter sharing across words with the same forms,
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but different meanings. But on the other hand, it
also enables named entities and loanwords to have
the same representation across languages. We ini-
tialize the embeddings with the multilingual word
embeddings and update them during training.? For
all models, embeddings for words with no pre-
trained representation are initialized uniformly at
random in the range [-0.1, 0.1].

Optimization for multilingual training. For
multilingual training, we follow Ammar et al.
(2016) when updating the parameters. Specifi-
cally, we use mini-batch updates in which we uni-
formly sampled (without replacement) the same
number of sentences for each treebank, until all
sentences in the smallest treebank are used. In
other words, each epoch will use N x L sentences,
where N is the number of sentences in the smallest
treebank and L is the number of languages.

4.3 Truly Low-Resource Treebanks

There are some challenges when training the truly
low-resource treebanks, i.e., treebanks with less
than 2K sentences, with no other treebanks from
the same language available. For example, Viet-
namese treebank only has 1400 sentences with no
related languages in terms of genus and language
family. Ideally, we want to apply multilingual
learning for these treebanks since we do not have
enough examples to train them using monolingual
models. Moreover, languages like Kazakh and
Uyghur have 100 training sentences or fewer and
no development data, which makes it difficult to
do multilingual training as described above. Our
initial experiments show that multilingual learning
helps improve accuracy of the truly low-resource
treebanks (with less than 1K training sentences),
but degrades accuracy of the high-resource tree-
banks. This is because using our training set up,
each epoch will only consists of small number of
sentences per language. Irish is particularly chal-
lenging, with only 566 training sentences, no de-
velopment data, and no related languages. Our
training strategy for these particular cases are as
follows:

Estonian and Hungarian. These languages are
belong to the Uralic language family. Since
Finnish has two treebanks with large training
data, we train two more multilingual models
for each, using additional Finnish treebanks.

3We did not fix the embeddings since in our preliminary
experiments, it gave us lower accuracy.



We do not use a single model to train both
Estonian and Hungarian since Estonian has
more training sentences than Hungarian.

Greek. We train a multilingual model for Greek,
using training data from Ancient Greek and
Greek treebanks.*

Irish. Since this language does not have any re-
lated languages, we use delexicalized model
of Czech. We chose Czech since the language
has the largest treebank.

Kazakh and Uyghur. For the two languages,
since the training data are very small, we use
a single delexicalized model of Turkish. We
only use Turkish data during training, but in-
clude both Kazakh and Uyghur training data
in the development set.

4.4 Surprise Languages and Treebanks

For the surprise languages, since we do not have
any training data, we train delexicalized models
on related languages. In particular, we use delexi-
calized Russian for Buryat, Persian for Kurmanji,
Finnic for North Sami, and Czech for Upper Sor-
bian. Note that the delexicalized models of Rus-
sian, Finnic, and Czech use all the treebanks of the
language, thus allowing transfer learning between
different treebanks of the same language. For
example, to train a delexicalized model of Rus-
sian, we use both UD_Russian and UD_Russian-
SynTagRus treebanks.

For the surprise treebanks from known lan-
guages, we simply use a parser trained on other
treebanks in that language.

5 Results and Analysis

5.1 Initial Results on Development Data

During the training phase, we evaluated the perfor-
mance of our monolingual and multilingual sys-
tems using the official development data. Since
we use gold annotations (tokenization, UPOS, and
XFEATS) as our features, we compare our perfor-
mance with UDPipe baseline which also use gold
annotations. Table 5 shows the average UAS and
LAS of the monolingual and multilingual systems.
Similar to our preliminary results, we see improve-
ments on UAS for the multilingual model, but with

“This specific model is slightly different, one might as-

sume that Ancient Greek and Modern Greek are highly re-
lated.
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Model | Avg. UAS | Avg. LAS
Baseline 83.29 79.53
MONO 79.53 78.44
MULTI 85.76 77.55

Table 5: Average UAS and LAS of the monolin-
gual versus multilingual models. The baseline is
UDPipe with gold annotations.

LAS lower than the monolingual or even the UD-
Pipe system. When we look at the results for in-
dividual treebanks, we found that our models are
especially achieved lower LAS than the baseline
system on the smaller treebanks.

5.2 Submission

The UD shared task employs TIRA (Potthast et al.,
2014) to evaluate all systems. When we deployed
our system on the TIRA virtual machine, we en-
countered two problems which break the evalua-
tion script. First, our system sometimes produces
multiple roots in the prediction, which the script
rejects. To address this, we post-processed the
predicted tree by taking the first prediction as the
root, and connect other roots to the first root with
a clausal component label, ccomp.’ The second
problem occurs when the test data has sentence
longer than the maximum sentence length in the
training data.> Because we had limited time to ad-
dress this, we used the following algorithm: Let
n be the maximum length of sentence allowed by
the parsing model. For each sentences with length
k, where k > n:

1. Parse the first n words in the sentence.

2. For the rest K — n words, connect each word
with the previous word, and label the arc be-
tween them using a heuristic label (DIST), or
a random label (RAND). We simply take the
most frequent label between the head POS
and the dependent POS in the training data
for DIST.

We decided to use the combination of monolin-
gual, multilingual, UDPipe (only for the primary
system, UP-1), and delexicalized models for our
primary system. For each treebank, we pick the

>We choose this label based from our observation on the
multiple roots prediction. Most of the time, our parser pre-
dicts multiple roots if the sentences are too long and contain
multiple clauses.

®In the current training setup, the maximum sentence
length is fixed.



Model | Avg. LAS
Up-1 73.66
UP-2 73.30
UP-3 73.29

Table 6: Macro-averaged LAS F1 score on devel-
opment data.

Treebank name Model
Estonian* Finnic-Estonian
Gothic Classic
Hungarian* Finnic-Hungarian
Irish* DEL-Czech
Kazakh* DEL-Turkic
Old Church Slavonic* | Classic

Slovak* Slavic

Swedish Germanic
Swedish-LinES Germanic
Uyghur* DEL-Turkic
Buryat DEL-Russian
Kurmanji DEL-Persian
North_Sami DEL-Finnic
Upper_Sorbian DEL-Czech

Table 7: List of treebanks which use multilingual
or delexicalized models in UParse. (*) denotes
treebanks which use UDPipe models in UP-1.
The bottom part of the table shows the models
used to parse surprise languages.

best model based on its performance on the devel-
opment data. We use UDPipe models for 24 tree-
banks in which we achieved lower performance
than the baseline on the development data (de-
noted by (*) in Table 9). UP-2 and UP-3 do not
use any UDPipe models. Table 7 lists all treebanks
which use multilingual or delexicalized models for
parsing. Our final submission consists of three dif-
ferent systems:

1. UP-1: UParse + DIST + UDPipe
2. UP-2: UParse + DIST
3. UP-3: UParse + RAND

Table 6 shows the macro-averaged LAS F1 scores
for all the systems.

5.3 Results on Test Data

Table 8 shows the results of our primary system
of LAS, UAS, and CLAS (Nivre and Fang, 2017).
The more detailed results for each treebank and
system is given in Table 9. Similar to the results
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Metric | Score
LAS 68.87
UAS 75.49
CLAS | 63.55

Table 8: LAS, UAS, and CLAS results of our pri-
mary system, UP—1.

on development data (Table 6), UP-1 achieves the
best macro-average F1 score out of the three sys-
tems. The results of UP-2 and UP-3 are quite
similar, which is not surprising since there are only
a few long sentences in the test data.

We further observe the performance of the UD-
Pipe baseline model versus UParse models, by
comparing the performance of UP—1 and UP-2 on
the 24 treebanks (treebanks with (*) in Table 9).
Based on the results, our system achieves lower
LAS-F1 scores on 16 treebanks, which are either
treebanks with small training data or treebanks
with long sentences, for which we did not train
any model. For the other six treebanks, our sys-
tem achieves higher LAS-F1 scores than the UD-
Pipe baseline system, with 4 treebanks predicted
using the multilingual models.

Our system is deployed on the TIRA virtual
machine, which is a quad-core CPU with 16GB
RAM. It took 2 hours and 43 minutes for our pri-
mary system to parse the official test data.

6 Conclusion and Future Work

We described UParse, our system for the CoNLL
UD Shared Task 2017. Our observation from the
overall results suggested that our parsing model
outperforms the UDPipe baseline model, except
in cases when there is little training data avail-
able. Our approach to perform multilingual learn-
ing by transferring models from high-resource to
low-resource treebank seems to be quite effective
in predicting the dependency arcs, but less for the
label predictions. However, we observed some im-
provements for a number of treebanks when we
use a multilingual model trained using treebanks
from related languages.

In the light of these results, some possible di-
rections for the future work include improving the
label predictions of the parsing model and explor-
ing the possibilities to use character-level mod-
els, as they have shown to be effective for parsing
morphologically rich languages (Ballesteros et al.,
2015). Another interesting direction is to combine



Treebank Code LAS F-1 score Treebank Code LAS F-1 score
UP-1 | UP-2 | UP-3 UP-1 | UP-2 | UP-3
ar_pud 453 | 453 | 453 hsb 59.24 | 59.24 | 59.24
ar 66.35 | 66.35 | 66.3 hu* 64.3 | 57.37 | 57.37
bg* 83.64 | 83.46 | 83.46 id 75.01 | 75.01 | 75.01
bxr 21.63 | 21.63 | 21.63 it_pud 85.13 | 85.13 | 85.13
ca 86.8 | 86.8 | 86.8 it 86.62 | 86.62 | 86.62
cs_cac 85.57 | 85.57 | 85.57 ja_pud 74.64 | 74.64 | 74.64
cs_clet* 71.64 | 66.74 | 66.37 ja* 72.21 | 70.51 | 70.51
cs_pud 81.06 | 81.06 | 81.06 kk 21.96 | 21.96 | 21.96
cs 85.24 | 85.24 | 85.24 kmr 39.76 | 39.76 | 39.76
cu* 62.76 | 64.24 | 64.24 ko* 59.09 | 58.74 | 58.74
da 73.46 | 73.46 | 73.46 la_ittb 79.35 | 79.35 | 79.35
de_pud 67.36 | 67.36 | 67.36 la_proiel 56.93 | 56.93 | 56.91
de 70.09 | 70.09 | 70.09 la* 43.77 | 46.07 | 46.07
el* 79.26 | 76.93 | 76.93 Iv* 59.95 | 57.09 | 57.09
en_lines 73.28 | 73.28 | 73.28 nl_lassysmall 79.56 | 79.56 | 79.56
en_partut™® 73.64 | 69.63 | 69.63 nl 699 | 699 | 699
en_pud 79.54 | 79.54 | 79.54 no_bokmaal 83.81 | 83.81 | 83.81
en 7642 | 76.42 | 76.41 no_nynorsk 81.91 | 81.91 | 81.91
es_ancora 86.01 | 86.01 | 86.01 pl* 78.78 | 79.69 | 79.69
es_pud 79.2 | 792 | 79.2 pt_br 86.38 | 86.38 | 86.38
es 83.02 | 83.02 | 83.02 pt_pud 74.76 | 74.76 | 74.76
et* 58.78 | 56.26 | 56.26 pt 83.12 | 83.12 | 83.12
eu 69.85 | 69.85 | 69.85 10 80.45 | 80.45 | 80.45
fa 7997 | 7997 | 79.97 ru_pud 68.64 | 68.64 | 68.64
fi_ftb* 74.04 | 73.77 | 73.77 ru_syntagrus 89.18 | 89.18 | 89.18
fi_pud 79.66 | 79.66 | 79.66 ru* 74.03 | 74.86 | 74.76
fi 7535 | 7535 | 75.35 sk* 7275 | 7477 | 74.77
fr_partut* 77.38 | 76.05 | 76.05 sl_sst 46.97 | 4697 | 46.97
fr_pud 74.44 | 74.44 | 74.44 sI* 81.15 | 81.09 | 81.09
fr_sequoia 78.57 | 78.57 | 78.57 sme 36.04 | 36.04 | 36.04
fr 81.58 | 81.58 | 81.58 sv_lines 74.04 | 74.04 | 74.04
ga* 61.52 | 36.31 | 36.2 sv_pud 70.44 | 70.44 | 70.44
gl _treegal 64.18 | 64.18 | 64.18 Y 75.29 | 7529 | 75.29
gl 78.08 | 78.08 | 78.08 tr_pud 32.63 | 32.63 | 32.63
got 60.71 | 60.71 | 60.71 tr* 53.22 | 51.69 | 51.69
grc_proiel 64.48 | 64.48 | 64.45 ug* 34.18 | 20.8 20.8
grc 57.22 | 57.22 | 57.22 uk* 60.76 | 60.78 | 60.78
he 576 | 576 | 576 ur 76.35 | 76.35 | 76.35
hi_pud 51.89 | 51.89 | 51.89 vi* 3747 | 37.14 | 37.14
hi 872 | 872 | 872 zh* 574 | 56.14 | 56.14
hr* 7718 | 76.28 | 76.28 Average LAS 68.87 | 68.09 | 68.09

Table 9: LAS F-1 scores for each treebank in the test data. (*) denotes treebanks which are predicted
using UDPipe baseline models in the UP-1 system and the best accuracies are shown in bold.
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both morphological analysis and also sub-word
unit representation (characters, character n-grams,
or morphemes) and investigate whether these fea-
tures are transferable across languages with simi-
lar typology.
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