
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 52–62,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

The HIT-SCIR System for End-to-End Parsing of Universal Dependencies

Wanxiang Che, Jiang Guo, Yuxuan Wang, Bo Zheng
Huaipeng Zhao, Yang Liu, Dechuan Teng and Ting Liu

Center for Social Computing and Information Retrieval
Harbin Institute of Technology, Harbin, China 150001

{wxche,jguo,yxwang,bzheng,hpzhao,yliu,dcteng,tliu}@ir.hit.edu.cn

Abstract

This paper describes our system (HIT-
SCIR) for the CoNLL 2017 shared task:
Multilingual Parsing from Raw Text to
Universal Dependencies. Our system in-
cludes three pipelined components: to-
kenization, Part-of-Speech (POS) tag-
ging and dependency parsing. We use
character-based bidirectional long short-
term memory (LSTM) networks for both
tokenization and POS tagging. After-
wards, we employ a list-based transition-
based algorithm for general non-projective
parsing and present an improved Stack-
LSTM-based architecture for representing
each transition state and making predic-
tions.

Furthermore, to parse low/zero-resource
languages and cross-domain data, we use
a model transfer approach to make effec-
tive use of existing resources. We demon-
strate substantial gains against the UDPipe
baseline, with an average improvement of
3.76% in LAS of all languages. And fi-
nally, we rank the 4th place on the official
test sets.

1 Introduction

Our system for the CoNLL 2017 shared task (Ze-
man et al., 2017) is a pipeline which includes three
cascaded modules, tokenization, Part-of-Speech
(POS) tagging and dependency parsing.

• Tokenization. This module includes two
components, the sentence segmenter and the
word segmenter which recognize the sen-
tence and word boundaries respectively (Sec-
tion 2.1).

• POS tagging. We focus mainly on univer-
sal POS tags, and don’t use language-specific
POS as well as other morphological features
(Section 2.2).

• Dependency parsing. To handle the non-
projective dependencies in most of the lan-
guages (or treebanks) provided in the task,
we employ the list-based transition pars-
ing algorithm (Choi and McCallum, 2013),
equipped with an improved Stack-LSTM-
based model for representing the transition
states, i.e., configurations (Section 2.3).

We mainly concentrate on parsing in this task,
and make use of UDPipe (v1.1) (Straka et al.,
2016a) for most of the pre-processing steps. How-
ever, our preliminary experiments showed that the
UDPipe tokenizer and POS tagger perform rather
poorly in some languages and specific domains.
Therefore, we develop our own tokenizer and POS
tagger for a subset of languages.

To deal with the parallel test sets (cross-
domain) and low/zero-resource languages, we
adopt the neural transfer approaches proposed in
our previous studies (Guo et al., 2015, 2016) to
encourage knowledge transfer across different but
related languages or treebanks.

Experiments on 81 test sets demonstrate that our
system (HIT-SCIR: software4) obtains an average
improvement of 3.76% in LAS as compared with
the UDPipe baseline, and ranks the 4th place in
this task.

2 System Architecture

2.1 Tokenization
2.1.1 Sentence Segmentation
We develop our own sentence segmentation mod-
els for the languages which have white spaces as
token separators and on which UDPipe doesn’t

52

This<begin> sentence. Another <end>

W

S<begin> . <end>e

Other features of

the word “sentence.”

Figure 1: The hierarchical Bi-LSTM model for
sentence segmentation.

perform well. We formalize the sentence segmen-
tation process as a binary classification problem,
that is to classify each token as either the end
of a sentence or not. We notice that character-
level information is critical for sentence segmen-
tation, since texts are not tokenized yet in the cur-
rent phase. Therefore, we develop a hierarchi-
cal LSTM-based model, as illustrated in Figure 1,
in which characters in each token are composed
using a character-based bidirectional LSTM (Bi-
LSTM) network and then concatenated with addi-
tional token-level features (e.g., token embedding,
the first character of this token, etc.) and passed
through a token-level Bi-LSTM. The hidden states
of the token-level Bi-LSTM are finally used for
classification through a softmax layer.

We follow the strategy of the UDPipe tok-
enizer (Straka et al., 2016a) and employ a sliding
window to incrementally segment a document into
sentences.

In addition, we notice that for certain treebanks
(e.g., la ittb and cs cltt), some punctuation-related
rules derived from the training data can be highly
effective. To be more specific, some punctuations
that appear as the end of a sentence with high
probability will be used directly for determining
sentence boundaries. Therefore, we develop addi-
tional rule-based systems for these data instead of
using the neural models as describe above.

2.1.2 Word Segmentation
We develop our own word segmentation models
particularly for languages which do not have ex-

B I B I

Unigram Embedding Bigram Embedding Mutual Information

Figure 2: The word segmentation model. ‘B’ de-
notes the beginning position and ‘I’ denotes the
middle or ending positions of a word.

plicit word boundary markers, i.e., white spaces,
including Chinese, Japanese and Vietnamese.1

Our word segmentation model is also built
on Bi-LSTM networks, and incorporates rich
statistics-based features gathered from large-scale
unlabeled data. Specifically, we utilize features
like character-unigram embeddings, character-
bigram embeddings and the pointwise mutual in-
formation (Liang, 2005) (PMI) of adjacent charac-
ters. Formally, the input of our model at each time
step t can be computed as:

zt = [Ut;Bt−1;Bt;PMI(ct−1, ct);PMI(ct, ct+1)]
(1)

xt =max{0,Wzt + b} (2)

where Ut and Bt denote the unigram embedding
and bigram embedding respectively at position t
and PMI denotes the pointwise mutual information
between two characters.

The PMI values are computed through:

PMI (c1, c2) = log
p (c1c2)

p (c1)p (c2)
(3)

where c1 and c2 are two characters, p(c1), p(c2)
and p(c1c2) are counted on the raw data provided
by the shared task. p(s) denotes the probability
string s appears in the raw data. We scale PMI

1Vietnamese requires word segmentation because white
spaces occur both inter- and intra-words. When segmenting
Vietnamese, white space-separated tokens are used as inputs,
rather than characters as in Chinese and Japanese. In addi-
tion, we don’t consider Korean here since the Korean input
texts have already been segmented in the corpus provided by
the task.

53

c

c h a r

Figure 3: Structure of the character-based compo-
sition model for learning word representations.‘w’
denotes the pre-trained word embedding, ‘c’ de-
notes the Brown cluster embedding.

with their Z-scores, the Z-score of a PMI value x
is x−µ

σ , where µ and σ are the mean and standard
deviation of the PMI distribution, respectively.

Figure 2 shows the architecture of our word seg-
mentation model.

The character-unigram embeddings and
character-bigram embeddings are obtained using
word2vec (Mikolov et al., 2013) on the raw data.

2.2 Part-of-Speech Tagging

The UDPipe POS tagger is trained using averaged
perceptron with feature engineering. In our sys-
tem, we use a model similar to the one for sentence
segmentation (Section 2.1.1), i.e., a hierarchical
Bi-LSTM model which outperforms UDPipe on
most of datasets with much fewer features. Con-
cretely, each word is modeled using a character-
based Bi-LSTM, so that word prefix and suffix
features can be effectively incorporated, which
is particularly important for morphologically rich
languages. In addition, modeling from charac-
ters alleviates the problem of Out-of-Vocabulary
(OOV) words.

The character-based compositional embedding
of each word is then concatenated with a pre-
trained word embedding and a Brown cluster em-
bedding, resulting in the final word representation
which is fed as input of a word-level Bi-LSTM for
POS tagging. Formally,

x =max{0,W [Ð→h ;
←Ð
h ;w; c] + q} (4)

Figure 3 illustrates the structure of the
character-based composition model.

2.3 Dependency Parsing
The transition-based dependency parsing algo-
rithm with a list-based arc-eager transition sys-
tem proposed by Choi and McCallum (2013) is
used in our parser. We base our parser mainly on
the Stack-LSTM model proposed by Dyer et al.
(2015), where three Stack-LSTMs are utilized to
incrementally obtain the representations of the
buffer β, the stack σ and the transition action se-
quence A. In addition, a dependency-based Re-
cursive Neural Network (RecNN) is used to com-
pute the partially constructed tree representation.
However, compared with the arc-standard algo-
rithm (Nivre, 2004) used by Dyer et al. (2015), the
list-based arc-eager transition system has an extra
component in each configuration, i.e., the deque
δ. So we use an additional Stack-LSTM to learn
the representation of δ. More importantly, we
introduce two LSTM-based techniques, namely
Bi-LSTM Subtraction and Incremental Tree-LSTM
(explained below) for modeling the buffer and
sub-tree representations in our model.

The pre-trained word embedding (100-
dimensional), Brown cluster embedding (100-
dimensional), along with a 100-dimensional
randomly initialized word embedding updated
while training,2 and a 50-dimensional embedding
for UPOS are concatenated and passed through
a non-linear layer to obtain the representation of
each word.

Representations of the four components in our
transition system are concatenated and passed
through a hidden layer to obtain the representation
of the parsing state at time t:

et =max{0,W [st; bt;pt;at] + d} (5)

where st, bt, pt and at are the representation of
σ, β, δ and A respectively. d is the bias. et is
finally used to compute the probability distribution
of possible transition actions at time t through a
softmax layer. Figure 4 shows the architecture.

2.3.1 Bi-LSTM Subtraction
We regard the buffer as a segment and use the sub-
traction between LSTM hidden vectors of the seg-
ment head and tail as its representation. To in-
clude the information of words out of the buffer,
we apply subtraction on bidirectional LSTM rep-
resentations over the whole sentence (Wang et al.,

2Unfortunately we did not have access to enough raw text
of Gothic, thus no pre-trained word embedding nor Brown
cluster is utilized for it.

54

Ø is

δ

TOP

et = max{0,W [stabtaptaat]+d}

Right-Pass

TOP

No-Shift A

No-PassNo-Shift

nice paid byThe

 paid by

β

Bi-LSTM Subtraction

σ

Ø

TOP

Incremental

Tree-LSTM

Root

The

man

man

The

nice

nice

Figure 4: Example transition state representation based on LSTMs. The buffer β is represented by
Bi-LSTM Subtraction, the sub-trees are computed by Incremental Tree-LSTM.

nice lives hereThe

hf (The) hb(The)hf (nice) hb(nice) hf (lives) hb(lives) hf (here) hb(here)

hf (nice) hb(nice)hf (here) hb(here)

-

-

-
-bb =bf =

bt =bf bb+

The nice lives here

σ δ β

Figure 5: Illustration of Bi-LSTM Subtraction for
buffer representation learning. hf (*) and hb(*) in-
dicate the hidden vectors of forward and backward
LSTM respectively. bt is the resulting buffer rep-
resentation.

2016; Kiperwasser and Goldberg, 2016; Cross and
Huang, 2016), thus called Bi-LSTM Subtraction.

The forward and backward subtractions are cal-
culated independently, i.e., bf = hf(l)−hf(f) and
bb = bb(f) − bb(l), where hf(f) and hf(l) are
the hidden vectors of the first and the last words
in the forward LSTM, hb(f) and hb(l) are the
hidden vectors of the first and the last words in
the backward LSTM. Then bf and bb are concate-
nated as the buffer representation. As illustrated in
Figure 5, the forward and backward subtractions
for the buffer are bf = hf(here) − hf(nice) and
bb = hb(nice) − hb(here) respectively.

The

man

man

The

nice

nice

c1

mannice

rel

amod

c2

The det

The mannice

Figure 6: Representations of a dependency sub-
tree (above) computed by Tree-LSTM (left) and
dependency-based RecNN (right).

2.3.2 Incremental Tree-LSTM

We use a Tree-LSTM (Tai et al., 2015; Zhu et al.,
2015) in our parser to model the sub-trees dur-
ing parsing. The example in Figure 6 shows the
differences between RecNN (Dyer et al., 2015)
and Tree-LSTM. In RecNN, the representation of
a sub-tree is computed by recursively combining
head-modifier pairs. Whereas in Tree-LSTM, a
head is combined with all of its modifiers simul-
taneously in each LSTM unit.

However, our implementation of Tree-LSTM is
different from the conventional one. Unlike tradi-
tional bottom-up Tree-LSTMs in which each head
and all of its modifiers are combined simultane-
ously, the modifiers are found incrementally dur-
ing our parsing procedure. Therefore, we propose
Incremental Tree-LSTM, which obtains sub-tree
representations incrementally. To be more spe-
cific, each time a dependency arc is generated,

55

we collect representations of all the found mod-
ifiers of the head and combine them along with
the embedding of the head as the representation of
the sub-tree. The original embedding rather than
the current representation of the head is utilized to
avoid the reuse of modifier information, since the
current representation of the head contains infor-
mation of its modifiers found previously.

2.3.3 Parser Ensembling
For a majority of languages, we found that the
parsing performance can be improved by sim-
ply integrating two separately trained models.
More specifically, for each language two models
with different random seeds are trained separately.
While predicting, in each state, both models are
used to calculate the scores for valid transitions
under this configuration as described above. Then
the score distributions computed by two models
are summed to get the final scores for the valid
transitions, among which the one with the highest
score will be taken as the next transition.

3 Transfer Parsing across Domains and
Languages

3.1 Cross-Domain Transfer
For 15 out of 45 languages presented in the task,
multiple treebanks from different domains are pro-
vided. To exploit the benefits from these cross-
domain data, we use a simple inductive transfer
approach which has two stages:

1. Multiple treebanks of each language are com-
bined to train an unified parser.

2. The unified parser is then fine-tuned on the
training treebank of each domain, to obtain
target domain-specific parsers.

In practice, for each language considered here,
we treat the largest treebank as our source-domain
data, and the rest as target-domain data. Only
target-domain models are fine-tuned from the uni-
fied parser, while the source-domain parser is
trained separately using the source treebank alone.

For the new parallel test sets in test phase, we
simply use the model trained on source-domain
data, without any assumption on the target do-
main.

3.2 Cross-Lingual Transfer
We consider the languages which have less than
900 sentences in the training treebank as low-

Target hu uk qa ug kk
Source fi ftb ru syntagrus en tr tr

Table 1: Cross-lingual transfer settings for low-
resource target languages.

resource, and employ the cross-lingual model
transfer approach described in Guo et al. (2015,
2016) to benefit from existing resource-rich lan-
guages.

The low-resource languages here include
Ukrainian (uk), Irish (ga), Uyghur (ug) and
Kazakh (kk). We determine their source language
(treebank) according to the language families they
belong to and their linguistic typological similar-
ity. Specifically, the transfer setting is shown in
Table 1.

The transfer approach is similar to cross-
domain transfer as described above, with one im-
portant difference. Here, we use cross-lingual
word embeddings and Brown clusters derived by
the robust projection approach (Guo et al., 2015)
when training the unified parser, to encourage
knowledge transfer across languages at lexical
level. Specifically, for each source and target lan-
guage pair ⟨src, tgt⟩, we derive an alignment ma-
trixAtgt∣src from a collected bilingual parallel cor-
pus, where each element Atgt∣src(i, j) is the nor-
malized count of alignments between correspond-
ing words in their vocabularies:

Atgt∣src(i, j) =
#(V (i)tgt ↔ V

(j)
src)

∑k #(V (i)tgt ↔ V
(k)
src)

(6)

Given a pre-trained source language word embed-
ding matrix Esrc, the resulting word embedding
matrix for the target language can be simply com-
puted as:

Etgt = Atgt∣src ⋅Esrc (7)

Therefore, the embedding of each word in the tar-
get language is the weighted average of the em-
beddings of its translation words in our bilingual
parallel corpus.

The cross-lingual Brown clusters are obtained
using the PROJECTED clustering approach de-
scribed in (Täckström et al., 2012), which assigns
a target word to the cluster with which it is most
often aligned:

c(wtgti) = argmax
k

∑
j

Atgt∣src(i, j)⋅1[c(wsrcj) = k]

(8)

56

Source

Unified
model

train

Target

fine-tuning

Target
model

Cross-lingual	
word	embeddings

BiTexts

Figure 7: The cross-lingual transfer approach.

Target bxr kmr sme hsb
Source tr & ug & kk fa fi ftb & fi cs

Table 2: Cross-lingual delexicalized transfer set-
tings for surprise languages.

After that, target language-specific parsers are
obtained through fine-tuning on their own tree-
banks. Figure 7 illustrates the flow of our transfer
approach.

For the surprise languages in the final test
phase, we use the transfer settings in Table 2. We
use multi-source delexicalized transfer for sur-
prise language parsing, considering that bilingual
parallel data which is required for obtaining cross-
lingual word embeddings is not available for these
languages.

4 Experiments

We first describe our experiment setups and strate-
gies for processing different languages (treebanks)
in each module. Then we present the results and
analysis.

4.1 Experimental Settings
4.1.1 Model Selection Strategies
For sentence segmentation, we apply our own
models for a subset of languages on which UD-
Pipe yields poor performance, and use UDPipe for
the rest languages.3 Specifically, we use the rule-
based model for la ittb and cs cltt,4 and use the Bi-
LSTM-based model (Figure 1) for sk, en, en lines,
fi ftb, got, nl lassysmall, grc proiel, la ittb, cu,

3We use the same hyper-parameter settings as provided by
the organizers to train the UDPipe models.

4However, the rule-based model does not yield good per-
formance on the two test sets. We suggest that the rules we
use are overfitting the development sets to some degree.

la proiel, da and sl sst. For word segmentation, we
use our Bi-LSTM-based model for zh, ja, ja pud
and vi, which don’t have explicit word boundary
markers, i.e., white spaces.

We use our own POS taggers for all of the lan-
guages, except for the surprise languages, which
we rely on UDPipe for all pre-processing steps.

Our strategies for parsing are shown in Table 3.
We determine the optimal parser (single, ensem-
ble or transfer) for each treebank according to the
performance on the development data.

4.1.2 Data and Tools
We use the provided 100-dimensional multilingual
word embeddings5 in our tokenization, POS tag-
ging and parsing models, and use the Wikipedia
and CommonCrawl data for training Brown clus-
ters. The number of clusters is set to 256.

For cross-lingual transfer parsing of low-
resource languages, we use parallel data from
OPUS to derive cross-lingual word embeddings.6

The fast align toolkit (Dyer et al., 2013) is used
for word alignment.7

We use the Dynet toolkit for the implementation
of all our neural models.8

4.2 Effects of Different Parts in Dependency
Parsing

We conduct experiments on the development sets
of 4 treebanks to investigate the contributions of
the two architectures we proposed (i.e., the In-
cremental Tree-LSTM and the Bi-LSTM Subtrac-
tion) and the Brown cluster. The LAS of differ-
ent experiment settings are presented in Table 4.
Results show that Brown clusters and both archi-
tectures help to improve the parsing performance
in most situations. And the ensemble method we
eventually choosed which incorporated the two ar-
chitectures as well as Brown clusters and utilized
two models for predicting yield the best perfor-
mance.

4.3 Effect of Transfer Parsing

To investigate the effect of transfer parsing on
cross-domain and cross-lingual data, we compare
our transferred system with the supervised system
on a subset of treebanks. Evaluation is conducted

5lindat.mff.cuni.cz/repository/xmlui/
handle/11234/1-1989

6opus.lingfil.uu.se
7https://github.com/clab/fast_align
8github.com/clab/dynet

57

Strategy ltcode
Single cs cac, bg, ja, he

cs, ru syntagrus, la ittb, fi ftb, grc proiel, es ancora, es, de, hi, ca,
Ensemble (2) en, fi, sk, ro, hr, pl, ar, eu, fa, id, ko, da, sv, cu, ur, zh, tr, got, sv lines,

lv, gl, et, el, vi, hu

no bokmaal, no nynorsk, la, la proiel, grc, pt, pt br, sl, sl sst, nl,
Cross-domain Transfer nl lassysmall, en lines, en partut, fr, fr sequoia, fr partut, it, it partut†,

gl treegal, cs cltt, ru

Cross-lingual Transfer uk, ga, ug, kk

Delexicalized Transfer bxr, kmr, sme, hsb

Table 3: Model selection strategies for all treebanks. † it partut is excluded from the final test sets. But
it’s used in our transfer parsing as a source treebank.

Settings cs de en ko
Baseline 86.79 80.08 81.87 67.21
B 87.51 80.01 82.48 68.19
T 87.43 80.01 82.24 68.29
B + T 87.67 80.24 82.73 68.34
B + T + C 87.62 81.45 83.37 70.24
Ensemble (2) 88.52 81.92 83.99 71.38

Table 4: Experiment results (LAS) on devel-
opment sets with different settings. B: Bi-
LSTM Subtraction, T: Incremental Tree-LSTM,
C: Brown cluster. Ensemble is produced with
models we eventually submitted.

on the development data or through 5-fold cross-
validation when development data is not avail-
able. Results are shown in Table 5 and 6 respec-
tively. We can see that both cross-domain and
cross-lingual transfer parsing improve over the su-
pervised systems significantly.

4.4 Results

The overall results of our end-to-end universal
parsing system on 81 test treebanks are shown in
Table 7, with comparison to the UDPipe baseline
models. We obtain substantial gains over UDPipe
on 76 out of 81 treebanks, with 3.76% improve-
ments in average LAS. It spent about 9 hours to
evaluate all of 81 test sets end-to-end and needed
up to 4GB memory on the TIRA virtual machine.

4.5 Post-Evaluation

We realized a small problem in our implementa-
tion of the word segmentation models after offi-
cial evaluation. After revision, we re-evaluated
our models on the four test treebanks: zh, vi, ja

ltcode Supervised Transfer
UAS LAS UAS LAS

cs cltt 81.23 77.80 85.38 83.08
en lines 82.30 78.44 83.65 79.75
en partut 82.66 78.72 85.97 82.08
fr sequoia 88.68 86.67 89.46 87.79
la proiel 78.77 73.18 79.67 74.46
no bokmaal 89.76 87.50 90.49 88.37
no nynorsk 88.39 85.84 89.41 87.08
nl lassysmall 86.11 82.65 87.39 84.02
pt br 91.59 89.65 91.93 90.16
Average 85.50 82.27 87.04 84.09

Table 5: Effects of cross-domain transfer parsing
on a subset of development sets.

and ja pud. The post-evaluation results are shown
in Table 8. On zh, vi and ja pud, we outperform
the rank-1 system significantly. We can see that
the performance of word segmentation is crucial
for the pipeline system.

5 Conclusion and Future Work

Our CoNLL-2017 system on end-to-end univer-
sal parsing includes three cascaded modules, to-
kenization, POS tagging and dependency pars-
ing. We develop effective neural models for each
task, with particular utilization of bidirectional
LSTM networks. Furthermore, we use transfer
parsing approaches for cross-domain and cross-
lingual adaption, that can effectively exploit re-
sources from multiple treebanks. We obtain sig-
nificant improvements against the UDPipe base-
line systems on most of the test sets, and obtain
the 4th place in the final evaluation.

58

ltcode Supervised Transfer
UAS LAS UAS LAS

uk 78.75 72.47 86.27 80.92
ga 76.66 67.08 80.83 73.44
ug 58.53 38.32 67.19 52.23
Average 71.31 59.29 78.10 68.86

Table 6: Effects of cross-lingual transfer parsing
on ug uk and ga. 5-fold cross-validation is used
for evaluation.

6 Credits

There are a few references we would like to give
proper credit, especially to data providers: the core
Universal Dependencies paper from LREC 2016
(Nivre et al., 2016), the UD version 2.0 datasets
(Nivre et al., 2017b,a), the baseline UDPipe mod-
els (Straka et al., 2016b), the baseline SyntaxNet
models (Weiss et al., 2015) and the evaluation plat-
form TIRA (Potthast et al., 2014).

Acknowledgments

This work was supported by the National Key
Basic Research Program of China via grant
2014CB340503 and the National Natural Science
Foundation of China (NSFC) via grant 61300113
and 61632011.

References
Jinho D. Choi and Andrew McCallum. 2013.

Transition-based dependency parsing with selec-
tional branching. In Proc. of ACL. pages 1052–
1062.

James Cross and Liang Huang. 2016. Incremental
parsing with minimal features using bi-directional
lstm. In Proc. of ACL. pages 32–37.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proc. of ACL and IJCNLP. pages
334–343.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of ibm model 2. In NAACL. Association for
Computational Linguistics, Atlanta, Georgia, pages
644–648.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2015. Cross-lingual depen-
dency parsing based on distributed representations.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the

7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers). pages
1234–1244.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2016. A representation learn-
ing framework for multi-source transfer parsing. In
AAAI. pages 2734–2740.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. TACL 4:313–
327.

Percy Liang. 2005. Semi-supervised learning for natu-
ral language. Master thesis, Massachusetts Institute
of Technology.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. International Conference on
Learning Representations (ICLR) Workshop .

Joakim Nivre. 2004. Incrementality in deterministic
dependency parsing. In Proc. of the Workshop on In-
cremental Parsing: Bringing Engineering and Cog-
nition Together. pages 50–57.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Lene
Antonsen, Maria Jesus Aranzabe, Masayuki Asa-
hara, Luma Ateyah, Mohammed Attia, Aitziber
Atutxa, Elena Badmaeva, Miguel Ballesteros, Esha
Banerjee, Sebastian Bank, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick, Cristina
Bosco, Gosse Bouma, Sam Bowman, Aljoscha Bur-
chardt, Marie Candito, Gauthier Caron, Gülşen
Cebirolu Eryiit, Giuseppe G. A. Celano, Savas
Cetin, Fabricio Chalub, Jinho Choi, Yongseok
Cho, Silvie Cinková, Çar Çöltekin, Miriam Con-
nor, Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Tim-
othy Dozat, Kira Droganova, Marhaba Eli, Ali
Elkahky, Tomaž Erjavec, Richárd Farkas, Hector
Fernandez Alcalde, Jennifer Foster, Cláudia Fre-
itas, Katarı́na Gajdošová, Daniel Galbraith, Mar-
cos Garcia, Filip Ginter, Iakes Goenaga, Koldo
Gojenola, Memduh Gökrmak, Yoav Goldberg,
Xavier Gómez Guinovart, Berta Gonzáles Saave-
dra, Matias Grioni, Normunds Grūzītis, Bruno Guil-
laume, Nizar Habash, Jan Hajič, Jan Hajič jr.,
Linh Hà M, Kim Harris, Dag Haug, Barbora
Hladká, Jaroslava Hlaváčová, Petter Hohle, Radu
Ion, Elena Irimia, Anders Johannsen, Fredrik
Jørgensen, Hüner Kaşkara, Hiroshi Kanayama,
Jenna Kanerva, Tolga Kayadelen, Václava Ket-
tnerová, Jesse Kirchner, Natalia Kotsyba, Si-
mon Krek, Sookyoung Kwak, Veronika Laippala,
Lorenzo Lambertino, Tatiana Lando, Phng Lê Hng,
Alessandro Lenci, Saran Lertpradit, Herman Le-
ung, Cheuk Ying Li, Josie Li, Nikola Ljubešić,
Olga Loginova, Olga Lyashevskaya, Teresa Lynn,
Vivien Macketanz, Aibek Makazhanov, Michael
Mandl, Christopher Manning, Ruli Manurung,
Cătălina Mărănduc, David Mareček, Katrin Marhei-
necke, Héctor Martı́nez Alonso, André Martins,

59

ltcode UDPipe 1.1 Ours ltcode UDPipe 1.1 Ours
UAS LAS UAS LAS UAS LAS UAS LAS

ar 71.19 65.30 74.13 69.12 hsb 61.70 53.83 66.64 59.27
ar pud 53.55 43.14 57.18 48.01 hu 71.46 64.30 74.68 66.29
bg 87.79 83.64 90.30 86.73 id 80.91 74.61 83.06 76.66
bxr‡ 46.97 31.50 46.04 27.66 it 88.03 85.28 90.05 87.77
ca 88.62 85.39 90.79 88.27 it pud 87.04 83.70 88.59 85.51
cs 86.46 82.87 89.57 86.52 ja 73.52 72.21 81.94 80.85
cs cac 86.49 82.46 87.66 83.87 ja pud 77.13 76.28 84.38 83.75
cs cltt 76.26 71.64 84.96 81.89 kk 41.92 24.51 42.11 24.76
cs pud 84.42 79.80 85.79 80.75 kmr 46.20 32.35 52.55 44.70
cu 69.68 62.76 72.19 65.80 ko 66.40 59.09 76.95 71.82
da 76.94 73.38 81.14 78.03 la 54.35 43.77 59.15 48.75
de 74.27 69.11 79.03 74.79 la ittb 80.78 76.98 84.07 81.03
de pud 73.64 66.53 77.90 71.11 la proiel 63.50 57.54 68.94 63.48
el 83.00 79.26 85.72 82.82 lv 67.14 59.95 71.91 64.97
en 78.87 75.84 82.88 79.94 nl 74.94 68.90 78.90 73.43
en lines 77.39 72.94 82.70 78.73 nl lassysmall 81.37 78.15 89.06 86.85
en partut 77.83 73.64 85.57 81.98 no bokmaal 86.14 83.27 89.09 86.90
en pud 82.74 78.95 84.97 81.86 no nynorsk 84.88 81.56 87.95 85.43
es 84.84 81.47 87.20 84.22 pl 85.08 78.78 88.18 83.75
es ancora 86.97 83.78 89.94 87.39 pt 85.77 82.11 87.75 84.90
es pud‡ 84.71 77.65 82.34 72.67 pt br 87.75 85.36 90.51 88.71
et 67.71 58.79 73.09 65.10 pt pud 80.10 73.96 81.18 72.33
eu 74.39 69.15 79.29 73.85 ro 85.50 79.88 87.30 82.21
fa 83.36 79.24 86.24 82.08 ru 79.28 74.03 84.32 80.58
fi 77.90 73.75 81.98 77.73 ru pud‡ 75.67 68.31 72.33 61.60
fi ftb 78.77 74.03 82.79 78.08 ru syntagrus 89.30 86.76 91.71 89.77
fi pud 82.24 78.65 82.76 78.99 sk 78.14 72.75 84.38 79.82
fr 84.13 80.75 86.07 82.67 sl 84.68 81.15 89.54 87.08
fr partut 81.69 77.38 88.39 84.86 sl sst 53.79 46.45 60.36 54.06
fr pud 78.62 73.63 82.55 77.51 sme 46.06 30.6 52.51 38.91
fr sequoia 82.62 79.98 87.11 85.09 sv 80.78 76.73 83.93 80.58
ga 72.08 61.52 73.48 61.62 sv lines 79.18 74.29 81.77 77.30
gl 80.66 77.31 83.31 80.23 sv pud 75.09 70.62 75.15 70.70
gl treegal 71.17 65.82 72.65 66.51 tr 60.48 53.19 64.14 56.43
got 67.13 59.81 67.61 60.52 tr pud‡ 55.01 34.53 54.17 34.15
grc 62.74 56.04 66.86 59.84 ug‡ 53.58 34.18 51.57 34.52
grc proiel 70.42 65.22 74.19 69.39 uk 69.78 60.76 71.22 63.08
he 61.54 57.23 64.30 60.07 ur 83.67 76.69 86.41 79.72
hi 90.97 86.77 93.31 89.48 vi 42.12 37.47 47.53 42.52
hi pud 63.43 50.85 67.24 54.14 zh 61.5 57.40 68.95 65.10
hr 83.20 77.18 86.58 81.30 Average 74.41 68.35 77.81 72.11

Table 7: End-to-end parsing results on all test treebanks. ‡ indicates the test sets on which UDPipe
performs better. Among the 5 sets, es pud, ru pud and tr pud are parallel test sets on which we simply
use the model trained from the source treebank. We suggest better strategies should be explored.

ltcode Ours (b/r) Ours (a/r) Rank-1
WSeg LAS WSeg LAS WSeg LAS

ja 92.95 80.85 94.70 84.37 98.59 91.13
ja pud 94.02 83.75 95.54 85.33 94.93 83.75
vi 84.70 42.52 91.40 48.98 87.30 47.51
zh 91.19 65.10 95.21 70.49 94.57 68.56

Table 8: Post-evaluation results on zh, vi, ja and
ja pud. b/r: before revision. a/r: after revision.

Jan Mašek, Yuji Matsumoto, Ryan McDonald,
Gustavo Mendonça, Anna Missilä, Verginica Mi-
titelu, Yusuke Miyao, Simonetta Montemagni,
Amir More, Laura Moreno Romero, Shunsuke
Mori, Bohdan Moskalevskyi, Kadri Muischnek,
Nina Mustafina, Kaili Müürisep, Pinkey Nain-

wani, Anna Nedoluzhko, Lng Nguyn Th, Huyn
Nguyn Th Minh, Vitaly Nikolaev, Rattima Nitisaroj,
Hanna Nurmi, Stina Ojala, Petya Osenova, Lilja
Øvrelid, Elena Pascual, Marco Passarotti, Cenel-
Augusto Perez, Guy Perrier, Slav Petrov, Jussi
Piitulainen, Emily Pitler, Barbara Plank, Martin
Popel, Lauma Pretkalnia, Prokopis Prokopidis, Ti-
ina Puolakainen, Sampo Pyysalo, Alexandre Rade-
maker, Livy Real, Siva Reddy, Georg Rehm,
Larissa Rinaldi, Laura Rituma, Rudolf Rosa, Davide
Rovati, Shadi Saleh, Manuela Sanguinetti, Baiba
Saulīte, Yanin Sawanakunanon, Sebastian Schus-
ter, Djamé Seddah, Wolfgang Seeker, Mojgan Ser-
aji, Lena Shakurova, Mo Shen, Atsuko Shimada,
Muh Shohibussirri, Natalia Silveira, Maria Simi,
Radu Simionescu, Katalin Simkó, Mária Šimková,
Kiril Simov, Aaron Smith, Antonio Stella, Jana Str-

60

nadová, Alane Suhr, Umut Sulubacak, Zsolt Szántó,
Dima Taji, Takaaki Tanaka, Trond Trosterud, Anna
Trukhina, Reut Tsarfaty, Francis Tyers, Sumire Ue-
matsu, Zdeňka Urešová, Larraitz Uria, Hans Uszko-
reit, Gertjan van Noord, Viktor Varga, Veronika
Vincze, Jonathan North Washington, Zhuoran Yu,
Zdeněk Žabokrtský, Daniel Zeman, and Hanzhi
Zhu. 2017a. Universal dependencies 2.0 CoNLL
2017 shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick,
Cristina Bosco, Gosse Bouma, Sam Bowman,
Marie Candito, Gülşen Cebirolu Eryiit, Giuseppe
G. A. Celano, Fabricio Chalub, Jinho Choi, Çar
Çöltekin, Miriam Connor, Elizabeth Davidson,
Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Tim-
othy Dozat, Kira Droganova, Puneet Dwivedi,
Marhaba Eli, Tomaž Erjavec, Richárd Farkas, Jen-
nifer Foster, Cláudia Freitas, Katarı́na Gajdošová,
Daniel Galbraith, Marcos Garcia, Filip Ginter, Iakes
Goenaga, Koldo Gojenola, Memduh Gökrmak,
Yoav Goldberg, Xavier Gómez Guinovart, Berta
Gonzáles Saavedra, Matias Grioni, Normunds
Grūzītis, Bruno Guillaume, Nizar Habash, Jan
Hajič, Linh Hà M, Dag Haug, Barbora Hladká,
Petter Hohle, Radu Ion, Elena Irimia, Anders Jo-
hannsen, Fredrik Jørgensen, Hüner Kaşkara, Hiroshi
Kanayama, Jenna Kanerva, Natalia Kotsyba, Simon
Krek, Veronika Laippala, Phng Lê Hng, Alessan-
dro Lenci, Nikola Ljubešić, Olga Lyashevskaya,
Teresa Lynn, Aibek Makazhanov, Christopher Man-
ning, Cătălina Mărănduc, David Mareček, Héctor
Martı́nez Alonso, André Martins, Jan Mašek,
Yuji Matsumoto, Ryan McDonald, Anna Mis-
silä, Verginica Mititelu, Yusuke Miyao, Simon-
etta Montemagni, Amir More, Shunsuke Mori, Bo-
hdan Moskalevskyi, Kadri Muischnek, Nina Musta-
fina, Kaili Müürisep, Lng Nguyn Th, Huyn Nguyn
Th Minh, Vitaly Nikolaev, Hanna Nurmi, Stina
Ojala, Petya Osenova, Lilja Øvrelid, Elena Pascual,
Marco Passarotti, Cenel-Augusto Perez, Guy Per-
rier, Slav Petrov, Jussi Piitulainen, Barbara Plank,
Martin Popel, Lauma Pretkalnia, Prokopis Proko-
pidis, Tiina Puolakainen, Sampo Pyysalo, Alexan-
dre Rademaker, Loganathan Ramasamy, Livy Real,
Laura Rituma, Rudolf Rosa, Shadi Saleh, Manuela
Sanguinetti, Baiba Saulīte, Sebastian Schuster,
Djamé Seddah, Wolfgang Seeker, Mojgan Ser-
aji, Lena Shakurova, Mo Shen, Dmitry Sichinava,
Natalia Silveira, Maria Simi, Radu Simionescu,
Katalin Simkó, Mária Šimková, Kiril Simov, Aaron
Smith, Alane Suhr, Umut Sulubacak, Zsolt Szántó,
Dima Taji, Takaaki Tanaka, Reut Tsarfaty, Fran-
cis Tyers, Sumire Uematsu, Larraitz Uria, Gert-
jan van Noord, Viktor Varga, Veronika Vincze,
Jonathan North Washington, Zdeněk Žabokrtský,

Amir Zeldes, Daniel Zeman, and Hanzhi Zhu.
2017b. Universal Dependencies 2.0. LIN-
DAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016). European Language Re-
sources Association, Portoro, Slovenia, pages 1659–
1666.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Milan Straka, Jan Hajic, and Jana Straková. 2016a.
Ud-pipe: Trainable pipeline for processing conll-u
files performing tokenization, morphological anal-
ysis, pos tagging and parsing. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC 2016).

Milan Straka, Jan Hajič, and Jana Straková. 2016b.
UDPipe: trainable pipeline for processing CoNLL-
U files performing tokenization, morphological
analysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

Oscar Täckström, Ryan McDonald, and Jakob Uszko-
reit. 2012. Cross-lingual word clusters for direct
transfer of linguistic structure. In NAACL. As-
sociation for Computational Linguistics, Montréal,
Canada, pages 477–487.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proc. of ACL and IJCNLP. pages 1556–
1566.

Peilu Wang, Yao Qian, Frank K. Soong, Lei He, and
Hai Zhao. 2016. Learning distributed word repre-
sentations for bidirectional lstm recurrent neural net-
work. In Proc. of HLT-NAACL.

61

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. CoRR abs/1506.06158.
http://arxiv.org/abs/1506.06158.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo.
2015. Long short-term memory over recursive
structures. In Proc. of ICML. pages 1604–1612.

62

