
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 40–51,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

IMS at the CoNLL 2017 UD Shared Task:
CRFs and Perceptrons Meet Neural Networks

Anders Björkelund∗ and Agnieszka Falenska∗ and Xiang Yu∗ and Jonas Kuhn
Institute for Natural Language Processing

University of Stuttgart
{anders,falenska,xiangyu,jonas}@ims.uni-stuttgart.de

Abstract

This paper presents the IMS contribution
to the CoNLL 2017 Shared Task. In the
preprocessing step we employed a CRF
POS/morphological tagger and a neural
tagger predicting supertags. On some lan-
guages, we also applied word segmenta-
tion with the CRF tagger and sentence seg-
mentation with a perceptron-based parser.
For parsing we took an ensemble approach
by blending multiple instances of three
parsers with very different architectures.
Our system achieved the third place over-
all and the second place for the surprise
languages.

1 Introduction

This paper presents the IMS contribution to the
CoNLL 2017 UD Shared Task (Zeman et al.,
2017). Our submission to the Shared Task (ST)
ranked third. Our overall approach relies on estab-
lished techniques for improving accuracies of de-
pendency parsers, including strong preprocessing,
supertagging and parser combination.

The task was to predict dependency trees
from raw text. To make the ST more ac-
cessible to participants, the organizers provided
baseline predictions for all preprocessing steps
(including word and sentence segmentation and
POS/morphological feature predictions) using the
baseline UDPipe system (Straka et al., 2016). We
scrutinized the baseline and considered where we
could improve over it. It turns out that, although
the UDPipe baseline is a strong one, considerable
parsing accuracy improvements can be gained by
improving the preprocessing steps. In particular,
we applied our own POS/morphology tagging us-
ing a CRF tagger and supertagging (Ouchi et al.,

∗All three authors contributed equally.

2014) with a neural tagger. Additionally, we per-
formed our own word and/or sentence segmenta-
tion on a subset of the test sets.

For the parsing step we applied an ensem-
ble approach using three different parsers, some-
times using multiple instances of the same parser:
one graph-based parser trained with the percep-
tron; one transition-based beam search parser
also trained with the perceptron; and one greedy
transition-based parser trained with neural net-
works. The parser outputs were combined through
blending (also known as reparsing; Sagae and
Lavie, 2006) using the Chu-Liu-Edmonds algo-
rithm (Chu and Liu, 1965; Edmonds, 1967).

The final test runs were carried out on the TIRA
platform (Potthast et al., 2014) where participants
were assigned a virtual machine. To ensure that
our final test run would finish on time on the VM,
we established a time budget for each treebank and
set a goal that a full test run should finish within
24 hours. Thus we applied a combination search
under a time constraint to limit the maximal num-
ber of instances of the individual parsers.

An interesting aspect of the ST was the intro-
duction of four surprise languages. These lan-
guages were only announced one week before the
test phase at which point the participants were pro-
vided with roughly 20 gold standard sentences for
each language. Unfortunately, among the allowed
external resources the amount of parallel data for
the surprise languages was rather limited. This
prevented us from using cross-lingual techniques
or multilingual word vectors. We therefore re-
sorted to blending models trained on the small
samples as well as delexicalized models trained on
other source languages.

Another challenge of the ST were 14 parallel
new test domains for the known languages. Since
the UD annotation scheme is applied on all of the
treebanks, this suggests that the training data of

40



the same language from different domains could
be combined. We made several experiments in this
direction and trained models on merged treebanks
for most of the parallel test sets (Section 7).

The remainder of this paper is organized as fol-
lows. Section 2 discusses our preprocessing steps,
including word and sentence segmentation, POS
and morphological tagging, and supertagging. In
Section 3 we describe the three baseline parsers,
while blending is reviewed in Section 4. In Sec-
tion 5 we go through our pipeline and show re-
sults on the development data. Sections 6 and 7
describe our approaches to the surprise languages
and parallel test sets, respectively. Our official test
set results are shown in Section 8 and Section 9
concludes.

2 Preprocessing

For most data sets word and sentence segmenta-
tion plays a minimal role, as it is delivered al-
most for free by means of whitespaces, sentence-
final punctuation and capital letters. Therefore
our overall architecture applies word/sentence seg-
mentation pipeline only on treebanks for which
this task is non-trivial (see Figure 1). These test
sets can roughly be grouped into two categories:
Languages where tokenization is challenging, e.g.,
Chinese and Japanese, but also languages such as
Arabic and Hebrew, where many orthographic to-
kens are segmented into smaller syntactic words
with transformations. The second category com-
prises the treebanks where the detection of sen-
tence boundaries is difficult, mostly classical texts.

2.1 Word Segmentation

We applied our own word segmentation on six lan-
guages: Arabic, French, Hebrew, Japanese, Viet-
namese, and Chinese. We selected them by ana-
lyzing the UDPipe baseline and picking out cases
where we potentially could surpass it.

For Arabic, French and Hebrew, the difficulty
lies in splitting orthographic words (i.e., multi-
word tokens) into several syntactic words (e.g., cl-
itics). Additionally the orthographic words are of-
ten not the simple concatenation of their compo-
nents. For example in French, the multiword to-
ken des would be split into two syntactic words de
and les. We cast this problem as classification by
predicting the Levenshtein edit script to transform
a multiword token into its components.

Concretely with the French example, we take

the multiword token des as input, and predict
de&les, where & is an artificial delimiter to split
the token. To reduce the tag set, we used the
Levenshtein edit script “=2+&le=1” instead of
de&les as the target class, which means keeping
the first 2 characters, adding “&le”, then keep-
ing 1 character, so that des can be transformed
into de&les (thus split into de and les). Using edit
scripts reduced the tag set size from about 12,000
to 1,000 for Arabic and from 14,000 to 600 for
Hebrew.

For Japanese, Vietnamese and Chinese, we sim-
ply applied a standard chunking method: for each
character (or phoneme in Vietnamese), we pre-
dicted the chunk boundary, jointly with the POS
tag of the word.

In both cases, we used the state-of-the-art mor-
phological CRF tagger1 MarMoT (Müller et al.,
2013) to predict the tags (edit scripts or chunk
boundaries). We used second order models for
Arabic, French and Hebrew, and third order mod-
els for Japanese, Vietnamese and Chinese.

2.2 Sentence boundary detection

We applied our own sentence segmentation on
nine languages (see Figure 1). For some of
them, like Gothic or Latin PROIEL, typical or-
thographic features (e.g., punctuation or capital-
ization) that indicate sentence boundaries are not
present and UDPipe was achieving extremely low
scores (23.51 and 19.76 F1 respectively). The oth-
ers were selected empirically by tests on the devel-
opment data.

We employed a beam-search transition-based
parser extended to predict sentence boundaries
(Björkelund et al., 2016). This parser (referred to
as TPSeg) is an extension of our transition-based
parser (see Section 3.2) using the perceptron and
is trained using DLASO updates (Björkelund and
Kuhn, 2014; Björkelund et al., 2016). It marks
sentence boundaries with an additional transition.
For this parser the input is not just a pre-tokenized
sentence, but a pre-tokenized document. As docu-
ments during test-time we used paragraphs from
the raw input text, assuming that no sentence
would span across a paragraph break.

A training instance for the parser is a document
(rather than a sentence). Some treebanks have
the entire training set represented as a single para-
graph (document). Initial experiments showed that

1http://cistern.cis.lmu.de/marmot/

41



UDPipe

Words, Sentences

CRF UDPipe

Words Sentences

UDPipe TPSeg

Words Sentences

CRF TPSeg

Words Sentences

UDPipe

UPOS, Feats

CRF TagNN
UPOS, STags

Feats

surprise
default

langs1

langs2

langs3

P
R
E
P
R
O
C
E
S
S
E
D

GP

TP

TN

Blend-Opt OUT

Preprocessing Parsing

Figure 1: System architecture, where langs1: he, ja, fr, fr sequoia, fr partut, fr pud, vi, zh; langs2: cu,
en, et, got, grc proiel, la, la ittb, la proiel, nl lassysmall, sl sst; langs3: ar, ar pud.

training the parser on a single document took con-
siderable time and also did not perform very well.
Instead, we created artificial documents for train-
ing by taking chunks of 10 sentences from the
training set and treating them as documents (irre-
spective of whether they went across paragraphs).

We trained the parser using gold word segmen-
tation and POS/morphology information. At test
time we relied on UDPipe predictions in most
cases. However, for Arabic, the only language
where we did both word and sentence segmenta-
tion, we applied our own POS/morphology tag-
ger since the word segmentation had changed.
Additionally, we applied our tagger on Old
Church Slavonic, Estonian, Gothic, Ancient Greek
PROIEL and Dutch LassySmall since we found
that this lead to better sentence segmentation re-
sults on the development sets.

2.3 Part-of-Speech and Morphological
Tagging

We used MarMoT to jointly predict POS tags and
morphological features. We annotated the training
sets via 5-fold jackknifing. All parsers for all lan-
guages except the surprise ones were trained on
jackknifed features. We did not use XPOS tags
and lemmas. We used MarMoT with default hy-
perparameters.

2.4 Supertags

Supertags (Joshi and Bangalore, 1994) are labels
for tokens which encode syntactic information,
e.g., the head direction or the subcategorization
frame. Supertagging has recently been proposed
to provide syntactic information to the feature
model of statistical dependency parsers (Ambati
et al. (2013; 2014), Ouchi et al. (2014)).

We follow the definition of supertagging from
Ouchi et al. (2014) and extract supertag tag sets
from the treebanks. We use their Model 1 to de-
sign our supertags. That is, we encode the depen-
dency relation (label), the relative head direction
(hdir) and the presence of left and right depen-
dents (hasLdep, hasRdep) and follow the template
label/hdir+hasLdep hasRdep.

We used an in-house neural-based tagger
(TAGNN) to predict the supertags (Yu et al.,
2017). It takes the context of a word within a win-
dow size of 15. The input word representations
are concatenations of three components: output of
a character-based Convolutional Neural Network
(CNN), pretrained word embeddings provided by
the ST organizers, and a binary code indicating
the target word. The word representations of the
whole context-window are then fed into another
CNN to predict the supertag of the target word.
We used TAGNN instead of CRF for supertagging,
since it performed considerably better in the pre-
liminary experiments.

3 Baseline parsers

Surdeanu and Manning (2010) show that com-
bining a set of parsers with a simple voting
scheme can improve parsing performance. Mar-
tins et al. (2013) demonstrate that self-application,
i.e., stacking a parser on its own output, only leads
to minuscule improvements.2 Therefore to profit
from combining components one of the most sig-
nificant factor is their diversity. Thus we experi-
mented with three parsers with quite different ar-

2In fact, even supertagging can be regarded as a form of
stacking. Also in this case, the key ingredient is that the
suppertagger is architecturally sufficiently different from the
parser (Faleńska et al., 2015).

42



chitectures and additionally varied their settings.

3.1 Graph-based perceptron parser
As the graph-based parser we used mate3 (Bohnet,
2010), henceforth referred to as GP. This is
a state-of-the-art graph- and perceptron-based
parser. The parser uses the Carreras (2007) ex-
tension of the Eisner (1997) decoding algorithm
to build a projective parse tree. It then ap-
plies the non-projective approximation algorithm
of McDonald and Pereira (2006) to recover non-
projective dependencies. We train the parser using
the default number of training epochs (10).

We modified the publicly available sources of
this parser in two ways. First, we extended the
feature set with features based on the supertags
following Faleńska et al. (2015). Second, we
changed the perceptron implementation to shuf-
fle the training instances between epochs.4 Shuf-
fling enables us to obtain different instances of the
parser trained with different random seeds, which
are used in the blending step.

Since the time complexity of the Carreras
(2007) decoder is quite high (O(n4)) this parser
required a considerable amount of time to parse
long sentences. Therefore, while applying this
parser in the blending scenario, we skipped all sen-
tences longer than 50 tokens.5 We additionally
made sure that for each treebank we had at least
one parser that was not GP, so that all sentences
would be parsed.

3.2 Transition-based beam-perceptron
parser

We apply an in-house transition-based beam
search parser trained with the perceptron
(Björkelund and Nivre, 2015), henceforth referred
to as TP.6 We have previously extended this
parser to accommodate features from supertags
(Faleńska et al., 2015). It uses the ArcStandard
system extended with a Swap transition (Nivre,
2009) and is trained using the improved oracle by
Nivre et al. (2009).

The parser is trained with a globally optimized
structured perceptron (Zhang and Clark, 2008) us-
ing max-violation updates (Huang et al., 2012).

3http://code.google.com/p/mate-tools
4The publicly available version does not shuffle.
5For the baseline results on the development sets (Tables 3

and 4), the parser was applied to all sentences.
6This parser as well as the variant that we applied for sen-

tence segmentation (TPSeg) is available on the first author’s
website.

We use the default settings for beam size (20)
and number of training epochs (also 20). Simi-
larly to GP, we employ different seeds for the ran-
dom number generator used during shuffling of the
training instances in order to obtain multiple dif-
ferent models.

3.3 Transition-based greedy neural parser

We use an in-house transition-based greedy parser
with neural networks (Yu and Vu, 2017), hence-
forth referred to as TN.7

The parser uses a CNN to compose word rep-
resentations from characters, it also takes the em-
beddings of word forms, universal POS tags and
supertags and concatenates all of them as input
features. The input is then fed into two hidden lay-
ers with ReLU non-linearity, and finally predicts
the transition with a softmax layer. The parser uses
the same Swap transition system and oracle as TP.
We use the default hyperparameters during train-
ing and testing.

During training the parser additionally pre-
dicts the supertag of the top token in the stack
and includes the tagging cross-entropy into the
cost function. This approach is similar to stack-
propagation (Zhang and Weiss, 2016), where the
tagging task is only used as a regularizer.

4 Blending

To enhance the performance of the baseline single
parsers we combined them using blending (Sagae
and Lavie, 2006). We trained multiple instances of
each baseline parser using different random seeds.
We parsed every sentence and assigned scores to
arcs depending on how frequent they were in the
predicted trees. We used the Chu-Liu-Edmonds
algorithm to decode the maximum spanning tree
from the resultant graph. This way we obtained
the majority decision of the parser instances under
the tree constraint.

As a baseline for blending (BLEND-BL), we
took four instances from each of the baseline
parsers: The four GP instances were trained with
different random seeds. The four TP instances
further split into two groups: two parse from
left to right (TP-l2r) and two parse from right
to left (TP-r2l). The four TN instances differ
not only in the parsing direction, but also in the
word embeddings, two use pretrained embeddings

7This parser as well as the neural tagger used for supertag-
ging (TAGNN) is available on the third author’s website.

43



from the organizers (TN-l2r-vec, TN-r2l-vec) and
two use randomly initialized embeddings (TN-l2r-
rand, TN-r2l-rand).

The 4+4+4 combination was rather arbitrary
and simply based on the intuition that different
parsers should be equally represented and as di-
verse as possible. However, this might not be
the optimal combination since different parsers are
better at different treebanks. Also, given the rel-
atively limited computing resources on the VM,
we needed to optimize the number of blended in-
stances in terms of speed.

We thus applied a combination search under a
time constraint. First we measured time needed by
each parser to parse every development treebank
on the VM as an estimation of time usage for the
test run. We then defined a time budget of 1,000
seconds for each treebank, and checked all combi-
nations of the parsers on the development set un-
der the time budget. We took the combinations
from a pool of 24 individual instances, divided
into seven groups: 8×GP; 4×TP-l2r; 4×TP-r2l;
2×TN-l2r-rand; 2×TN-l2r-vec; 2×TN-r2l-rand;
2×TN-r2l-vec.

Note that enumerating all combinations of indi-
vidual instances is not feasible (224 combinations).
Thus we applied a two-step heuristic search. First
we searched for the optimal number of instances
from the 7 groups, by drawing samples from the
pool of instances with only different random seed
(at most 9× 5× 5× 3× 3× 3× 3 = 18, 225 pos-
sibilities). Once the optimal numbers of instances
were found, we then searched exhaustively for the
optimal instances (BLEND-OPT).

5 Evaluation

In this section we evaluate the aforementioned
methods on the 55 treebanks for which develop-
ment data was available.

5.1 Word and sentence segmentation

As discussed in Section 2, we applied our own
word and/or sentence segmentation to a subset of
languages. The corresponding results on the de-
velopment sets are shown in Tables 1 and 2.

For word tokenization both our methods (pre-
dicting edit script and tagging with chunk bound-
aries) outperform the UDPipe baseline by 2.64 F1-
score points on average. The biggest gains are
achieved for Hebrew (4.57 points) and Vietnamese
(4.67 points).

Using the TPSeg parser to predict sentence
boundaries results in an average improvement of
9.32 points on sentence segmentation F1-score
over the UDPipe baseline. Especially the diffi-
cult data sets that do not use orthographic features
to indicate sentence boundaries improve by a big
margin, for example Latin PROIEL by 18.76 and
Gothic by 15.73.

Most importantly, the improvements in word
and sentence segmentation F1-score roughly
translate into LAS improvements with a 1:1 and
a 5:1 ratio, respectively.

UDPipe CRF ∆ LAS

ar 93.86 95.53 2.04
fr 99.18 99.66 0.60
fr sequoia 98.65 99.35 0.90
he 88.15 92.72 4.82
ja 89.53 92.10 5.08
vi 83.99 88.66 5.57
zh 88.95 92.76 5.47

average 91.76 94.40 3.50

Table 1: F1 scores for word segmentation and
gains in LAS for TP.

UDPipe TPSeg ∆ LAS

ar 77.99 94.01 0.83
cu 37.09 48.03 3.16
en 76.35 78.69 0.66
et 84.91 86.40 0.54
got 23.51 39.24 4.01
grc proiel 41.95 54.38 1.91
la ittb 77.38 80.55 0.47
la proiel 19.76 38.52 4.00
nl lassysmall 79.31 82.35 0.82

average 57.58 66.91 1.82

Table 2: F1 score for sentence segmentation and
gains in LAS for TP.

5.2 Preprocessing and Supertags
To see the improvements stemming from our pre-
processing steps we run the baseline parsers in
four incremental settings: (1) using only the UD-
Pipe baseline predictions, (2) replacing POS and
morphological features with CRF predictions, (3)
adding supertags, and (4) applying our own word
and sentence segmentation. Table 3 shows the
average LAS for each parser across the 55 de-
velopment sets for the consecutive experiments.
For each set of experiments the parsers were
trained on corresponding jackknifed annotations
for POS, morphology, and supertags. Gold word

44



and sentence segmentation was used while train-
ing parsers in all settings.

The table shows that replacing the POS and
morphological tagging with the CRF instead of
baseline UDPipe predictions improves the parsers
by 0.66 on average.8 The introduction of supertags
brings an additional 0.88 points which demon-
strates that supertags are a useful source of syn-
tactic features for dependency parsers, irrespec-
tive of architecture. Replacing the word and sen-
tence segmentation from UDPipe with our own
improves on average by 0.74 points. It is worth
noting that this improvement stems only from the
15 treebanks where we applied our own segmen-
tation, although the averages in Table 3 are com-
puted across all 55 treebanks.

UDPipe CRF +STags +segm.

GP 75.46 76.01 +1.12 +0.74
TP (l2r) 74.69 75.49 +0.97 +0.78
TN (l2r-vec) 74.95 75.58 +0.54 +0.71

average 75.03 75.69 +0.88 +0.74

Table 3: Average (across 55 treebanks) gains in
parsing accuracies (LAS) for incremental changes
to UDPipe preprocessing baseline.

5.3 Development Results

Our overall results on the development sets are
shown in Table 4. The table shows the perfor-
mance of the preprocessing steps, the individual
baseline parsers, and the results of the two blends.
The 15 treebanks where we applied our own word
and/or sentence segmentation are marked explic-
itly in the table, for the other cases we used the
UDPipe baseline.

The three single baseline parsers achieved sim-
ilar average performances. Each one of them per-
formed the highest on some of the treebanks, but
not on all. It is worth noting that the strongest
baseline parser, GP, is perceptron-based rather
than a neural model. That is not to say that per-
ceptrons generally are stronger than neural mod-
els (our neural TN parser is a greedy parser, and
other participants in the Shared Task present con-
siderably stronger neural models), however it in-
dicates that perceptrons are not miles behind the
more recent neural-based parsers.

Blending parsers yield a strong boost over the

8The actual improvements on the POS and morphological
tagging tasks amount to 0.68 and 1.17, respectively.

baselines. BLEND-BL improves roughly 2-3
points depending on the choice of baseline. By
searching for optimal combinations under the time
budget, this can be further improved by 0.49 on
average (BLEND-OPT). The search reduced the
number of models from 660 to 438. In particular,
there were 221 instances of GP, 79 of TP, and 138
of TN.

6 Surprise languages

The implementation of the surprise languages in
the Shared Task was done in a rather peculiar
way with respect to preprocessing. The test sets
were annotated by the organizers through cross-
validation. That is, the test sets were provided
with predicted (by UDPipe) POS and morpholog-
ical tags. Participants were provided with a small
sample (about 20 sentences) for each surprise lan-
guage, however only with gold standard prepro-
cessing. This meant that it was difficult to use the
samples for tuning/development since we would
either have to use gold standard preprocessing, or
apply cross-validation on the samples ourselves
which most likely would have resulted in consider-
ably worse preprocessing than that which was de-
livered for the test sets. We chose to consistently
use gold preprocessing for all development exper-
iments on the surprise languages.

A straightforward approach to the surprise lan-
guages is to use delexicalized parser transfer (Ze-
man and Resnik, 2008). The idea is to train
a parser on a source treebank using only non-
lexical features (in our case universal POS tags
and morphological features) and apply it on sen-
tences from the target language. We followed
Rosa and Zabokrtský (2015) and performed multi-
source delexicalized transfer by blending together
models trained on several languages. Contrary to
them, we treat the source languages equally and
blend them with the same weight.

We trained delexicalized TP and GP parsers for
40 source languages (we took the 40 biggest tree-
banks, excluding the domain specific ones). We
refrained from training TN since the main moti-
vation of this parser is that it operates on charac-
ters. Therefore, using it in the delexicalized setting
does not make sense.

To narrow down the number of possible source
language parsers, we used TP to select the best six
source languages for each surprise language using
the sample data. We then searched for the optimal

45



Preprocessing (F1) Baseline parsers (LAS) Blending (LAS)

Words Sentences UPOS Feats GP TP TN BLEND-BL BLEND-OPT

ar⊗� 95.53 94.01 90.73 86.40 70.88 70.54 71.35 72.59 72.99
bg 99.84 92.41 97.88 96.22 84.81 84.65 83.35 85.93 86.09
ca 99.96 98.77 98.16 97.50 87.04 86.75 85.11 87.59 87.90
cs 99.96 92.41 98.68 93.65 87.36 86.75 83.74 87.42 87.45
cs cac 100.00 99.09 99.07 91.01 87.37 86.52 85.41 87.56 88.17
cs cltt 98.65 74.11 90.30 79.69 73.01 72.83 73.94 76.84 77.30
cu� 100.00 48.03 94.92 89.26 73.35 72.45 73.02 75.27 75.86
da 99.68 84.36 95.22 94.59 78.01 76.98 74.59 79.63 80.01
de 99.91 92.25 92.95 84.72 78.72 77.83 75.10 80.02 80.54
el 99.87 88.67 95.77 91.03 81.53 80.78 80.06 83.45 84.16
en� 98.69 78.69 93.09 94.03 78.37 77.27 76.93 79.11 79.41
en lines 99.93 87.36 94.92 99.93 76.51 76.23 76.41 78.59 79.35
en partut 99.46 97.62 94.23 93.35 76.58 76.15 77.35 79.41 80.12
es 99.80 98.07 96.12 96.97 84.91 84.25 83.00 85.08 85.25
es ancora 99.94 96.33 98.10 97.57 86.66 86.18 85.16 87.07 87.30
et� 99.79 86.40 89.20 84.13 63.56 62.15 63.87 66.49 67.76
eu 99.99 99.00 94.14 89.83 74.99 73.73 74.47 76.96 77.59
fa 99.69 97.14 96.16 96.24 82.86 82.43 81.97 84.21 84.42
fi 99.69 86.47 95.49 93.01 80.08 78.99 78.34 81.71 82.13
fi ftb 99.93 82.52 92.85 93.15 79.97 79.03 80.35 81.17 82.02
fr⊗ 99.66 97.09 96.90 96.78 87.24 86.93 86.25 87.76 87.92
fr sequoia⊗ 99.35 90.20 96.58 95.68 84.30 83.42 83.01 85.54 86.17
gl 99.93 98.04 96.80 99.80 80.33 79.31 78.89 81.74 81.87
got� 100.00 39.24 94.75 87.90 68.29 67.59 67.35 70.65 71.01
grc 99.98 99.17 88.34 89.58 65.77 64.06 64.28 68.14 69.09
grc proiel� 100.00 54.38 96.64 90.57 75.07 74.29 73.98 77.30 77.80
he⊗ 92.72 98.57 89.24 87.21 68.89 68.75 68.31 70.94 71.02
hi 100.00 98.46 96.12 90.89 88.92 88.83 89.73 90.09 90.45
hr 99.98 97.23 96.70 87.57 80.54 79.91 79.15 82.41 82.99
hu 99.91 94.55 93.84 72.72 72.06 72.00 70.84 76.13 76.50
id 99.99 90.83 93.33 99.56 75.26 74.80 73.68 77.38 77.43
it 99.70 93.20 97.14 97.31 85.70 84.80 84.48 86.35 86.77
ja⊗ 92.10 99.71 89.82 92.08 78.52 78.66 79.58 79.71 80.04
ko 99.45 91.10 93.10 99.17 70.47 71.13 74.37 74.03 76.41
la ittb� 99.88 80.55 96.79 92.41 76.10 75.40 75.67 78.21 79.16
la proiel� 99.99 38.52 95.83 89.46 68.99 67.05 67.82 71.45 71.99
lv 98.91 96.48 91.29 85.40 67.08 65.03 65.31 69.19 70.25
nl 99.87 92.11 94.38 92.92 79.04 78.29 76.36 80.18 80.72
nl lassysmall� 99.90 82.35 96.01 95.74 79.03 77.85 76.27 80.41 80.98
no bokmaal 99.89 96.91 97.55 96.36 86.17 85.90 84.89 86.79 87.01
no nynorsk 99.92 93.05 97.05 96.01 84.56 84.19 83.55 85.36 85.50
pl 99.87 99.56 96.12 85.71 84.67 83.78 83.66 85.89 86.89
pt 99.74 89.27 96.86 95.05 86.04 85.71 84.53 87.20 87.56
pt br 99.83 96.65 97.39 99.71 86.99 86.49 86.33 87.88 87.87
ro 99.55 95.16 96.68 96.13 82.05 81.61 80.12 83.19 83.37
ru 99.92 96.18 95.44 87.50 80.22 79.60 78.89 81.89 82.37
ru syntagrus 99.68 97.67 98.15 94.40 89.10 88.45 86.79 89.37 89.19
sk 100.00 77.85 95.04 80.13 78.49 77.92 76.71 80.10 80.70
sl 99.94 99.59 97.13 90.54 85.92 84.33 82.42 87.05 87.40
sv 99.77 95.59 95.52 94.80 77.11 76.34 75.28 79.18 79.96
sv lines 99.97 87.28 94.50 99.97 76.10 75.65 75.93 78.00 78.80
tr 97.88 96.98 91.35 86.17 58.05 58.07 57.04 61.42 62.16
ur 99.99 98.37 93.46 80.24 79.02 78.45 79.78 80.70 80.96
vi⊗ 88.66 96.28 80.64 88.56 47.01 47.62 47.76 49.66 49.77
zh⊗ 92.76 97.60 86.23 91.57 62.93 63.28 63.37 66.17 66.80

average 99.07 89.45 94.56 91.78 77.87 77.24 76.83 79.52 80.01

Table 4: Development results. The treebanks for which we did our own word and/or sentence segmen-
tation are marked with ⊗ and � respectively. The TP and TN models correspond to TP-l2r TN-l2r-vec,
respectively.

46



combination (across both parsers) where, instead
of a time budget, we arbitrarily set the maximum
number of parsers to eight.

smelex 51.02
fidelex 51.02
no bokmaaldelex 47.62
etdelex 47.62

BLEND-OPT 60.54

(a) Target language: sme

kmrlex 48.76
fadelex 42.15
eldelex 33.88
ukdelex 29.75

BLEND-OPT 44.63

(b) Target language: kmr

hsblex 65.00
csdelex 78.04
sldelex 76.74
skdelex 75.43

BLEND-OPT 78.70

(c) Target language: hsb

bxrlex 41.83
eudelex 37.25
urdelex 35.95
hidelex 35.29

BLEND-OPT 44.44

(d) Target language: bxr

Table 5: Parsing accuracy (LAS) for surprise lan-
guages: the three best delexicalized TP-l2r parsers
and lexicalized parser obtained by leave-one-out
jackknifing.

In addition to the delexicalized models, we also
trained lexicalized TP and GP models9 on the
sample data and applied leave-one-out jackknif-
ing.10 A comparison between the three best delex-
icalized TP models and the lexicalized TP parser
is shown in Table 5. Only for Upper Sorbian
were transferred models able to surpass the model
trained on the very small training data. Interest-
ingly, the blended models were much better than
any of the models for all languages except Kur-
manji. Therefore we decided not to use any of
the delexicalized models for this language. For the
other three surprise languages we used ultimately
blended eight delexicalized (selected as described
above) and eight lexicalized models, the intuition
being that this would give equal weight to lexical-
ized and delexicalized models.

7 Parallel datasets

For the 14 additional parallel datasets (PUD) we
used parsers trained on their corresponding lan-
guages. For several languages there were more
than one treebank in the training data for the cor-
responding PUD test set. This begs the question as
to whether the models used for the PUD test sets

9We did not train lexicalized TN models since it had prob-
lems with exploding gradients and convergence due to the
small size of the sample data.

10That is, for a sample set of 20 sentences this boils down
to 20-fold cross-validation.

should be trained only on the primary treebank,
or on the combination of all training sets corre-
sponding to that language. For the main treebanks,
initial experiments indicated that this was a bad
idea and parsers performed better when training
sets were not combined. However, for the PUD
test sets we had no information on the annotation
scheme nor the domain, which made it difficult to
decide whether to use only the primary training set
or all available.

For each language with multiple training sets,
we trained one parser on each training set as well
as on their concatenation. We applied these mod-
els on the development sets and created a confu-
sion matrix. Without prior knowledge about the
PUD treebanks, we estimated the expected LAS
as the average LAS of the development sets and
chose the model that maximizes the estimation.

Table 6 shows such a confusion matrix for
Swedish using the TN parser. The expected LAS
for PUD (right-most column) is highest when
trained on the concatenation of the two treebanks.
This observation held for all the languages with
multiple treebanks that we tested and we there-
fore used models trained on the concatenation of
all training data with two exceptions: For Czech
time prevented us from training models and creat-
ing a confusion matrix and we only used models
trained on the primary treebank. For Finish FTB
the README distributed with the treebank states
that this treebank is a conversion that tries to ap-
proximate the primary Finish treebank. This sug-
gests that it does not entirely conform to the Finish
UD standard. We assumed that the Finish PUD
test set would be closer to the primary treebank
and therefore chose to use only the model trained
on the primary treebank.

sv sv lines exp. sv pud

sv 75.28 63.54 69.41
sv lines 67.78 75.93 71.86

sv concat 75.31 75.23 75.27

Table 6: Confusion matrix for Swedish with ex-
pected LAS on Swedish PUD.

8 Test Set results

Our final results on the test sets are shown in Ta-
ble 7. Overall we ranked third in the Shared Task
with a macro-average LAS of 74.42 behind two
teams: Stanford and Cornell. Both of them used

47



state-of-the-art neural-based parsers (Zeman et al.,
2017).

Our efforts to improve the preprocessing scores
paid off. On most of the languages where we ap-
plied our word and/or sentence segmentation we
achieved the best parsing results. On the sec-
ondary evaluation metrics we ranked first for word
segmentation and sentence segmentation, second
for POS tagging, and first for morphological tag-
ging. Additionally we were second on parsing the
surprise languages.

As it turns out, all PUD treebanks were presum-
ably annotated following the guidelines of the pri-
mary treebanks. This most likely lowered our re-
sults a little bit for some of the PUD treebanks.
However, for Russian PUD our results are abnor-
mally low compared to many other participants.
We scored about 13 points behind the top result,
in comparison to an average distance of less than
2 points. This is most likely an artifact of how
the non-primary (SynTagRus) Russian treebank is
considerably larger than the primary Russian tree-
bank, which means that a parser trained on the
concatenation is mostly dominated by the SynTa-
gRus annotation style and domains.

9 Conclusion

We have presented the IMS contribution to the
CoNLL 2017 UD Shared Task. We have shown
that tuning the preprocessing methods is a way
to achieve competitive parsing performance. We
made use of a CRF tagger for POS and morpho-
logical features and very strong word and sentence
segmentation tools.

None of our baseline parsers alone would rank
third. We therefore used blending to combine
them. In general, we can confirm the observation
of Surdeanu and Manning (2010) that the diversity
of parsers is important. Additionally, we observed
that both the diversity of parser architectures and
number of instances of the same parser can im-
prove performance. Furthermore, our automatized
combination search method could be seen as a
case of a “sparsely” weighted voting scheme.

We confirmed two of our previous findings on
a larger scale. (1) Syntactic information can help
sentence segmentation (Björkelund et al., 2016).
(2) Supertags improve parsing performance across
all languages (Faleńska et al., 2015).

For the surprise languages we blended delexi-
calized models from other languages with lexical-

ized models trained on the small in-language sam-
ple data. This approach seems to have been ro-
bust and rendered us second rank for surprise lan-
guages. However, further analysis would be re-
quired in order to understand whether the lexical-
ized or delexicalized models in general fare better
in this setting.

As for the PUD treebanks we found that, al-
though the UD annotation scheme should be con-
sistent across treebanks, combining training sets
for one language is not useful for parsing the PUD
test sets. Whether this depends on annotation
idiosyncrasies or domain differences is an open
question and deserves further attention.

Acknowledgments

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) via the SFB 732,
project D8. We express our gratitude to the orga-
nizers of the Shared Task (Zeman et al., 2017), the
treebank providers (Nivre et al., 2017) and base-
line system authors (Straka et al., 2016). We also
thank our colleagues Özlem Çetinoğlu and Kyle
Richardson for the contribution of ideas.

References
Bharat Ram Ambati, Tejaswini Deoskar, and Mark

Steedman. 2013. Using CCG categories to im-
prove Hindi dependency parsing. In Proceed-
ings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume
2: Short Papers). Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 604–609.
http://www.aclweb.org/anthology/P13-2107.

Bharat Ram Ambati, Tejaswini Deoskar, and
Mark Steedman. 2014. Improving Depen-
dency Parsers using Combinatory Categorial
Grammar. In Proceedings of the 14th Confer-
ence of the European Chapter of the Association
for Computational Linguistics, volume 2: Short
Papers. Association for Computational Lin-
guistics, Gothenburg, Sweden, pages 159–163.
http://www.aclweb.org/anthology/E14-4031.

Anders Björkelund, Agnieszka Faleńska, Wolfgang
Seeker, and Jonas Kuhn. 2016. How to train de-
pendency parsers with inexact search for joint sen-
tence boundary detection and parsing of entire doc-
uments. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Berlin, Germany, pages 1924–
1934. http://www.aclweb.org/anthology/P16-1181.

Anders Björkelund and Jonas Kuhn. 2014. Learn-
ing structured perceptrons for coreference resolu-

48



Words Sent. UPOS Feats LAS Rank

ar⊗� 95.53 77.71 90.62 87.15 72.90 1
bg 99.91 92.83 97.95 96.47 87.65 3
ca 99.97 98.95 97.97 97.16 87.74 4
cs 99.90 92.03 98.44 93.14 86.39 5
cs cac 99.99 100.0 98.76 90.72 86.99 3
cs cltt 99.35 95.06 96.79 87.88 80.67 4
cu� 99.96 50.44 94.94 88.90 76.84 1
da 99.69 79.36 95.27 94.83 79.52 3
de 99.65 79.11 92.24 83.11 75.47 3
el 99.88 90.79 96.53 91.37 84.96 3
en� 98.67 74.72 93.29 94.40 78.71 5
en lines 99.94 85.84 95.08 99.94 78.25 4
en partut 99.49 97.51 93.32 92.69 79.37 5
es 99.69 94.15 95.53 96.34 83.15 9
es ancora 99.95 97.05 98.19 97.72 87.12 5
et� 99.77 85.21 89.50 84.62 67.60 3
eu 99.96 99.58 94.01 89.57 77.97 3
fa 99.64 98.00 96.21 96.34 83.34 3
fi 99.63 84.56 95.15 92.43 81.21 3
fi ftb 99.88 83.83 92.80 93.43 81.33 3
fr⊗ 99.46 93.59 96.22 96.12 83.82 3
fr sequoia⊗ 99.49 83.75 96.61 96.10 85.40 4
gl 99.92 96.15 96.87 99.75 81.60 3
got� 100.0 41.65 95.03 88.36 71.36 1
grc 99.95 98.43 87.59 88.00 68.23 2
grc proiel� 100.0 51.38 96.48 90.24 75.28 1
he⊗ 91.37 99.39 87.34 85.06 68.16 1
hi 100.0 99.20 96.28 91.03 90.41 2
hr 99.93 96.92 96.48 85.82 82.51 3
hu 99.82 93.85 92.63 72.61 73.55 3
id 99.99 91.15 93.42 99.45 77.70 3
it 99.73 97.10 97.43 97.37 87.85 3
ja⊗ 91.68 94.92 89.07 91.66 78.21 5
ko 99.73 93.05 93.74 99.34 79.51 3
la ittb� 99.99 93.37 97.41 94.27 84.09 2
la proiel� 100.0 40.63 95.63 89.22 71.55 1
lv 98.91 98.59 89.72 84.14 68.03 3
nl 99.88 77.14 91.38 90.04 75.07 3
nl lassysmall� 99.93 84.59 97.61 97.55 86.86 2
no bokmaal 99.75 95.76 97.12 95.56 85.98 5
no nynorsk 99.85 91.23 96.80 95.25 85.05 4
pl 99.88 98.91 96.35 86.53 86.75 3
pt 99.52 89.79 96.58 94.62 85.11 2
pt br 99.84 96.84 97.36 99.73 87.10 7
ro 99.64 93.42 96.86 96.24 83.50 3
ru 99.91 96.42 95.45 87.27 81.49 3
ru syntagrus 99.57 97.81 98.18 94.55 89.80 3
sk 100.0 83.53 94.60 81.23 80.53 3
sl 99.96 99.24 96.90 90.08 85.86 4
sv 99.84 96.37 96.10 95.15 82.28 3
sv lines 99.98 86.44 94.40 99.98 78.88 3
tr 97.89 96.63 91.54 86.82 62.39 3
ur 100.0 98.32 92.98 81.03 80.93 3
vi⊗ 86.67 92.59 77.88 86.33 47.51 1
zh⊗ 92.81 98.19 86.33 91.71 68.56 1

average 99.01 88.96 94.45 91.75 79.60 3

(a) Big treebanks.

Words Sent. UPOS Feats LAS Rank

bxr 99.35 91.81 84.12 81.65 32.24 1
hsb 99.84 90.69 90.30 74.20 61.67 2
kmr 98.85 97.02 90.04 81.61 46.70 2
sme 99.88 98.79 86.81 81.93 40.67 2

average 99.48 94.58 87.82 79.85 45.32 2

(b) Surprise treebanks. All preprocessing by UDPipe.

Words Sent. UPOS Feats LAS Rank

ar pud⊗� 93.32 96.79 73.89 24.66 49.94 1
cs pud 99.29 96.43 95.76 89.89 81.00 5
de pud 98.00 86.49 84.53 31.67 71.88 3
en pud 99.66 97.13 93.95 89.27 81.55 4
es pud 99.47 93.42 88.48 40.47 78.63 9
fi pud 99.61 93.67 96.77 95.35 85.21 3
fr pud⊗ 98.87 92.32 58.62 36.83 77.60 3
hi pud 97.81 90.83 83.68 16.84 53.57 4
it pud 99.17 96.58 93.22 57.34 86.16 4
ja pud 93.44 94.89 91.07 54.44 81.98 3
pt pud 99.42 95.65 88.36 43.51 75.53 5
ru pud 97.18 98.95 87.19 33.35 62.72 21
sv pud 98.26 90.20 90.32 53.47 74.41 3
tr pud 96.62 93.91 71.39 23.62 38.23 1

average 97.87 94.09 87.69 50.89 71.31 3

(c) PUD treebanks.

Words Sent. UPOS Feats LAS Rank

fr partut⊗ 99.56 98.00 95.92 93.50 83.82 4
ga 99.29 95.81 89.99 80.05 69.22 3
gl treegal 98.62 81.63 92.32 91.31 71.30 3
kk 94.91 81.38 58.48 45.49 25.29 5
la� 99.99 93.75 84.41 75.56 51.82 5
sl sst� 99.82 21.41 90.91 84.82 55.88 3
ug 98.52 63.55 74.96 98.52 43.51 1
uk 99.81 92.59 89.68 74.88 69.27 3

average 98.81 78.52 84.58 80.52 58.76 3

(d) Small treebanks.

Table 7: Test results. The treebanks for which we did our own word and/or sentence segmentation are
marked with ⊗ and � respectively.

49



tion with latent antecedents and non-local features.
In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Baltimore, Maryland, pages 47–
57. http://www.aclweb.org/anthology/P14-1005.

Anders Björkelund and Joakim Nivre. 2015. Non-
deterministic oracles for unrestricted non-projective
transition-based dependency parsing. In Pro-
ceedings of the 14th International Conference on
Parsing Technologies. Association for Computa-
tional Linguistics, Bilbao, Spain, pages 76–86.
http://www.aclweb.org/anthology/W15-2210.

Bernd Bohnet. 2010. Top accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010). Coling 2010 Or-
ganizing Committee, Beijing, China, pages 89–97.
http://www.aclweb.org/anthology/C10-1011.

Xavier Carreras. 2007. Experiments with a higher-
order projective dependency parser. In Proceed-
ings of the CoNLL Shared Task Session of EMNLP-
CoNLL 2007. Association for Computational Lin-
guistics, Prague, Czech Republic, pages 957–
961. http://www.aclweb.org/anthology/D/D07/D07-
1101.

Yoeng-jin Chu and Tseng-hong Liu. 1965. On the
shortest aborescence of a directed graph. Science
Sinica 14:1396–1400.

Jack Edmonds. 1967. Optimum branchings. Jour-
nal of Research of the National Bureau of Standards
71(B):233–240.

Jason Eisner. 1997. Bilexical grammars and a cubic-
time probabilistic parser. In Proceedings of the
5th International Workshop on Parsing Technolo-
gies (IWPT). MIT, Cambridge, MA, pages 54–65.
http://cs.jhu.edu/ jason/papers/#eisner-1997-iwpt.

Agnieszka Faleńska, Anders Björkelund, Özlem
Çetinoğlu, and Wolfgang Seeker. 2015. Stacking
or supertagging for dependency parsing – what’s the
difference? In Proceedings of the 14th International
Conference on Parsing Technologies. Association
for Computational Linguistics, Bilbao, Spain, pages
118–129. http://www.aclweb.org/anthology/W15-
2215.

Liang Huang, Suphan Fayong, and Yang Guo.
2012. Structured perceptron with inexact search.
In Proceedings of the 2012 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies. Association for Computational
Linguistics, Montréal, Canada, pages 142–151.
http://www.aclweb.org/anthology/N12-1015.

Aravind K. Joshi and Srinivas Bangalore. 1994. Dis-
ambiguation of Super Parts of Speech (or Su-
pertags): Almost Parsing. In Proceedings of the

15th Conference on Computational Linguistics -
Volume 1. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, COLING ’94, pages
154–160. https://doi.org/10.3115/991886.991912.

A. Martins, M. Almeida, and N. A. Smith. 2013. ”turn-
ing on the turbo: Fast third-order non-projective
turbo parsers”. In Annual Meeting of the Associa-
tion for Computational Linguistics - ACL. volume -,
pages 617–622.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proceedings of the 11th Conference of the
European Chapter of the ACL (EACL 2006). Asso-
ciation for Computational Linguistics, Trento, Italy,
pages 81–88. http://www.aclweb.org/anthology-
new/E/E06/E06-1011.pdf.

Thomas Müller, Helmut Schmid, and Hinrich Schütze.
2013. Efficient Higher-Order CRFs for Morpholog-
ical Tagging. In In Proceedings of EMNLP.

Joakim Nivre. 2009. Non-projective dependency
parsing in expected linear time. In Proceed-
ings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Pro-
cessing of the AFNLP. Association for Computa-
tional Linguistics, Suntec, Singapore, pages 351–
359. http://www.aclweb.org/anthology/P/P09/P09-
1040.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marco Kuhlmann, and Johan Hall.
2009. An improved oracle for dependency pars-
ing with online reordering. In Proceedings
of the 11th International Conference on Parsing
Technologies (IWPT’09). Association for Compu-
tational Linguistics, Paris, France, pages 73–76.
http://www.aclweb.org/anthology/W09-3811.

Hiroki Ouchi, Kevin Duh, and Yuji Matsumoto.
2014. Improving Dependency Parsers with Su-
pertags. In Proceedings of the 14th Confer-
ence of the European Chapter of the Associ-
ation for Computational Linguistics, volume 2:
Short Papers. Association for Computational Lin-
guistics, Gothenburg, Sweden, pages 154–158.
http://www.aclweb.org/anthology/E14-4030.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th

50



International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Rudolf Rosa and Zdenek Zabokrtský. 2015. Kl-
cpos3 - a language similarity measure for delex-
icalized parser transfer. In Proceedings of the
53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International
Joint Conference on Natural Language Process-
ing of the Asian Federation of Natural Language
Processing, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 2: Short Papers. pages 243–249.
http://aclweb.org/anthology/P/P15/P15-2040.pdf.

Kenji Sagae and Alon Lavie. 2006. Parser com-
bination by reparsing. In Proceedings of the
Human Language Technology Conference of
the NAACL, Companion Volume: Short Pa-
pers. Association for Computational Linguis-
tics, New York City, USA, pages 129–132.
http://www.aclweb.org/anthology/N/N06/N06-
2033.

Milan Straka, Jan Hajič, and Jana Straková. 2016.
UDPipe: trainable pipeline for processing CoNLL-
U files performing tokenization, morphologi-
cal analysis, pos tagging and parsing. In
Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation
(LREC’16). European Language Resources Asso-
ciation (ELRA), Paris, France. http://www.lrec-
conf.org/proceedings/lrec2016/pdf/873 Paper.pdf.

Mihai Surdeanu and Christopher D Manning. 2010.
Ensemble models for dependency parsing: cheap
and good? In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics. Association for Computational Linguistics,
pages 649–652.

Xiang Yu, Agnieszka Falenska, and Ngoc Thang
Vu. 2017. A general-purpose tagger with con-
volutional neural networks. In arXiv preprint
arXiv:1706.01723.

Xiang Yu and Ngoc Thang Vu. 2017. Character com-
position model with convolutional neural networks
for dependency parsing on morphologically rich lan-
guages. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics.
Association for Computational Linguistics, Vancou-
ver, Canada.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,

Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

Daniel Zeman and Philip Resnik. 2008. Cross-
language parser adaptation between related lan-
guages. In Third International Joint Conference on
Natural Language Processing, IJCNLP 2008, Hy-
derabad, India, January 7-12, 2008. pages 35–42.
http://aclweb.org/anthology/I/I08/I08-3008.pdf.

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved representation learning for
syntax. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1557–1566.
https://doi.org/10.18653/v1/P16-1147.

Yue Zhang and Stephen Clark. 2008. A tale
of two parsers: Investigating and combining
graph-based and transition-based dependency pars-
ing. In Proceedings of the 2008 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Honolulu, Hawaii, pages 562–571.
http://www.aclweb.org/anthology/D08-1059.

51


