
Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 49–57,
Vancouver, Canada, August 3–4, 2017. c©2017 Association for Computational Linguistics

Align and Copy: UZH at SIGMORPHON 2017 Shared Task for
Morphological Reinflection

Peter Makarov†∗ Tatiana Ruzsics‡∗ Simon Clematide†
†Institute of Computational Linguistics, University of Zurich, Switzerland
‡CorpusLab, URPP Language and Space, University of Zurich, Switzerland

makarov@cl.uzh.ch tatiana.ruzsics@uzh.ch simon.clematide@cl.uzh.ch

Abstract

This paper presents the submissions by
the University of Zurich to the SIGMOR-
PHON 2017 shared task on morpholog-
ical reinflection. The task is to predict
the inflected form given a lemma and a
set of morpho-syntactic features. We fo-
cus on neural network approaches that can
tackle the task in a limited-resource set-
ting. As the transduction of the lemma
into the inflected form is dominated by
copying over lemma characters, we pro-
pose two recurrent neural network archi-
tectures with hard monotonic attention
that are strong at copying and, yet, sub-
stantially different in how they achieve
this. The first approach is an encoder-
decoder model with a copy mechanism.
The second approach is a neural state-
transition system over a set of explicit edit
actions, including a designated COPY ac-
tion. We experiment with character align-
ment and find that naive, greedy align-
ment consistently produces strong results
for some languages. Our best system com-
bination is the overall winner of the SIG-
MORPHON 2017 Shared Task 1 without
external resources. At a setting with 100
training samples, both our approaches, as
ensembles of models, outperform the next
best competitor.

1 Introduction

This paper describes our approaches and results
for Task 1 (without external resources) of the
CoNLL-SIGMORPHON 2017 challenge on Uni-
versal Morphological Reinflection (Cotterell et al.,
2017). This task consists in generating inflected
∗ These two authors contributed equally.

word forms for 52 languages given a lemma
and a morphological feature specification (Sylak-
Glassman et al., 2015) as input (Figure 1).

fliegen � flog{VERB, PAST TENSE,
3RD PERSON, SINGULAR}

Figure 1: Morphological inflection generation
task. A German language example.

There are three task setups: a low setting
where training data are only 100 (!) samples,
a medium setting with 1K training samples, and
a high setting with 10K samples. We consider
the problem of tackling morphological inflection
generation at a low-resource setting with a neu-
ral network approach, which is hard for plain
soft-attention encoder-decoder models (Kann and
Schütze, 2016a,b). We present two systems that
are based on the hard monotonic attention model
of Aharoni and Goldberg (2017); Aharoni et al.
(2016), which is strong on smaller-sized train-
ing datasets. We observe that to excel at a low-
resource setting, a model needs to be good at copy-
ing lemma characters over to the inflected form—
by far the most common operation of string trans-
duction in the morphological inflection generation
task.

In our first approach, we extend the hard mono-
tonic attention model with a copy mechanism that
produces a mixture distribution from the charac-
ter generation and character copying distributions.
This idea is reminiscent of the pointer-generator
model of See et al. (2017) and the CopyNet model
of Gu et al. (2016).

Our second approach is a neural state-transition
system that explicitly learns the copy action and
thus does away with character decoding altogether
whenever a character needs to be copied over. This
approach is inspired by shift-reduce parsing with

49

stack LSTMs (Dyer et al., 2015) and transition-
based named entity recognition (Lample et al.,
2016).

2 Preliminaries

In this section, we formally describe the problem
of morphological inflection generation as a string
transduction task. Next, we show how this task
can be reformulated in terms of transduction ac-
tions. Finally, we discuss the string alignment
strategies that we use to derive oracle actions.

2.1 Morphological inflection generation

Morphological inflection generation is an in-
stance of the more general sequence transduction
task, where the goal is to find a mapping of a
variable-length sequence x to another variable-
length sequence y. Specific to morphological in-
flection generation is that the input and output
vocabularies—lemmas and inflected forms—are
the same set of characters of one natural language,
i.e. Σx = Σy = Σ. Formally, our task is to learn
a mapping from an input sequence of characters
x1:n ∈ Σ∗ (the lemma) to an output sequence of
characters y1:m ∈ Σ∗ (the inflected form) given
a set of morpho-syntactic features f ⊆ Φ, where
Φ is the alphabet of morpho-syntactic features for
that language.

2.2 Task reformulation

To efficiently condition on parts of the input se-
quence, we use hard monotonic attention, which
has been found highly suitable for this task (Aha-
roni and Goldberg, 2017; Aharoni et al., 2016).
With hard attention, at each step, the prediction
of an output element is based on attending to only
one element from the input sequence as opposed
to conditioning on the entire input sequence as in
soft attention models.

Hard monotonic attention is motivated by the
often monotonic alignment between the lemma
characters and the characters of its inflected form:
It suffices to only allow for the advancement of
the attention pointer up in a sequential order over
the elements of the input sequence. Thus, the se-
quence transduction process can be represented as
a sequence of actions a1:q ∈ Ω∗ over an input
string, where the set of actions Ω includes oper-
ations for writing characters and advancing the at-
tention pointer. We can, therefore, reformulate the
task of finding a mapping from an input sequence

f l o g
| | | | | | |
f l i e g e n

f l o g
| | | | | | |
f l i e g e n

Figure 2: Examples of smart alignment (top) and
naive alignment (bottom). In each example, in-
flected form is at the top, lemma at the bottom.

of lemma characters x ∈ Σ∗ to the output se-
quence of actions â ∈ Ω∗, given a set of morpho-
syntactic features f ⊆ Φ, such that:

â = arg max
a∈Ω∗

P
(
a | x, f

)

= arg max
a∈Ω∗

|a|∏

t=1

P
(
at | a1:t−1, x, f

)
(1)

We use a recurrent neural network to estimate
the probability distribution P in Equation 1 from
training data. To derive the sequence of oracle ac-
tions from each training sample, we use two dif-
ferent character alignment strategies formally de-
scribed below.

2.3 Character alignment strategies
We use two string alignment strategies that pro-
duce 0-to-1, 1-to-0, and 1-to-1 character align-
ments (Figure 2).

Smart alignment uses the Chinese Restaurant
Process character alignment implementation dis-
tributed with the SIGMORPHON 2016 baseline
system (Cotterell et al., 2016).1 This is the aligner
of Aharoni and Goldberg (2017).

Naive alignment aligns two sequences p and q,
such that the length of p is greater or equal to
the length of q, by producing 1-to-1 character
alignments until it reaches the end of q, from
which point it outputs 1-to-0 alignments (and 0-
to-1 alignments once it reaches the end of p if
|q| > |p|).

3 First approach: Hard attention model
with copy mechanism (HACM)

Our first approach augments the hard monotonic
attention model of Aharoni and Goldberg (2017)
1 https://github.com/ryancotterell/
sigmorphon2016/tree/master/src/baseline

50

WRITE_ᶥ

LSTMy

[y ; hi ; f]

ReLU

st

at=

COPY
1. E(xi) → LSTMy
2. Append xi to output
3. i := i + 1

1. E(ᶥ) → LSTMy
2. Append ᶥ to output

DELETE 1. i := i + 1

STOP

LSTMy

LSTMy

Pt

(eq 7)

(eq 8)

STEP

[E(at-1) ; hi ; f]

st

at= WRITE_ᶥ Append ᶥ to output

i := i + 1

Pt
mix

Pt
gen

wt
gen [E(at-1) ; hi ; f ; st]

1– wt
gen

Pt
copy xi

sigmoid

LSTM

(eq 2)

(eq 3)

(eq 5)

(eq 4)

Figure 3: Overview of the architectures. Hard attention model with copy mechanism (HACM) on the
left, hard attention model over edit actions (HAEM) on the right.

with a copy mechanism which adds a soft switch
between generating an output symbol from a fixed
vocabulary Σtrain and copying the currently at-
tended input symbol xi. In this section, we first re-
view the architecture of the hard monotonic model
and then present our copy mechanism.

3.1 Hard monotonic attention model

The hard monotonic attention model operates over
two types of actions: WRITE σ, σ ∈ Σ, for out-
putting the character σ and STEP which moves
forward the attention pointer, i.e. Ω = Σ ∪
{STEP}. At each step, the model either generates
an output symbol or starts to attend to the next en-
coded input character. The system learns to move
the attention pointer by outputting a STEP action.
To compute the sequences of oracle actions for
each training pair of lemma and its inflected form,
Aharoni and Goldberg (2017) apply a determinis-
tic algorithm2 to the output of the smart aligner.

Architecture The hard monotonic attention
model uses a single-layer bidirectional LSTM en-
coder (Graves and Schmidhuber, 2005) to en-
code input lemma x1:n as a sequence of vectors
h1:n,hi ∈ R2H , where H is the hidden dimension
of the LSTM layer.

At all time steps t, the model maintains a state
st ∈ RH from which the most probable action at
is predicted. The sequence of states is modeled

2 We refer the reader to Aharoni and Goldberg (2017) for the
description of the algorithm.

with a single-layer LSTM that receives, at time t,
a concatenated input of:

1. the currently attended vector hi ∈ R2H ,
where i is the attention pointer,

2. the concatenated vector of feature embed-
dings f ∈ RF ·|Φ|, where F is the dimension
of the feature embedding layer,

3. the embedding of the previous output action
E(at−1) ∈ RE , where E is the dimension of
the action embedding layer.

st = LSTM
(
[E(at−1);hi; f]

)
(2)

Let Σtrain ⊆ Σ be the set of characters in train-
ing data. Then, the distribution P gen

t for generat-
ing actions over the vocabulary Ωtrain = Σtrain ∪
{STEP} is modeled with the softmax function:

P gen
t = softmax

(
W · st + b

)
(3)

When the predicted action is STEP, the atten-
tion index gets incremented i := i + 1, and so
at the next time step t + 1, the model attends to
vector hi+1 of the bidirectionally encoded lemma
sequence.

3.2 Copy mechanism

Our copying mechanism is based on using a mix-
ture of a generation probability distribution from
Equation 3 and a copying probability distribution.

51

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t
〈s〉 f l o g 〈/s〉 y

〈s〉 ST
E

P
f ST

E
P

l ST
E

P

o ST
E

P

ST
E

P

g ST
E

P

ST
E

P

ST
E

P

〈/s〉 at
〈s〉 〈s〉 f f l l i i e g g e n 〈/s〉 xi
0 0 1 1 2 2 3 3 4 5 5 6 7 8 i

1 2 3 4 5 6 7 8 9 t
f l o g y

C
O

PY

C
O

PY

D
E

L
E

T
E

D
E

L
E

T
E

o C
O

PY

D
E

L
E

T
E

D
E

L
E

T
E

ST
O

P

at
f l i e g g e n – xi
1 2 3 4 5 5 6 7 7 i

Table 1: Examples of generating German “flog” from “fliegen”: HACM (left), HAEM (right). i is the
attention pointer, xi the currently attended lemma character, a the sequence of actions, y the output, t the
index over actions.

At each time step t, the action a ∈ Ωtrain is pre-
dicted from the following mixture distribution:

Pt(a) = w
gen
t P gen

t (a) + (1− wgen
t)1{a=xi}, (4)

where xi is the currently attended character of the
lemma sequence x and 1{a=xi} = P copy

t (a) is a
probability distribution for copying xi.

The mix-in parameter of the generation distri-
bution wgen

t ∈ R is calculated from the concate-
nation of the state vector st and the input vector
that produces this state. The resulting vector is fed
through a linear layer to the logistic sigmoid func-
tion:

w
gen
t = sigmoid(v · [hi; f ;yt−1; st] + c) (5)

The mix-in parameter serves as a switch between
a) generating a character from Σtrain according to
the generation distribution P gen

t , and b) copying
the currently attended character xi ∈ Σtrain.

At test time, we allow the copying of out-of-
vocabulary (OOV) symbols by adding the fol-
lowing modification to the mixture distribution in
Equation 4:

Pt(a) =1{a=xi}1{xi∈Σ\Σtrain} +

(
w

gen
t P gen

t (a)

+ (1− wgen
t)1{a=xi}

)
1{xi∈Σtrain}

(6)
Therefore, if the currently attended symbol xi is
OOV, we copy it with probability one according
to the distribution 1{a=xi}; otherwise, we use the
mixture of generation P gen

t and copy 1{a=xi} dis-
tributions. Thus, the distribution Pt is built over
an instance specific vocabulary Ωtrain ∪{xi}. Af-
ter copying the OOV symbol, we advance the at-
tention pointer and use STEP as the previous pre-
dicted action.

The full architecture of the HACM system is
shown schematically in Figure 3.

3.3 Learning

We train the system using cross-entropy loss,
which, for a single input (x, y, f), equates to:

L(Θ;x, a, f) = −
|a|∑

t=1

logPt

(
at | a1:t−1, x, f

)
,

(7)
where x, y are lemma and inflected form charac-
ter sequences, f the set of morpho-syntactic fea-
tures, a the sequence of oracle actions derived
from (x, y), Θ the model parameters and Pt is the
probability distribution over actions from Equa-
tion 4.

4 Second approach: Hard attention
model over edit actions (HAEM)

This neural state-transition system also uses hard
monotonic attention but transduces the lemma into
the inflected form by a sequence of explicit edit
actions: COPY, DELETE, and WRITE σ, σ ∈ Σ.
The architectures of the two models are also dif-
ferent (Figure 3).

4.1 Semantics of edit actions

COPY If the system generates COPY, the
lemma character at the attention index xi is ap-
pended to the current output of the inflected form
and the attention index is incremented i := i + 1.
Therefore, unlike other neural morphological in-
flection generation systems, the copy character is
not decoded from the neural network.

DELETE The system generates DELETE if it
needs to increment the attention index.

WRITE σ Whenever the system chooses to ap-
pend a character σ ∈ Σ to the current output of
the inflected form, such that σ 6= xi where xi is
the lemma character at the attention index, it gen-
erates the corresponding WRITE σ action.

52

Using this set of edit actions, the system can
copy, delete, and substitute new characters. The
substitution of a new character σ for a currently
attended lemma character xi, σ 6= xi, is expressed
as a sequence of one DELETE and one WRITE σ
action.

This action set directly compares to the Ω =
Σ ∪ {STEP} actions of the HACM model, which
uses most basic actions to express edit operations.
Crucially, in the HAEM system, character copying
is a single action (which does not require character
decoding) whereas it is typically a sequence of one
WRITE σ (=σ) and one STEP action in HACM.3

Further, HAEM effectively deals with OOV char-
acters through COPY and DELETE actions.

STOP Additionally, to signal the end of trans-
duction, the system generates a STOP action.

4.2 Deriving oracle actions

We use the character alignment methods of Sec-
tion 2.3 to deterministically compute sequences of
oracle actions for each training example using Al-
gorithm 1.

Algorithm 1: Derivation of oracle actions
from alignment of lemma and form.
Input : A, list of 1-to-1, 0-to-1, and 1-to-0

alignments between lemma and form
Output: O, list of oracle actions

1 foreach (t, s) ∈ A do
2 if t = ε then
3 O.append(WRITE s)
4 else if s = ε then
5 O.append(DELETE)
6 else if s = t then
7 O.append(COPY)
8 else
9 O.append(DELETE)

10 O.append(WRITE s)
11 end
12 end

We then normalize all sub-sequences of only
DELETE and WRITE σ in such a way that all
DELETEs come before all WRITE σ actions.
This simplifies unintuitive alignments produced
by the smart aligner, especially at the low setting.

3 Except whenever the next alignment is 0-to-1 the HACM
does not generate STEP. The HAEM system, however, in-
crements the attention index on every COPY action.

4.3 Architecture
Similarly to HACM, the input lemma is encoded
as a sequence of vectors h1:n,hi ∈ R2H with
a single-layer bidirectional LSTM. Additionally,
we use a single-layer LSTM to represent the pre-
dicted inflected form y1:m, to which we refer as
LSTMy. In case the model outputs a character
with WRITE σ or COPY, LSTMy gets updated
with the embedding of this character.

At all time steps t, the system maintains a state
st ∈ RH from which it predicts the most proba-
ble action at. The state sequence is derived differ-
ently. At time t, a concatenation of:

1. the currently attended vector hi ∈ R2H ,

2. the set-of-features vector f ∈ R|Φ|,

3. the output of the latest state y ∈ RH of the
inflected form representation LSTMy,

passes through a rectifier linear unit (ReLU) layer
(Glorot et al., 2011) to finally produce the state
vector st.

The probability distribution over valid actions4

is then computed with softmax:

st = ReLU
(
W · [y;hi; f] + b

)
(8)

Pt = softmax
(
V · st + c

)
(9)

This describes the basic form of the HAEM sys-
tem (Figure 3). In our experiments, we extend
it to include two more representations: an LSTM
that represents the action history, LSTMa, and an-
other LSTM that encodes a sequence of deleted
lemma characters, LSTMd. The deletion LSTMd

gets emptied once a WRITE σ action is gener-
ated. In this way, we attempt to keep in memory
a full representation of some sub-sequence of the
lemma that needs to be replaced in the inflected
form. In the extended system, the state st is thus
derived from an input vector [y;hi; f ;a;d], where
a ∈ RH is the output of the latest state of the ac-
tion history LSTMa and d ∈ RH the output of the
latest state of the deletion LSTMd.

The system is trained using the cross-entropy
loss function as in Equation 7.

5 Experimental setup

We submit seven runs: a) two runs (1 and 2) for
the HACM model; b) two runs (3 and 4) for the
4 Some actions are not valid in certain states: The system

cannot DELETE or COPY if the attention index is greater
than the length of the lemma.

53

system HACM HAEM
alignment S N S N
low 5 5
medium 5 5 3
high 5 3 2

Table 2: Number of single models that we train
for each language. N=Naive alignment, S=Smart
alignment. E.g. for each language at the medium
setting, there are 3 HAEM models trained on data
aligned with naive alignment.

Run Systems Strategy
1

CM
MAX { E(NCM), E(SCM) }

2 ENSEMBLE 7 (NCM ∪ SCM)
3

EM
MAX { E(NEM), E(SEM) }

4 ENSEMBLE 7 (NEM ∪ SEM)
5

CM& EM
MAX { E(NCM), E(SCM), E(NEM), E(SEM) }

6 ENSEMBLE 4 (NCM ∪ SCM ∪ NEM ∪ SEM)
7 MAX { Run 5, Run 6 }

Table 3: Aggregation strategies in submis-
sions. CM=HACM, EM=HAEM, NCM=the set
of HACM models trained on naive-aligned data,
SCM=the set of HACM models trained on smart-
aligned data, and similarly for HAEM.

HAEM model; and c) three runs (5, 6, and 7) that
combine both systems. Detailed information on
training regimes and the choice of hyperparame-
ter values (e.g. layer dimensions, the application
of dropout, etc.) for all the runs is provided in
the Appendix. Crucially, for both systems and all
settings and languages, we train models with both
smart and naive alignments of Section 2.3. Ta-
ble 2 shows the number of single models for each
system, setting, and alignment.5 We decode using
greedy search.

We apply a simple post-processing filter that re-
places any inflected form containing an endlessly
repeating character with the lemma. This affects a
small number of test samples—57 for HACM and
238 for HAEM across all languages and alignment
regimes—and primarily at the low setting.

All runs aggregate the results of multiple sin-
gle models, and we use a number of aggregation
strategies. For system runs 1 through 4, these are:

Max strategy For each language l, we compute
two ensembles over single models—one ensemble
E(S) over smart alignment models and one en-
semble E(N) over naive alignment models. We

5 Due to time restrictions, we could not produce the target of
5 HAEM models per setting and alignment.

then pick the ensemble with the highest develop-
ment set accuracy for l:

M̂ = arg max
M∈{E(S),E(N)}

dev acc(M) (10)

Ensemble n strategy For each language l, we
pick at most n models from all single models such
that they have the best development set accuracies
for l. We then compute one ensemble over them:

M̂ = E

(
n-best

M∈(S∪N)
dev acc(M)

)
(11)

Runs 5, 6, and 7 are built with aggregation
strategies that use as building blocks the MAX
and ENSEMBLE n strategies. Table 3 shows the
strategies employed in each run.

At the high setting, Runs 5, 6, and 7 addition-
ally feature a single run produced with Nematus
(Sennrich et al., 2017), a soft-attention encoder-
decoder system for machine translation. In all
these runs, the Nematus run complements the
HAEM models, which perform much worse at the
high setting on average. We refer the reader to the
Appendix for further information on data prepro-
cessing, hyperparameter values, and training for
the Nematus run.

6 Results and Discussion

Table 5 gives an overview on the average (macro)
performance for each run on the official develop-
ment and test sets at all settings. Accuracy mea-
sures the percentage of word forms that are in-
flected correctly (without a single character error).
For the best system combination, we also report
the average Levenshtein distance between the gold
standard word form and the system prediction,
which represents a softer criterion for correctness.
Also, we include the performance of the shared
task baseline system, which is a rule-based model
that extracts prefix-changing and suffix-changing
rules using alignments of each training sample
with Levenshtein distance and associates the rules
with the features of the sample.6 All our official
runs beat the baseline by a large margin on av-
erage in terms of accuracy and also in terms of
Levenshtein distance. For all settings, we see an
improvement by applying the more complex en-
sembling strategies (Table 3). It is the largest for
low and the smallest for the high setting.
6 https://github.com/sigmorphon/
conll2017/tree/master/baseline

54

System HACM HAEM HACM HAEM HACM & HAEM BS BS
Alignment/Run N S N S 1 2 3 4 5 6 7 7
Metric Acc Acc Acc Acc Acc Acc Acc Acc Acc Acc Acc Lev Acc Lev

Development Set
Low 43.8 41.3 45.8 44.3 46.5 47.6 48.9 49.5 49.2 51.1 51.6 1.3 38.0 2.1
Medium 75.8 81.4 70.7 80.0 81.9 82.6 80.5 81.1 82.2 83.4 83.5 0.3 64.7 0.9
High 93.3 94.6 75.9 89.6 95.0 95.3 89.8 90.1 95.2 95.3 95.6 0.1 77.9 0.5

Test Set
Low 46.0 46.8 48.0 48.5 48.2 50.6 50.6 1.3 37.9 2.2
Medium 80.9 81.8 79.6 80.3 81.0 82.8 82.8 0.3 64.7 0.9
High 94.5 95.0 89.1 89.5 94.7 95.1 95.1 0.1 77.8 0.5

Table 4: Macro average results over all languages for all settings on the official development and test set.
N=Naive alignment, S=Smart alignment, BS=Baseline system, Acc=Accuracy, Lev=Levenshtein.

Figure 4: Test set accuracies of Run 7 (blue) and the next best system (yellow). The results are ordered
by the averaged (low, medium, high) test set accuracies of Run 7.

At the low setting, HAEM outperforms HACM
on average by 2-3 percentage points accuracy and
is, therefore, especially suited for a low resource
situation. At the medium setting, the performance
of HACM is slightly better using smart align-
ments. The HAEM system does not seem to
learn well with naive alignment for this amount
of data. The poorer performance of HAEM when-
ever more training data are available is particularly
obvious at the high-resource setting where the dif-
ference between HACM and HAEM is quite large.

At the low setting, both the HACM and HAEM
ensembles (Run 2 and Run 4) outperform the next
best competitor (LMU-02-0 with 46.59%) by 0.23
and 1.94 percentage points in average accuracy.
The margin between Run 7 and the next best sys-
tem is an impressive 4.02 percentage points.

At the medium setting, our best Run 7 also
outperforms the next best competitor (LMU-02-
0 with 82.64%) with a small margin of 0.16 per-

centage points. At the high setting, our best Run 7
loses against UE-LMU-01-0 with a small margin
of 0.20 percentage points.

The performance of our best system varies
strongly across languages (Figure 4). This is not
only due to typological differences, but probably
also because some languages have only inflec-
tion patterns for a single part-of-speech category
(e.g. verbs in English) and other languages include
nouns and adjectives (sometimes with very imbal-
anced class distributions). Naive alignment gen-
erally works slightly better than smart alignment
at the low setting (but sometimes fails detrimen-
tally as in the case of Khaling, Navajo, or Sorani).
For the medium and high settings, smart alignment
strongly outperforms naive alignment for HAEM,
and a bit less so for HACM. For a few languages
such as Turkish, Haida or Norwegian-Nynorsk,
naive alignment is consistently better than smart
alignment.

55

As future work, we will experiment more with
the HAEM model and try to improve its capabil-
ities for high-resource settings. One obvious op-
tion would be to use more fine-grained actions,
for instance, directly learn substitutions for certain
characters. This system would probably also profit
from more consistent alignments. Even with smart
alignments, we observe linguistically inconsistent
character alignments that might also prevent use-
ful generalizations.

7 Related work

Some task-specific work has been published af-
ter the 2016 edition of the SIGMORPHON Rein-
flection Shared Task (Cotterell et al., 2016) that
dealt with 10 languages, providing training ma-
terial roughly at the size of the high setting of
the 2017 task edition (a mean training data set
size of 12,751 samples with a standard devia-
tion of 3,303). The winning system of 2016
(Kann and Schütze, 2016a) showed that a stan-
dard sequence-to-sequence encoder-decoder ar-
chitecture with soft attention (Bahdanau et al.,
2014), familiar from neural machine translation,
outperforms a number of other methods (as far
as they were present in the task). Recently, Aha-
roni and Goldberg (2017) showed that hard mono-
tonic attention works well when training data are
scarce. Their approach exploits the almost mono-
tonic alignment between the lemma and its in-
flected form. The HACM model extends this work
with a copying mechanism similar to the pointer-
generator model of See et al. (2017) and CopyNet
of Gu et al. (2016). In HACM, the copying distri-
bution, which is then mixed together with the gen-
eration distribution, is different: See et al. (2017)
employ the soft-attention distribution whereas Gu
et al. (2016) use a separately learned distribu-
tion. Our HACM model uses a simpler copy-
ing distribution that puts all the probability mass
on the currently attended character. The logic of
the HAEM model is similar to that of SIGMOR-
PHON 2016’s baseline which uses a linear clas-
sifier over hand-crafted features to predict edit ac-
tions. Grefenstette et al. (2015) extend an encoder-
decoder model with neural data structures to bet-
ter handle natural language transduction. Rastogi
et al. (2016) present a neural finite-state approach
to string transduction.

8 Conclusion

In this large-scale evaluation of morphological in-
flection generation, we show that a novel neural
transition-based approach can deal well with an
extreme low-resource setup. For a medium size
training set of 1K items, HACM works slightly
better. With abundant data (10K items), en-
coder/decoder architectures with soft attention are
very strong, however, HACM achieves a compara-
ble development set performance.

For optimal results, the ensembling of differ-
ent system runs is important. We experiment with
different ensembling strategies for eliminating bad
candidates. At the low setting (100 samples), our
best system combination achieves an average test
set accuracy of 50.61% (an average Levenshtein
distance (LD) of 1.29), at the medium setting (1K
samples) 82.8% (LD 0.34), and at the high setting
(10K samples) 95.12% (LD 0.11).

Acknowledgement

We would like to thank the SIGMORPHON or-
ganizers for the exciting shared task and Tanja
Samardžić and two anonymous reviewers for their
helpful comments. Peter Makarov has been sup-
ported by European Research Council Grant No.
338875.

References
Roee Aharoni and Yoav Goldberg. 2017. Morphologi-

cal inflection generation with hard monotonic atten-
tion. In ACL.

Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov.
2016. Improving sequence to sequence learning for
morphological inflection generation: The BIU-MIT
systems for the SIGMORPHON 2016 shared task
for morphological reinflection. In 14th Annual SIG-
MORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology at ACL
2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR
abs/1409.0473.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden.
2017. The CoNLL-SIGMORPHON 2017 shared
task: Universal morphological reinflection in
52 languages. In Proceedings of the CoNLL-
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection. ACL.

56

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 Shared Task—
Morphological Reinflection. In Proceedings of the
14th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphol-
ogy. ACL.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In ACL.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In Ais-
tats. volume 15.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional
LSTM and other neural network architectures. Neu-
ral Networks 18(5).

Edward Grefenstette, Karl Moritz Hermann, Mustafa
Suleyman, and Phil Blunsom. 2015. Learning to
transduce with unbounded memory. In Advances in
Neural Information Processing Systems.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. CoRR .

Katharina Kann and Hinrich Schütze. 2016a. MED:
The LMU system for the SIGMORPHON 2016
shared task on morphological reinflection. In 14th
Annual SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology at ACL 2016.

Katharina Kann and Hinrich Schütze. 2016b. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In ACL.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In NAACL.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner.
2016. Weighting finite-state transductions with neu-
ral context. In NAACL-HLT .

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get To The Point: Summarization with
Pointer-Generator Networks. In ACL.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Läubli, Antonio Vale-
rio Miceli Barone, Jozef Mokry, and Maria Nade-
jde. 2017. Nematus: a Toolkit for Neural Machine
Translation. In Proceedings of the Software Demon-
strations of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics. ACL.

John Sylak-Glassman, Christo Kirov, David Yarowsky,
and Roger Que. 2015. A language-independent fea-
ture schema for inflectional morphology. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing. ACL.

57

