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Abstract

We study the representation and encod-
ing of phonemes in a recurrent neural net-
work model of grounded speech. We
use a model which processes images and
their spoken descriptions, and projects the
visual and auditory representations into
the same semantic space. We perform
a number of analyses on how informa-
tion about individual phonemes is encoded
in the MFCC features extracted from the
speech signal, and the activations of the
layers of the model. Via experiments with
phoneme decoding and phoneme discrim-
ination we show that phoneme represen-
tations are most salient in the lower lay-
ers of the model, where low-level signals
are processed at a fine-grained level, al-
though a large amount of phonological
information is retain at the top recurrent
layer. We further find out that the at-
tention mechanism following the top re-
current layer significantly attenuates en-
coding of phonology and makes the utter-
ance embeddings much more invariant to
synonymy. Moreover, a hierarchical clus-
tering of phoneme representations learned
by the network shows an organizational
structure of phonemes similar to those pro-
posed in linguistics.

1 Introduction

Spoken language is a universal human means of
communication. As such, its acquisition and rep-
resentation in the brain is an essential topic in the
study of the cognition of our species. In the field
of neuroscience there has been a long-standing
interest in the understanding of neural represen-
tations of linguistic input in human brains, most

commonly via the analysis of neuro-imaging data
of participants exposed to simplified, highly con-
trolled inputs. More recently, naturalistic data has
been used and patterns in the brain have been cor-
related with patterns in the input (e.g. Wehbe et al.,
2014; Khalighinejad et al., 2017).

This type of approach is relevant also when the
goal is the understanding of the dynamics in com-
plex neural network models of speech understand-
ing. Firstly because similar techniques are of-
ten applicable, but more importantly because the
knowledge of how the workings of artificial and
biological neural networks are similar or different
is valuable for the general enterprise of cognitive
science.

Recent studies have implemented models which
learn to understand speech in a weakly and in-
directly supervised fashion from correlated audio
and visual signal: Harwath et al. (2016); Har-
wath and Glass (2017); Chrupała et al. (2017a).
This is a departure from typical Automatic Speech
Recognition (ASR) systems which rely on large
amounts of transcribed speech, and these recent
models come closer to the way humans acquire
language in a grounded setting. It is thus es-
pecially interesting to investigate to what extent
the traditional levels of linguistic analysis such
as phonology, morphology, syntax and semantics
are encoded in the activations of the hidden lay-
ers of these models. There are a small number
of studies which focus on the syntax and/or se-
mantics in the context of neural models of writ-
ten language (e.g. Elman, 1991; Frank et al., 2013;
Kádár et al., 2016; Li et al., 2016a; Adi et al.,
2016; Li et al., 2016b; Linzen et al., 2016). Taking
it a step further, Gelderloos and Chrupała (2016)
and Chrupała et al. (2017a) investigate the levels
of representations in models which learn language
from phonetic transcriptions and from the speech
signal, respectively. Neither of these tackles the
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representation of phonology in any great depth.
Instead they work with relatively coarse-grained
distinctions between form and meaning.

In the current work we use controlled synthetic
stimuli, as well as alignment between the audio
signal and phonetic transcription of spoken ut-
terances to extract phoneme representation vec-
tors based on the activations on the hidden layers
of a model of grounded speech perception. We
use these representations to carry out analyses of
the representation of phonemes at a fine-grained
level. In a series of experiments, we show that
the lower layers of the model encode accurate rep-
resentations of the phonemes which can be used
in phoneme identification and classification with
high accuracy. We further investigate how the
phoneme inventory is organised in the activation
space of the model. Finally, we tackle the general
issue of the representation of phonological form
versus meaning with a controlled task of synonym
discrimination.

Our results show that the bottom layers in the
multi-layer recurrent neural network learn invari-
ances which enable it to encode phonemes inde-
pendently of co-articulatory context, and that they
represent phonemic categories closely matching
usual classifications from linguistics. Phonologi-
cal form becomes harder to detect in higher lay-
ers of the network, which increasingly focus on
representing meaning over form, but encoding of
phonology persists to a significant degree up to the
top recurrent layer.

We make the data and open-source code
to reproduce our results publicly available at
github.com/gchrupala/encoding-of-phonology.

2 Related Work

Research on encoding of phonology has been car-
ried out from a psycholinguistics as well as com-
putational modeling perspectives. Below we re-
view both types of work.

2.1 Phoneme perception

Co-articulation and interspeaker variability make
it impossible to define unique acoustic patterns for
each phoneme. In an early experiment, Liberman
et al. (1967) analyzed the acoustic properties of
the /d/ sound in the two syllables /di/ and /du/.
They found that while humans easily noticed dif-
ferences between the two instances when /d/ was
played in isolation, they perceived the /d/ as be-

ing the same when listening to the complete syl-
lables. This phenomenon is often referred to as
categorical perception: acoustically different stim-
uli are perceived as the same. In another exper-
iment Lisker and Abramson (1967) used the two
syllables /ba/ and /pa/ which only differ in their
voice onset time (VOT), and created a continuum
moving from syllables with short VOT to syllables
with increasingly longer VOT. Participants identi-
fied all consonants with VOT below 25 msec as be-
ing /b/ and all consonant with VOT above 25 msec
as being /p/. There was no grey area in which both
interpretations of the sound were equally likely,
which suggests that the phonemes were perceived
categorically. Supporting findings also come from
discrimination experiments: when one consonant
has a VOT below 25 msec and the other above,
people perceive the two syllables as being differ-
ent (/ba/ and /pa/ respectively), but they do not
notice any differences in the acoustic signal when
both syllables have a VOT below or above 25 msec
(even when these sounds are physically further
away from each other than two sounds that cross
the 25 msec dividing line).

Evidence from infant speech perception stud-
ies suggests that infants also perceive phonemes
categorically (Eimas et al., 1971): one- and four-
month old infants were presented with multiple
syllables from the continuum of /ba/ to /pa/ sounds
described above. As long as the syllables all came
from above or below the 25 msec line, the infants
showed no change in behavior (measured by their
amount of sucking), but when presented with a
syllable crossing that line, the infants reacted dif-
ferently. This suggests that infants, just like adults,
perceive speech sounds as belonging to discrete
categories. Dehaene-Lambertz and Gliga (2004)
also showed that the same neural systems are acti-
vated for both infants and adults when performing
this task.

Importantly, languages differ in their phoneme
inventories; for example English distinguishes /r/
from /l/ while Japanese does not, and children
have to learn which categories to use. Experi-
mental evidence suggests that infants can discrim-
inate both native and nonnative speech sound dif-
ferences up to 8 months of age, but have difficulty
discriminating acoustically similar nonnative con-
trasts by 10-12 months of age (Werker and Hen-
sch, 2015). These findings suggest that by their
first birthday, they have learned to focus only on
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those contrasts that are relevant for their native
language and to neglect those which are not. Psy-
cholinguistic theories assume that children learn
the categories of their native language by keep-
ing track of the frequency distribution of acous-
tic sounds in their input. The forms around peaks
in this distribution are then perceived as being a
distinct category. Recent computational models
showed that infant-directed speech contains suffi-
ciently clear peaks for such a distributional learn-
ing mechanism to succeed and also that top-down
processes like semantic knowledge and visual in-
formation play a role in phonetic category learning
(ter Schure et al., 2016).

From the machine learning perspective categor-
ical perception corresponds to the notion of learn-
ing invariances to certain properties of the input.
With the experiments in Section 4 we attempt to
gain some insight into this issue.

2.2 Computational models

There is a sizeable body of work on using re-
current neural (and other) networks to detect
phonemes or phonetic features as a subcompo-
nent of an ASR system. King and Taylor (2000)
train recurrent neural networks to extract phono-
logical features from framewise cepstral represen-
tation of speech in the TIMIT speaker-independent
database. Frankel et al. (2007) introduce a dy-
namic Bayesian network for articulatory (pho-
netic) feature recognition as a component of an
ASR system. Siniscalchi et al. (2013) show that
a multilayer perceptron can successfully classify
phonological features and contribute to the accu-
racy of a downstream ASR system.

Mohamed et al. (2012) use a Deep Belief Net-
work (DBN) for acoustic modeling and phone
recognition on human speech. They analyze the
impact of the number of layers on phone recogni-
tion error rate, and visualize the MFCC vectors as
well as the learned activation vectors of the hid-
den layers of the model. They show that the repre-
sentations learned by the model are more speaker-
invariant than the MFCC features.

These works directly supervise the networks
to recognize phonological information. Another
supervised but multimodal approach is taken by
Sun (2016), which uses grounded speech for im-
proving a supervised model of transcribing utter-
ances from spoken description of images. We on
the other hand are more interested in understand-

ing how the phonological level of representation
emerges from weak supervision via correlated sig-
nal from the visual modality.

There are some existing models which learn
language representations from sensory input in
such a weakly supervised fashion. For example
Roy and Pentland (2002) use spoken utterances
paired with images of objects, and search for seg-
ments of speech that reliably co-occur with visual
shapes. Yu and Ballard (2004) use a similar ap-
proach but also include non-verbal cues such as
gaze and gesture into the input for unsupervised
learning of words and their visual meaning. These
language learning models use rich input signals,
but are very limited in scale and variation.

A separate line of research has used neural net-
works for modeling phonology from a (neuro)-
cognitive perspective. Burgess and Hitch (1999)
implement a connectionist model of the so-called
phonological loop, i.e. the posited working mem-
ory which makes phonological forms available
for recall (Baddeley and Hitch, 1974). Gasser
and Lee (1989) show that Simple Recurrent Net-
works are capable of acquiring phonological con-
straints such as vowel harmony or phonological
alterations at morpheme boundaries. Touretzky
and Wheeler (1989) present a connectionist archi-
tecture which performs multiple simultaneous in-
sertion, deletion, and mutation operations on se-
quences of phonemes. In this body of work the
input to the network is at the level of phonemes
or phonetic features, not acoustic features, and it
is thus more concerned with the rules governing
phonology and does not address how representa-
tions of phonemes arise from exposure to speech
in the first place. Moreover, the early connection-
ist work deals with constrained, toy datasets. Cur-
rent neural network architectures and hardware en-
able us to use much more realistic inputs with the
potential to lead to qualitatively different results.

3 Model

As our model of language acquisition from
grounded speech signal we adopt the Recurrent
Highway Network-based model of Chrupała et al.
(2017a). This model has two desirable properties:
firstly, thanks to the analyses carried in that work,
we understand roughly how the hidden layers dif-
fer in terms of the level of linguistic representation
they encode. Secondly, the model is trained on
clean synthetic speech which makes it appropri-
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ate to use for the controlled experiments in Sec-
tion 5.2. We refer the reader to Chrupała et al.
(2017a) for a detailed description of the model ar-
chitecture. Here we give a brief overview.

The model exploits correlations between two
modalities, i.e. speech and vision, as a source
of weak supervision for learning to understand
speech; in other words it implements language ac-
quisition from the speech signal grounded in vi-
sual perception. The architecture is a bi-modal
network whose learning objective is to project
spoken utterances and images to a joint semantic
space, such that corresponding pairs (u, i) (i.e. an
utterance and the image it describes) are close in
this space, while unrelated pairs are far away, by a
margin α:

(1)

∑
u,i

(∑
u′

max[0, α+d(u, i)−d(u′, i)]

+
∑
i′

max[0, α+ d(u, i)− d(u, i′)]

)

where d(u, i) is the cosine distance between the
encoded utterance u and encoded image i.

The image encoder part of the model uses im-
age vectors from a pretrained object classifica-
tion model, VGG-16 (Simonyan and Zisserman,
2014), and uses a linear transform to directly
project these to the joint space. The utterance en-
coder takes Mel-frequency Cepstral Coefficients
(MFCC) as input, and transforms it successively
according to:

encu(u) = unit(Attn(RHNk,L(Convs,d,z(u))))
(2)

The first layer Convs,d,z is a one-dimensional con-
volution of size swhich subsamples the input with
stride z, and projects it to d dimensions. It is fol-
lowed by RHNk,L which consists of k residual-
ized recurrent layers. Specifically these are Recur-
rent Highway Network layers (Zilly et al., 2016),
which are closely related to GRU networks, with
the crucial difference that they increase the depth
of the transform between timesteps; this is the re-
currence depth L. The output of the final recurrent
layer is passed through an attention-like lookback
operator Attn which takes a weighted average of
the activations across time steps. Finally, both ut-
terance and image projections are L2-normalized.
See Section 4.1 for details of the model configura-
tion.

Vowels i I U u
e E @ Ä OI O o
aI æ 2 A aU

Approximants j ô l w
Nasals m n N
Plosives p b t d k g
Fricatives f v T D s z S Z h
Affricates Ù Ã

Table 1: Phonemes of General American English.

4 Experimental data and setup

The phoneme representations in each layer are cal-
culated as the activations averaged over the dura-
tion of the phoneme occurrence in the input. The
average input vectors are similarly calculated as
the MFCC vectors averaged over the time course
of the articulation of the phoneme occurrence.
When we need to represent a phoneme type we do
so by averaging the vectors of all its occurrences
in the validation set. Table 1 shows the phoneme
inventory we work with; this is also the inventory
used by Gentle/Kaldi (see Section 4.3).

4.1 Model settings

We use the pre-trained version of the
COCO Speech model, implemented in Theano
(Bastien et al., 2012), provided by Chrupała et al.
(2017a).1 The details of the model configuration
are as follows: convolutional layer with length 6,
size 64, stride 3, 5 Recurrent Highway Network
layers with 512 dimensions and 2 microsteps,
attention Multi-Layer Perceptron with 512 hid-
den units, Adam optimizer, initial learning rate
0.0002. The 4096-dimensional image feature
vectors come from the final fully connect layer of
VGG-16 (Simonyan and Zisserman, 2014) pre-
trained on Imagenet (Russakovsky et al., 2014),
and are averages of feature vectors for ten crops
of each image. The total number of learnable
parameters is 9,784,193. Table 2 sketches the
architecture of the utterance encoder part of the
model.

4.2 Synthetically Spoken COCO

The Speech COCO model was trained on the Syn-
thetically Spoken COCO dataset (Chrupała et al.,
2017b), which is a version of the MS COCO

1Code, data and pretrained models available from
https://github.com/gchrupala/visually-grounded-speech.
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Attention: size 512
Recurrent 5: size 512
Recurrent 4: size 512
Recurrent 3: size 512
Recurrent 2: size 512
Recurrent 1: size 512

Convolutional: size 64, length 6, stride 3
Input MFCC: size 13

Table 2: COCO Speech utterance encoder archi-
tecture.

dataset (Lin et al., 2014) where speech was syn-
thesized for the original image descriptions, using
high-quality speech synthesis provided by gTTS.2

4.3 Forced alignment

We aligned the speech signal to the corresponding
phonemic transcription with the Gentle toolkit,3

which in turn is based on Kaldi (Povey et al.,
2011). It uses a speech recognition model for En-
glish to transcribe the input audio signal, and then
finds the optimal alignment of the transcription to
the signal. This fails for a small number of utter-
ances, which we remove from the data. In the next
step we extract MFCC features from the audio sig-
nal and pass them through the COCO Speech ut-
terance encoder, and record the activations for the
convolutional layer as well as all the recurrent lay-
ers. For each utterance the representations (i.e.
MFCC features and activations) are stored in a
tr × Dr matrix, where tr and Dr are the num-
ber of times steps and the dimensionality, respec-
tively, for each representation r. Given the align-
ment of each phoneme token to the underlying au-
dio, we then infer the slice of the representation
matrix corresponding to it.

5 Experiments

In this section we report on four experiments
which we designed to elucidate to what extent in-
formation about phonology is represented in the
activations of the layers of the COCO Speech
model. In Section 5.1 we quantify how easy it is
to decode phoneme identity from activations. In
Section 5.2 we determine phoneme discriminabil-
ity in a controlled task with minimal pair stimuli.
Section 5.3 shows how the phoneme inventory is

2Available at https://github.com/pndurette/gTTS.
3Available at https://github.com/lowerquality/gentle.

organized in the activation space of the model. Fi-
nally, in Section 5.4 we tackle the general issue
of the representation of phonological form versus
meaning with the controlled task of synonym dis-
crimination.

5.1 Phoneme decoding
In this section we quantify to what extent phoneme
identity can be decoded from the input MFCC fea-
tures as compared to the representations extracted
from the COCO speech. As explained in Sec-
tion 4.3, we use phonemic transcriptions aligned
to the corresponding audio in order to segment
the signal into chunks corresponding to individual
phonemes.

We take a sample of 5000 utterances from the
validation set of Synthetically Spoken COCO, and
extract the force-aligned representations from the
Speech COCO model. We split this data into 2

3
training and 1

3 heldout portions, and use super-
vised classification in order to quantify the recov-
erability of phoneme identities from the represen-
tations. Each phoneme slice is averaged over time,
so that it becomes a Dr-dimensional vector. For
each representation we then train L2-penalized lo-
gistic regression (with the fixed penalty weight
1.0) on the training data and measure classifica-
tion error rate on the heldout portion.

Figure 1 shows the results. As can be seen from
this plot, phoneme recoverability is poor for the
representations based on MFCC and the convolu-
tional layer activations, but improves markedly for
the recurrent layers. Phonemes are easiest recov-
ered from the activations at recurrent layers 1 and
2, and the accuracy decreases thereafter. This sug-
gests that the bottom recurrent layers of the model
specialize in recognizing this type of low-level
phonological information. It is notable however
that even the last recurrent layer encodes phoneme
identity to a substantial degree.

The MFCC features do much better than ma-
jority baseline (89% error rate) but poorly rel-
tive to the the recurrent layers. Averaging across
phoneme durations may be hurting performance,
but interestingly, the network can overcome this
and form more robust phoneme representations in
the activation patterns.

5.2 Phoneme discrimination
Schatz et al. (2013) propose a framework for eval-
uating speech features learned in an unsupervised
setup that does not depend on phonetically labeled
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Figure 1: Accuracy of phoneme decoding with
input MFCC features and COCO Speech model
activations. The boxplot shows error rates boot-
strapped with 1000 resamples.

data. They propose a set of tasks called Minimal-
Pair ABX tasks that allow to make linguistically
precise comparisons between syllable pairs that
only differ by one phoneme. They use variants of
this task to study phoneme discrimination across
talkers and phonetic contexts as well as talker dis-
crimination across phonemes.

Here we evaluate the COCO Speech model on
the Phoneme across Context (PaC) task of Schatz
et al. (2013). This task consists of presenting a se-
ries of equal-length tuples (A,B,X) to the model,
where A and B differ by one phoneme (either a
vowel or a consonant), as do B and X , but A and
X are not minimal pairs. For example, in the tuple
(be /bi/, me /mi/, my /maI/), the task is to identify
which of the two syllables /bi/ or /mi/ is closer to
/maI/. The goal is to measure context invariance
in phoneme discrimination by evaluating how of-
ten the model recognizes X as the syllable closer
to B than to A.

We used a list of all attested consonant-vowel
(CV) syllables of American English according to
the syllabification method described in Gorman
(2013). We excluded the ones which could not be
unambiguously represented using English spelling
for input to the TTS system (e.g. /baU/). We then
compiled a list of all possible (A,B,X) tuples
from this list where (A,B) and (B,X) are min-
imal pairs, but (A,X) are not. This resulted in
34,288 tuples in total. For each tuple, we measure
sign(dist(A,X) − dist(B,X)), where dist(i, j)
is the euclidean distance between the vector rep-
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Figure 2: Accuracies for the ABX CV task for the
cases where the target and the distractor belong to
the same phoneme class. Shaded area extends ±1
standard error from the mean.

resentations of syllables i and j. These represen-
tations are either the audio feature vectors or the
layer activation vectors. A positive value for a tu-
ple means that the model has correctly discrim-
inated the phonemes that are shared or different
across the syllables.

Table 3 shows the discrimination accuracy in
this task using various representations. The pat-
tern is similar to what we observed in the phoneme
identification task: best accuracy is achieved using
representation vectors from recurrent layers 1 and
2, and it drops as we move further up in the model.
The accuracy is lowest when final embedding fea-
tures are used for this task.

However, the PaC task is most meaningful and

Table 3: Accuracy of choosing the correct target
in an ABX task using different representations.

Representation Accuracy

MFCC 0.72
Convolutional 0.73
Recurrent 1 0.83
Recurrent 2 0.84
Recurrent 3 0.80
Recurrent 4 0.77
Recurrent 5 0.75
Embeddings 0.67
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Figure 3: Pearson’s correlation coefficients r be-
tween the distance matrix of MFCCs and distance
matrices on activation vectors.

challenging where the target and the distractor
phonemes belong to the same phoneme class. Fig-
ure 2 shows the accuracies for this subset of cases,
broken down by class. As can be seen, the model
can discriminate between phonemes with high ac-
curacy across all the layers, and the layer activa-
tions are more informative for this task than the
MFCC features. Again, most phoneme classes
seem to be represented more accurately in the
lower layers (1–3), and the performance of the
model in this task drops as we move towards
higher hidden layers. There are also clear dif-
ferences in the pattern of discriminability for the
phoneme classes. The vowels are especially easy
to tell apart, but accuracy on vowels drops most
acutely in the higher layers. Meanwhile the ac-
curacy on fricatives and approximants starts low,
but improves rapidly and peaks around recurrent
layer 2. The somewhat erratic pattern for nasals
and affricates is most likely due to small sample
size for these classes, as evident from the wide
standard error.

5.3 Organization of phonemes

In this section we take a closer look at the un-
derlying organization of phonemes in the model.
Our experiment is inspired by Khalighinejad et al.
(2017) who study how the speech signal is repre-
sented in the brain at different stages of the au-
ditory pathway by collecting and analyzing elec-
troencephalography responses from participants
listening to continuous speech, and show that
brain responses to different phoneme categories
turn out to be organized by phonetic features.

We carry out an analogous experiment by an-
alyzing the hidden layer activations of our model
in response to each phoneme in the input. First,
we generated a distance matrix for every pair of
phonemes by calculating the Euclidean distance
between the phoneme pair’s activation vectors for

each layer separately, as well as a distance matrix
for all phoneme pairs based on their MFCC fea-
tures. Similar to what Khalighinejad et al. (2017)
report, we observe that the phoneme activations on
all layers significantly correlate with the phoneme
representations in the speech signal, and these cor-
relations are strongest for the lower layers of the
model. Figure 3 shows the results.

We then performed agglomerative hierarchical
clustering on phoneme type MFCC and activation
vectors, using Euclidean distance as the distance
metric and the Ward linkage criterion (Ward Jr,
1963). Figure 5 shows the clustering results for
the activation vectors on the first hidden layer. The
leaf nodes are color-coded according to phoneme
classes as specified in Table 1. There is substan-
tial degree of matching between the classes and
the structure of the hierarchy, but also some mix-
ing between rounded back vowels and voiced plo-
sives /b/ and /g/, which share articulatory features
such as lip movement or tongue position.
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Figure 4: Adjusted Rand Index for the compari-
son of the phoneme type hierarchy induced from
representations against phoneme classes.

We measured the adjusted Rand Index for the
match between the hierarchy induced from each
representation against phoneme classes, which
were obtained by cutting the tree to divide the
cluster into the same number of classes as there are
phoneme classes. There is a notable drop between
the match from MFCC to the activation of the con-
volutional layer. We suspect this may be explained
by the loss of information caused by averaging
over phoneme instances combined with the lower
temporal resolution of the activations compared to
MFCC. The match improves markedly at recurrent
layer 1.

5.4 Synonym discrimination
Next we simulate the task of distinguishing be-
tween pairs of synonyms, i.e. words with differ-
ent acoustic forms but the same meaning. With
a representation encoding phonological form, our
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Figure 5: Hierarchical clustering of phoneme activation vectors on the first hidden layer.

expectation is that the task would be easy; in con-
trast, with a representation which is invariant to
phonological form in order to encode meaning, the
task would be hard.

We generate a list of synonyms for each noun,
verb and adjective in the validation data using
Wordnet (Miller, 1995) synset membership as a
criterion. Out of these generated word pairs, we
select synonyms for the experiment based on the
following criteria:
• both forms clearly are synonyms in the sense

that one word can be replaced by the other
without changing the meaning of a sentence,

• both forms appear more than 20 times in the
validation data,

• the words differ clearly in form (i.e.
they are not simply variant spellings like
donut/doughnut, grey/gray),

• the more frequent form constitutes less than
95% of the occurrences.

This gives us 2 verb, 2 adjective and 21 noun pairs.
For each synonym pair, we select the sentences

in the validation set in which one of the two forms
appears. We use the POS-tagging feature of NLTK
(Bird, 2006) to ensure that only those sentences
are selected in which the word appears in the cor-
rect word category (e.g. play and show are syn-
onyms when used as nouns, but not when used
as verbs). We then generate spoken utterances in
which the original word is replaced by its syn-
onym, resulting in the same amount of utterances
for both words of each synonym pair.

For each pair we generate a binary classification
task using the MFCC features, the average activa-
tions in the convolutional layer, the average unit
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Figure 6: Synonym discrimination error rates, per
representation and synonym pair.

activations per recurrent layer, and the sentence
embeddings as input features. For every type of
input, we run 10-fold cross validation using Logis-
tic Regression to predict which of the two words
the utterance contains. We used an average of
672 (minimum 96; maximum 2282) utterances for
training the classifiers.

Figure 6 shows the error rate in this classifica-
tion task for each layer and each synonym pair.
Recurrent layer activations are more informative
for this task than MFCC features or activations
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of the convolutional layer. Across all the recur-
rent layers the error rate is small, showing that
some form of phonological information is present
throughout this part of the model. However, sen-
tence embeddings give relatively high error rates
suggesting that the attention layer acts to focus
on semantic information and to filter out much of
phonological form.

6 Discussion

Understanding distributed representations learned
by neural networks is important but has the reputa-
tion of being hard or even impossible. In this work
we focus on making progress on this problem for
a particular domain: representations of phonology
in a multilayer recurrent neural network trained on
grounded speech signal. We believe it is impor-
tant to carry out multiple analyses using diverse
methodology: any single experiment may be mis-
leading as it depends on analytical choices such as
the type of supervised model used for decoding,
the algorithm used for clustering, or the similarity
metric for representational similarity analysis. To
the extent that more than one experiment points to
the same conclusion our confidence in the reliabil-
ity of the insights gained will be increased.

Earlier work (Chrupała et al., 2017a) shows
that encoding of semantics in our RNN model
of grounded speech becomes stronger in higher
layers, while encoding of form becomes weaker.
The main high-level results of our study confirm
this pattern by showing that the representation of
phonological knowledge is most accurate in the
lower layers of the model. This general pattern is
to be expected as the objective of the utterance en-
coder is to transform the input acoustic features in
such a way that it can be matched to its counterpart
in a completely separate modality. Many of the
details of how this happens, however, are far from
obvious: perhaps most surprisingly we found that
a large amount of phonological information is still
available up to the top recurrent layer. Evidence
for this pattern emerges from the phoneme decod-
ing task, the ABX task and the synonym discrim-
ination task. The last one also shows that the at-
tention layer filters out and significantly attenuates
encoding of phonology and makes the utterance
embeddings much more invariant to synonymy.

Our model is trained on synthetic speech, which
is easier to process than natural human-generated
speech. While small-scale databases of natural

speech and image are available (e.g. the Flickr8k
Audio Caption Corpus, Harwath and Glass, 2015),
they are not large enough to reliably train mod-
els such as ours. In future we would like to
collect more data and apply our methodology to
grounded human speech and investigate whether
context and speaker-invariant phoneme represen-
tations can be learned from natural, noisy input.
We would also like to make comparisons to the re-
sults that emerge from similar analyses applied to
neuroimaging data.
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