Learning Contextual Embeddings for Structural Semantic Similarity
using Categorical Information

Massimo Nicosia® and Alessandro Moschitti
¢DISI, University of Trento 38123 Povo (TN), Italy
Qatar Computing Research Institute, HBKU, 34110, Doha, Qatar
{m.nicosia,amoschitti}@gmail.com

Abstract

Tree kernels (TKs) and neural networks
are two effective approaches for automatic
feature engineering. In this paper, we
combine them by modeling context word
similarity in semantic TKs. This way,
the latter can operate subtree matching by
applying neural-based similarity on tree
lexical nodes. We study how to learn
representations for the words in context
such that TKs can exploit more focused
information. We found that neural em-
beddings produced by current methods do
not provide a suitable contextual similar-
ity. Thus, we define a new approach based
on a Siamese Network, which produces
word representations while learning a bi-
nary text similarity. We set the latter con-
sidering examples in the same category as
similar. The experiments on question and
sentiment classification show that our se-
mantic TK highly improves previous re-
sults.

1 Introduction

Structural Kernels (Moschitti, 2006) can automat-
ically represent syntactic and semantic structures
in terms of substructures, showing high accuracy
in several tasks, e.g., relation extraction (Nguyen
et al., 2009; Nguyen and Moschitti, 2011; Plank
and Moschitti, 2013; Nguyen et al., 2015) and sen-
timent analysis (Nguyen and Shirai, 2015).

At the same time, deep learning has demon-
strated its effectiveness on a plethora of NLP tasks
such as Question Answering (QA) (Severyn and
Moschitti, 2015a; Rao et al., 2016), and pars-
ing (Andor et al., 2016), to name a few. Deep
learning models (DLMs) usually do not include
traditional features; they extract relevant signals

from distributed representations of words, by ap-
plying a sequence of linear and non linear func-
tions to the input. Word representations are
learned from large corpora, or directly from the
training data of the task at hand.

Clearly, joining the two approaches above
would have the advantage of easily integrating
structures with kernels, and lexical representations
with embeddings into learning algorithms. In this
respect, the Smoothed Partial Tree Kernel (SPTK)
is a noticeable approach for using lexical similar-
ity in tree structures (Croce et al., 2011). SPTK
can match different tree fragments, provided that
they only differ in lexical nodes. Although the
results were excellent, the used similarity did not
consider the fact that words in context assume dif-
ferent meanings or weights for the final task, i.e.,
it does not consider the context. In contrast, SPTK
would benefit to use specific word similarity when
matching subtrees corresponding to different con-
stituency. For example, the two questions:

— What famous model was married to Billy Joel?

— What famous model of the Universe was pro-
posed?

are similar in terms of structures and words but
clearly have different meaning and also different
categories: the first asks for a human (the answer
is Christie Brinkley) whereas the latter asks for
an entity (an answer could be the Expanding Uni-
verse). To determine that such questions are not
similar, SPTK would need different embeddings
for the word model in the two contexts, i.e., those
related to person and science, respectively.

In this paper, we use distributed representa-
tions generated by neural approaches for comput-
ing the lexical similarity in TKs. We carry out an
extensive comparison between different methods,
i.e., word2vec, using CBOW and SkipGram, and

260

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 260-270,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

Glove, in terms of their impact on convolution se-
mantic TKs for question classification (QC). We
experimented with composing word vectors and
alternative embedding methods for bigger unit of
text to obtain context specific vectors.

Unfortunately, the study above showed that
standard ways to model context are not effective.
Thus, we propose a novel application of Siamese
Networks to learn word vectors in context, i.e., a
representation of a word conditioned on the other
words in the sentence. Since a comprehensive and
large enough corpus of disambiguated senses is
not available, we approximate them with categori-
cal information: we derive a classification task that
consists in deciding if two words extracted from
two sentences belong to the same sentence cate-
gory. We use the obtained contextual word repre-
sentations in TKs. Our new approach tested on
two tasks, question and sentiment classification,
shows that modeling the context further improves
the semantic kernel accuracy compared to only us-
ing standard word embeddings.

2 Related Work

Distributed word representations are an effective
and compact way to represent text and are widely
used in neural network models for NLP. The re-
search community has also studied them in the
context of many other machine learning models,
where they are typically used as features.

SPTK is an interesting kernel algorithm that can
compute word to word similarity with embeddings
(Croce et al., 2011; Filice et al., 2015, 2016). In
our work, we go beyond simple word similarity
and improve the modeling power of SPTK using
contextual information in word representations.
Our approach mixes the syntactic and semantic
features automatically extracted by the TK, with
representations learned with deep learning models
(DLMs).

Early attempts to incorporate syntactic informa-
tion in DLMs use grammatical relations to guide
the composition of word embeddings, and recur-
sively compose the resulting substructural embed-
dings with parametrized functions. In Socher et al.
(2012) and Socher et al. (2013), a parse tree is used
to guide the composition of word embeddings, fo-
cusing on a single parametrized function for com-
posing all words according to different grammat-
ical relations. In Tai et al. (2015), several LSTM
architectures that follow an order determined by

261

syntax are presented. Considering embeddings
only, Levy and Goldberg (2014) proposed to learn
word representations that incorporate syntax from
dependency-based contexts. In contrast, we inject
syntactic information by means of TKs, which es-
tablish a hard match between tree fragments, while
the soft match is enabled by the similarities of dis-
tributed representations.

DLMs have been applied to the QC task. Con-
volutional neural neworks are explored in Kalch-
brenner et al. (2014) and Kim (2014). In Ma et al.
(2015), convolutions are guided by dependencies
linking question words, but it is not clear how
the word vectors are initialized. In our case, we
only use pre-trained word vectors and the output
of a parser, avoiding intensive manual feature en-
gineering, as in Silva et al. (2010). The accuracy
of these models are reported in Tab. 1 and can be
compared to our QC results (Table 4) on the com-
monly used test set. In addition, we report our re-
sults in a cross-validation setting to better assess
the generalization capabilities of the models.

To encode words in context, we employ a
Siamese Network, a DLM that has been widely
used to model sentence similarity. In a Siamese
setting, the same network is used to encode two
sentences, and during learning, the distance be-
tween the representations of similar sentences is
minimized. In Mueller and Thyagarajan (2016),
an LSTM is used to encode similar sentences, and
their Manhattan distance is minimized. In Necu-
loiu et al. (2016), a character level bidirectional
LSTM is used to determine the similarity between
job titles. In Tan et al. (2016), the problem of
question/answer matching is treated as a similar-
ity task, and convolutions and pooling on top of
LSTM states are used to extract the sentence rep-
resentations. The paper reports also experiments
that include neural attention. Those mechanisms
are excluded in our work, since we do not want to
break the symmetry of the encoding model.

In Siamese Networks, the similarity is typically
computed between pair of sentences. In our work,
we compute the similarity of word representations
extracted from the states of a recurrent network.
Such representations still depend on the entire sen-
tence, and thus encode contextual information.

3 Tree Kernels-based Lexical Similarity

TKs are powerful methods for computing the sim-
ilarity between tree structures. They can effec-

Model Features Accuracy
SVM Unigram, syntactic informa- | 95.0
tion, parser output, WordNet
features, hand-coded features
DCNN Unsupervised vectors 93.0
CNN.,.s CBOW fine-tuned vectors 93.6
DepCNN | Depencency guided filters 95.6
SPTK SPTK and LSA word vectors 94.8
Table 1: QC accuracy (%) and description of SVM (Silva
et al.,, 2010), DCNN (Kalchbrenner et al., 2014), CNN,,

(Kim, 2014), DepCNN, (Ma et al., 2015) and SPTK (Croce
et al., 2011) models.

tively encode lexical, syntactic and semantic infor-
mation in learning algorithms. For this purpose,
they count the number of substructures shared by
two trees. In most TKs, two tree fragments match
if they are identical. In contrast, Croce et al.
(2011) proposed the Smoothed Partial Tree Ker-
nel (SPTK), which can also match fragments dif-
fering in node labels. For example, consider two
constituency tree fragments which differ only for
one lexical node. SPTK can establish a soft match
between the two fragments by associating the lex-
icals with vectors and by computing the cosine
similarity between the latter. In previous work for
QC, vectors were obtained by applying Latent Se-
mantic Analysis (LSA) to a large corpus of tex-
tual documents. We use neural word embeddings
as in Filice et al. (2015) to encode words. Dif-
ferently from them, we explore specific embed-
dings by also deriving a vector representation for
the context around each word. Finally, we define
a new approach based on the category of the sen-
tence of the target word.

3.1 Smoothed Partial Tree Kernel

SPTK can be defined as follows: let the set 7 =
{f1, f2,---, fim} be a tree fragment space and
xi(n) be an indicator function, equal to 1 if the
target f; is rooted at node n, and equal to O other-
wise. A TK function over 77 and T5 is:

Z Z Anl,HQ

ni E]VT1 TL2€NT2

TK(Ty,Ty) =

where N7, and N, are the sets of nodes of 77 and
f

TQ, and A(nl, ng) = lell Xi(nl)xi(ng). The

latter is equal to the number of common fragments

rooted in the ny and ns nodes. The A function for

262

be::v

T

what::w bibliography::n 7. ROOT VBZ
SB] WP an::d annotate:xzv. PRD NN P .
NMOD DT NMOD VBN

Figure 1: The Lexical Centered Tree (LCT) of the lemma-
tized sentence: ”What is an annotated bibliography?”.

SPTK! defines a rich kernel space as follows:

1. If n; and ngy are leaves then A,(ny,ng) =

pAo(ny,na); else
2. Ao’(n17 77,2) </\2 + Z
0,0, U(T)

= po(ny,ng) X
=l(I2)
D) ~ B
A +d(I2) H Aa(cnl(hj),cm(fgj))), (1)
j=1

where o is any similarity between nodes, e.g., be-
tween their lexical labels, u, A € [0, 1] are two
decay factors, I 1 and [2 are two sequences of in-
dices, which index subsequences of children w,
I = (i1, ...,i|u|), in sequences of children s, 1 <
i1 < ... <4y <|s|,1.e., such that u = Siy+Sijyo and
d(I) = ily| — %1+ 1 is the distance between the first
and last child. c is one of the children of the node
n, also indexed by I. SPTK has been shown to
be rather efficient in practice (Croce et al., 2011,
2012).

3.2 Structural representation for text

Syntactic and semantic structures can play an im-
portant role in building effective representations
for machine learning algorithms. The automatic
extraction of features from tree structured repre-
sentations of text is natural within the TK frame-
work. Therefore, several studies have shown the
power of associating rich structural encoding with
TKSs (Severyn et al., 2013; Tymoshenko and Mos-
chitti, 2015).

In Croce et al. (2011), a wide array of represen-
tations derived from the parse tree of a sentence
are evaluated. The Lexical Centered Tree (LCT) is
shown to be the best performing tree layout for the
QC task. An LCT, as shown in Figure 1, contains
lexicals at the pre-terminal levels, and their gram-
matical functions and POS-tags are added as left-
most children. In addition, each lexical node is
encoded as a word lemma, and has a suffix which
is composed by a special : : symbol and the first

"For a similarity score between 0 and 1, a normalization

; ; TK(T,,T3) ; ;
in the kernel space, i.e. TR) < TR (T3 13) is applied.

letter of the POS-tag of the word. These marked
lexical nodes are then mapped to their correspond-
ing numerical vectors, which are used in the kernel
computation. Only lemmas sharing the same POS-
tag are compared in the semantic kernel similarity.

4 Context Word Embeddings for SPTK

We propose to compute the similarity function o
in SPTK as the cosine similarity of word em-
beddings obtained with neural networks. We
experimented with the popular Continuous Bag-
Of-Words (CBOW), SkipGram models (Mikolov
et al., 2013), and GloVe (Pennington et al., 2014).

4.1 Part-of-speech tags in word embeddings

As in (Croce et al., 2011), we observed that em-
beddings learned from raw words are not the most
effective in the TK computation. Thus, similarly
to Trask et al. (2015), we attach a special :: suf-
fix plus the first letter of the part-of-speech (POS)
to the word lemmas. This way, we differentiate
words by their tags, and learn specific embedding
vectors for each of them. This approach increases
the performance of our models.

4.2 Modeling the word context

Although a word vector encodes some information
about word co-occurrences, the context around a
word, as also suggested in lacobacci et al. (2016),
can explicitly contribute to the word similarity, es-
pecially when the target words are infrequent. For
this reason, we also represent each word as the
concatenation of its embedding with a second vec-
tor, which is supposed to model the context around
the word. We build this vector as (i) a simple av-
erage of the embeddings of the other words in the
sentence, and (ii) with a method specifically de-
signed to embed longer units of text, namely para-
graph2vec (Le and Mikolov, 2014). This is similar
to word2vec: a network is trained to predict a word
given its context, but it can access to an additional
vector specific for the paragraph, where the word
and the context are sampled.

S Recurrent Networks for Encoding Text

As described in Sec. 2, a Siamese Network en-
codes two inputs into a vectorial representation,
reusing the network parameters. In this section,
we briefly describe the standard units used in our
Siamese Network to encode sentences.

263

5.1 Recurrent neural network units

Recurrent Neural Networks (RNNSs) constitute one
of the main architectures used to model sequences,
and they have seen a wide adoption in the NLP
literature. Vanilla RNNs consume a sequence of
vectors one step at the time, and update their inter-
nal state as a function of the new input and their
previous internal state. For this reason, at any
given step, the internal state depends on the en-
tire history of previous states. These networks suf-
fer from the vanishing gradient problem (Bengio
et al., 1994), which is mitigated by a popular RNN
variant, the Long Short Term Memory (LSTM)
network (Hochreiter and Schmidhuber, 1997). An
LSTM can control the amount of information from
the input that affects its internal state, the amount
of information in the internal state that can be for-
gotten, and how the internal state affects the output
of the network.

The Gated Recurrent Unit (GRU) (Chung et al.,
2014) is an LSTM variant with similar perfor-
mance and less parameters, thus faster to train.
Since we use this recurrent unit in our model, we
briefly review it. Let x; and s; be the input vec-
tor and state at timestep ¢, given a sequence of in-
put vectors (x1, ..., z7), the GRU computes a se-
quence of states (sq, ..., s7) according to the fol-
lowing equations:

z=o0(x U 4+ 541 W?)
r=o(xU" + s, W")
h = tanh(zU" + (s;_1 o r)W")
st=(1—z)oh+zo0s_1

The GRU has an update, z, and reset gate, r, and
does not have an internal memory beside the inter-
nal state. The U and I matrices are parameters of
the model. o is the logistic function, the o opera-
tor denotes the elementwise (Hadamard) product,
and tanh is the hyperbolic tangent function. All
the non-linearities are applied elementwise.

5.2 Bidirectional networks

The aforementioned recurrent units consume the
input sequence in one direction, and thus earlier
internal states do not have access to future steps.
Bidirectional RNNs (Schuster and Paliwal, 1997)
solve this issue by keeping a forward and back-
ward internal states that are computed by going
through the input sequence in both directions. The
state at any given step will be the concatenation of

the forward and backward state at that step, and,
in our case, will contain useful information from
both the left and right context of a word.

6 Contextual Word Similarity Network

The methods to model the context described in
Sec. 4.2 augment the target word vector with di-
mensions derived from the entire sentence. This
provides some context that may increase the dis-
criminative power of SPTK. The latter can thus
use a similarity between two words dependent on
the sentences which they belong to. For exam-
ple, when SPTK carries out a QC task, the sen-
tences above have higher probability to share sim-
ilar context if they belong to the same category.
Still, this approach is rather shallow as two words
of the same sentence would be associated with al-
most the same context vector. That is, the ap-
proach does not really transform the embedding
of a given word as a function of its context.

An alternative approach is to train the context
embedding using neural networks on a sense an-
notated corpus, which can remap the word em-
beddings in a supervised fashion. However, since
there are not enough large disambiguated corpora,
we need to approximate the word senses with
coarse-grained information, e.g., the category of
the context. In other words, we can train a net-
work to decide if two target words are sampled
from sentences belonging to the same category.
This way, the states of the trained network corre-
sponding to each word can be eventually used as
word-in-context embeddings.

In the next sections, we present the classifica-
tion task designed for this purpose, and then the
architecture of our Siamese Network for learning
contextual word embeddings.

6.1 Defining the derived classification task

The end task that we consider is the categorization
of a sentence s € D = {s1, ..., s, } into one class
¢i € C ={c1,...,cm}, where D is our collection
of n sentences, and C is the set of m sentence cat-
egories. Intuitively, we define the derived task as
determining if two words extracted from two dif-
ferent sentences share the same sentence category
or not. Our classifier learns word representations
while accessing to the entire sentence.

More formally, we sample a pair of labeled sen-
tences (s;, ¢;), (S5, ¢j) from our training set, where
i # j. Then, we sample a word from each sen-

264

tence, w, € s; and wy, € s;, and we assign a label
y € {0,1} to the word pair. We set y = 0 if
¢ #cj,andy = 1lif¢; = ¢j.

Our goal is to learn a mapping f such that:

sim(f(si;wa), f(sj,wp)) € [0,1], ()

where sim is a similarity function between two
vectors that should output values close to 1 when
y = 1, and values close to 0 when y = 0.

6.2 Data construction for the derived task

To generate sentence pairs, we randomly sample
sentences from different categories. Pairs labeled
as positive are constructed by randomly sampling
sentences from the same category, without re-
placement. Pairs labeled as negative are con-
structed by randomly sampling the first sentence
from one category, and the second sentence from
the remaining categories, again without replace-
ment. Note that we oversample low frequency cat-
egories, and sample positive and negative exam-
ples several times to collect diverse pairs. We re-
move duplicates, and stop the generation process
at approximately 500,000 sentence pairs.

6.3 Bidirectional GRUs for Word Similarity

We model the function f that maps a sentence and
one of its words into a fixed size representation as
a neural network. We aim at using the f encoder
to map different word/sentence pairs into the same
embedding space. Since the two input sentences
play a symmetric role in our desired similarity and
we need to use the same weights for both, we opt
for a Siamese architecture (Chopra et al., 2005).

In this setting, the same network is applied to
two input instances reusing the weights. Alter-
natively, the network can be seen as having two
branches that share all the parameter weights.

The optimization strategy is what differentiates
our Siamese Network from others that compute
textual similarity. We do not compute the similar-
ity (and thus the loss) between two sentences. In-
stead, we compute the similarity between the con-
textual representations of two random words from
the two sentences.

This is clearly depicted in Fig. 2. The input
words are mapped to integer ids, which are looked
up in an embedding matrix to retrieve the corre-
sponding embedding vectors. The sequence of
vectors is then consumed by a 3-layer Bidirec-
tional GRU (BiGRU). We selected a BiGRU for

cCIO—-W

(. (e e (o) (o) G6)) (o] O] (] ()]

Figure 2: The architecture of the Siamese Network. The net-
work computes sim(f(s1,3), f(s2,2)). The word embed-
dings of each sentence are consumed by a stack of 3 Bidi-
rectional GRUs. The two branches of the network share the
parameter weights.

our experiments as they are more efficient and ac-
curate than LSTMs for our tasks. We tried other
architectures, including convolutional networks,
but RNNs gave us better results with less complex-
ity and tuning effort. Note that the weights of the
RNNs are shared between the two branches.

Each RNN layer produces a state for each word,
which is consumed by the next RNN in the stack.
From the top layer, the state corresponding to
the word in the similarity pair is selected. This
state encodes the word given its sentential context.
Thus, the first layer, BiG RU’, maps the sequence
of input vectors (z1,...,z7), into a sequence of
states (s}, ..., s), the second, BiGRU", trans-
forms those states into (s7, ..., s7), and the third,
BiGRU", produces the final representations of
the words in context (s, ..., s7').

Eventually, the network computes the similarity
of a pair of encoded words, selected from the two
sentences. We optimize the cosine similarity to
match the similarity function used in SPTK. We
rescale the output similarity in the [0, 1] range and
train the network to minimize the log loss between
predictions and true labels.

7 Experiments

We compare SPTK models with our tree kernel
model using neural word embeddings (NSPTK)
on question classification (QC), a central task for
question answering, and on sentiment classfication
(SC).

7.1 Experimental setup

Data. The QC dataset (Li and Roth, 2006) con-
tains a set of questions labelled according to a two-
layered taxonomy, which describes their expected

265

CBOW SkipGram GloVe
hs ns hs ns -

dim

50 89.8 89.8 91.0 91.6 89.8
100 93.0 93.6 94.2 92.8 91.6
150 94.2 94.0 94.2 93.8 92.4
200 94.6 93.6 93.2 94.2 93.2
250 94.4 94.4 94.2 94.2 93.6
300 94.2 94.0 94.4 94.0 93.8
500 95.2 95.0 94.8 93.8 94.4
750 94.8 94.6 95.0 94.4 94.2
1000 93.4 95.2 95.2 94.6 94.0

Table 2: QC test set accuracies (%) of NSPTK, given em-
beddings with window size equal to 5, and dimensionality
ranging from 50 to 1,000.

answer type. The coarse layer maps each question
into one of 6 classes: Abbreviation, Description,
Entity, Human, Location and Number. Our exper-
imental setting mirrors the setting of the original
study: we train on 5,452 questions and test on 500.

The SC dataset is the one of SemEval
Twitter’13 for message-level polarity classifica-
tion (Nakov et al., 2013). The dataset is organized
in a training, development and test sets contain-
ing respectively 9,728, 1,654 and 3,813 tweets.
Each tweet is labeled as positive, neutral or neg-
ative. The only preprocessing step we perform on
tweets is to replace user mentions and url with a
<USER> and <URL> token, respectively.

In the cross-validation experiments, we use the
training data to produce the training and test folds,
whereas we use the original test set as our valida-
tion set for tuning the parameters of the network.
Word embeddings. Learning high quality word
embeddings requires large textual corpora. We
train all the vectors for QC on the ukWaC cor-
pus (Ferraresi et al., 2008), also used in Croce
et al. (2011) to obtain LSA vectors. The corpus
includes an annotation layer produced with Tree-
Tagger 2. We process the documents by attaching
the POS-tag marker to each lemma. We trained
paragraph2vec vectors using the Gensim? toolKkit.
Word embeddings for the SC task are learned on a
corpus of 50M English tweets collected from the
Twitter API over two months, using word2vec and
setting the dimension to 100.

Neural model. We use GloVe word embeddings
(300 dimensions), and we fix them during train-
ing. Embeddings for words that are not present in

Zhttp://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/
*https://radimrehurek.com/gensim/

CBOW SkipGram GloVe LSA
hs hs - -
dim
100 84.47 84.63 82.92 -
250 85.75 85.85 85.04 85.39
500 86.48 86.32 85.73 -

Table 3: QC cross-validation accuracies (%) of NSPTK given
embeddings with the selected dimensionalities.

word context QC testaccuracy QC CV accuracy
w2v - 952 86.48

w2v w2y 95.4 86.08"
w2v p2v 95.0 86.46

p2v - 92.8 82.65"

p2v p2v 93.6 83.471

Table 4: QC accuracies for the word embeddings (CBOW
vectors with 500 dimensions, trained using hierarchical soft-
max) and paragraph2vec.

the embedding model are randomly initalized by
sampling a vector of the same dimension from the
uniform distribution U[—0.25,0.25].

The size of the forward and backward states of
the BiGRUs is set to 100, so the resulting con-
catenated state has 200 dimensions. The num-
ber of stacked bidirectional networks is three and
it was tuned on a development set. This allows
the network to have high capacity, fit the data, and
have the best generalization ability. The final layer
learns higher order representations of the words in
context. We did not use dropout as a regularization
mechanism since it did not show a significant dif-
ference on the performance of the network. The
network parameters are trained using the Adam
optimizer (Kingma and Ba, 2014), with a learning
rate of 0.001.

The training examples are fed to the network
in mini-batches. The latter are balanced between
positive and negative examples by picking 32
pairs of sentences sharing the same category, and
32 pairs of sentences from different categories.
Batches of 64 sentences are fed to the network.
The number of words sampled from each sentence
is fixed to 4, and for this reason the final loss is
computed over 256 pairs of words in context, for
each mini-batch. The network is then trained for
5 epochs, storing the parameters corresponding to
the best registered accuracy on the validation set.
Those weights are later loaded and used to encode
the words in a sentence by taking their correspond-
ing output states from the last BIGRU unit.

Structural models. We trained the tree kernel

266

word context QC CV accuracy Std. dev

w2V - 86.48 .005
BiGRUs - 84.617 027

w2v BiGRUs 88.327 .009

Table 5: QC accuracies for NSPTK, using the word-in-
context vector produced by the stacked BiGRU encoder
trained with the Siamese Network. Word vectors are trained
with CBOW (hs) and have 500 dimensions.

word context SC FFN
w2v - 48.65
w2v w2v 51.59
w2v BiGRUs 60.96
SemEval system SC FfN
Castellucci et al. (2013) 58.27
Dong et al. (2015) 72.8

Table 6: SC results for NSPTK with word embeddings and
the word-in-context embeddings. Runs of selected systems
are also reported.

models using SVM-Light-TK (Moschitti, 2004),
an SVM-Light extension (Joachims, 1999) with
tree kernel support. We modified the software to
lookup specific vectors for each word in a sen-
tence. We preprocessed each sentence with the
LTH parser* and used its output to construct the
LCT. We used the parameters for the QC classi-
fiers from Croce et al. (2011), while we selected
them on the Twitter’ 13 dev. set for the SC task.

7.2 Context Embedding Results

Table 2 shows the QC accuracy of NSPTK with
CBOW, SkipGram and GloVe. The results are re-
ported for vector dimensions (dim) ranging from
50 to 1000, with a fixed window size of 5.

The performance for the CBOW hierarchical
softmax (hs) and negative sampling (ns), and for
the SkipGram hs settings are similar. For the
SkipGram ns settings, the accuracy is slightly
lower for smaller dimension sizes. GloVe embed-
dings yield a lower accuracy, which steadily in-
creases with the size of the embeddings. In gen-
eral, a higher dimension size produces higher ac-
curacy, but also makes the training more expen-
sive. 500 dimensions seem a good trade-off be-
tween performance and computational cost.

To better validate the performance of NSPTK,
and since the usual test set may have reached a
saturation point, we cross-validate some models.

*http://nlp.cs.Ith.se

Question Wrong w2v Correct BIGRU
1) What is the occupation of Nicholas Cage ? enty hum
2) What level of government (...) is responsible for dealing with racism? num hum
3) What is the Motto for the State of Maryland? loc desc
4) What is a virtual IP address? loc desc
5) What function does a community’s water tower serve? loc desc

Table 7: Sample of sentences where NSPTK with word vectors fails, and the BiGRU model produces correct classifications.

We use the training set to perform a 5-fold strati-
fied cross-validation (CV), such that the distribu-
tion of labels in each fold is similar. Table 3 shows
the cross-validated results for a subset of word em-
bedding models. Neural embeddings seem to give
a slightly higher accuracy than LSA. A more sub-
stantial performance edge may come from model-
ing the context, thus we experimented with word
embeddings concatenated to context embeddings.

Table 4 shows the results of NSPTK using dif-
ferent word encodings. The word and context
columns refer to the model used for encoding the
word and the context, respectively. These mod-
els are word2vec (w2v) and paragraph2vec (p2v).
The word2vec vector for the context is produced
by averaging the embedding vectors of the other
words in the sentence, i.e., excluding the target
word. The paragraph2vec model has its own pro-
cedure to embed the words in the context. CV re-
sults marked with T are significant with a p-value
< 0.005. The cross-validation results reveal that
word2vec embeddings without context are a tough
baseline to beat, suggesting that standard ways to
model the context are not effective.

7.3 Results of our Bidirectional GRU for
Word Similarity

Table 5 shows the results of encoding the words
in context using a more sophisticated approach:
mapping the word to a representation learned with
the Siamese Network that we optimize on the de-
rived classification task presented in Section 6.1.
The NSPTK operating on word vectors (best vec-
tors from Table 3) concatenated with the word-
in-context vectors produced by the stacked Bi-
GRU encoder, registers a significant improvement
over word vectors alone. In this case, the results
marked with T are significant with a p-value <
0.002. This indicates that the strong similarity
contribution coming from word vectors is success-
fully affected by the word-in-context vectors from
the network. The original similarities are thus
modulated to be more effective for the final clas-

267

sification task. Another possible advantage of the
model is that unknown words, which do not partic-
ipate in the context average of simpler model, have
a potentially more useful representation in the in-
ternal states of the network.

7.4 Sentiment Classification

Table 6 reports the results on the SC task. This ex-
periment shows that incorporating the context in
the similarity computation slightly improves the
performance of the NSPTK. The real improve-
ment, 12.31 absolute percent points over using
word vectors alone, comes from modeling the
words in context with the BiGRU encoder, con-
firming it as an effective strategy to improve the
modeling capabilities of NSPTK.

Interestingly, our model with a single kernel
function and without complex text normaliza-
tion techniques outperforms a multikernel sys-
tem (Castellucci et al., 2013), when the word-in-
context embeddings are incorporated. The multik-
ernel system is applied on preprocessed text and
includes a Bag-Of-Words Kernel, a Lexical Se-
mantic Kernel, and a Smoothed Partial Tree Ker-
nel. State-of-the-art systems (Dong et al., 2015;
Severyn and Moschitti, 2015b) include many lex-
ical and clustering features, sentiment lexicons,
and distant supervision techniques. Our approach
does not include any of the former.

7.5 Wins of the BiIGRU model

An error analysis on the QC task reveals the What
questions as the most ambiguous. Table 7 con-
tains some of the successes of the BIiGRU model
with respect to the model using only word vec-
tors. Those wins can be explained by the effect
of the contextual word vectors on the kernel sim-
ilarity. In Question 1, the meaning of occupa-
tion is affected by the presence of a person name.
In Question 2, the word level loses its prevalent
association with quantities. In questions 3 to 5,
the underlined words are a strong indicator of lo-
cations/places, and the kernel similarity may be

dominated by their corresponding word vectors.
BiGRU vectors are instead able to effectively re-
modulate the kernel similarity and induce a correct
classification.

8 Conclusions

In this paper, we applied neural network mod-
els for learning representations with semantic
convolution tree kernels. = We evaluated the
main distributional representation methods for
computing semantic similarity inside the kernel.
In addition, we augmented the vectorial repre-
sentations of words with information coming
from the sentential content. Word vectors alone
revealed to be difficult to improve upon. To better
model the context, we proposed word-in-context
representations extracted from the states of a
recurrent neural network. Such network learns
to decide if two words are sampled from sen-
tences which share the same category label. The
resulting embeddings are able to improve on the
selected tasks when used in conjunction with
the original word embeddings, by injecting more
contextual information for the modulation of the
kernel similarity. We show that our approach can
improve the accuracy of the convolution semantic
tree kernel.

Acknowledgments. This work has been
supported by the EC project CogNet, 671625
(H2020-ICT-2014-2, Research and Innovation
action). The first author was supported by the
Google Europe Doctoral Fellowship Award 2015.
Many thanks to the anonymous reviewers for their
valuable suggestions.

References

Daniel Andor, Chris Alberti, David Weiss, Aliak-
sei Severyn, Alessandro Presta, Kuzman Gancheyv,
Slav Petrov, and Michael Collins. 2016. Glob-
ally Normalized Transition-Based Neural Networks.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 2442-2452.
http://www.aclweb.org/anthology/P16-1231.

Y. Bengio, P. Simard, and P. Frasconi. 1994. Learn-
ing Long-term Dependencies with Gradient De-
scent is Difficult. Trans. Neur. Netw. 5(2):157-166.
https://doi.org/10.1109/72.279181.

Giuseppe Castellucci, Simone Filice, Danilo Croce,

268

and Roberto Basili. 2013. UNITOR: Combin-
ing Syntactic and Semantic Kernels for Twit-
ter Sentiment Analysis. In Second Joint Con-
ference on Lexical and Computational Semantics
(*SEM), Volume 2: Proceedings of the Seventh In-
ternational Workshop on Semantic Evaluation (Se-
mEval 2013). Association for Computational Lin-
guistics, Atlanta, Georgia, USA, pages 369-374.
http://www.aclweb.org/anthology/S13-2060.

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with
application to face verification. In Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on. IEEE, volume 1,
pages 539-546.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555 .

Danilo Croce, Alessandro Moschitti, and Roberto
Basili. 2011. Structured Lexical Similar-
ity via Convolution Kernels on Dependency
Trees. In In EMNLP. Edinburgh, Scotland, UK.
http://www.aclweb.org/anthology/D11-1096.

Danilo Croce, Alessandro Moschitti, Roberto Basili,
and Martha Palmer. 2012. Verb Classification using
Distributional Similarity in Syntactic and Semantic
Structures. In ACL (1). The Association for Com-
puter Linguistics, pages 263-272.

Li Dong, Furu Wei, Yichun Yin, Ming Zhou, and
Ke Xu. 2015. Splusplus: A Feature-Rich Two-stage
Classifier for Sentiment Analysis of Tweets. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015). Association for
Computational Linguistics, Denver, Colorado, pages
515-519. http://www.aclweb.org/anthology/S15-
2086.

Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and
Silvia Bernardini. 2008. Introducing and evaluating
ukWacC, a very large web-derived corpus of English.
In Proceedings of the 4th Web as Corpus Workshop
(WAC-4) Can we beat Google?. page 47.

Simone Filice, Danilo Croce, Alessandro Moschitti,
and Roberto Basili. 2016. KeLP at SemEval-
2016 Task 3: Learning Semantic Relations be-
tween Questions and Answers. In Proceedings
of the 10th International Workshop on Semantic
Evaluation (SemEval-2016). Association for Com-
putational Linguistics, San Diego, California, pages
1116-1123. http://www.aclweb.org/anthology/S16-
1172.

Simone Filice, Giovanni Da San Martino, and
Alessandro Moschitti. 2015. Structural Repre-
sentations for Learning Relations between Pairs
of Texts. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume

1: Long Papers). Association for Computational
Linguistics, Beijing, China, pages 1003-1013.
http://www.aclweb.org/anthology/P15-1097.

1997.
Neural computation

Sepp Hochreiter and Jiirgen Schmidhuber.
Long short-term memory.
9(8):1735-1780.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2016. Embeddings for Word
Sense Disambiguation: An Evaluation Study. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 897-907.
http://www.aclweb.org/anthology/P16-1085.

Thorsten Joachims. 1999. Making Large-scale Support
Vector Machine Learning Practical. In Bernhard
Scholkopf, Christopher J. C. Burges, and Alexan-
der J. Smola, editors, Advances in Kernel Methods,
MIT Press, Cambridge, MA, USA, pages 169-184.
http://dl.acm.org/citation.cfm?id=299094.299104.

Nal Kalchbrenner, Edward Grefenstette, and Phil
Blunsom. 2014. A Convolutional Neural Net-
work for Modelling Sentences. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers). Baltimore, Maryland, pages 655-665.
http://www.aclweb.org/anthology/P14-1062.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for Com-
putational Linguistics, Doha, Qatar, pages 1746—
1751. http://www.aclweb.org/anthology/D14-1181.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations (ICLR).

Quoc V. Le and Tomas Mikolov. 2014. Dis-
tributed Representations of Sentences
and Documents. CoRR abs/1405.4053.
http://arxiv.org/abs/1405.4053.

Omer Levy and Yoav Goldberg. 2014. Dependency-
Based Word Embeddings. In Proceedings
of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2:
Short Papers). Association for Computational Lin-
guistics, Baltimore, Maryland, pages 302-308.
http://www.aclweb.org/anthology/P14-2050.

Xin Li and Dan Roth. 2006. Learning question clas-
sifiers: the role of semantic information. Natural
Language Engineering 12(3):229-249.

Mingbo Ma, Liang Huang, Bowen Zhou, and Bing Xi-
ang. 2015. Dependency-based Convolutional Neu-
ral Networks for Sentence Embedding. In Proceed-
ings of the 53rd Annual Meeting of the Association

269

for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers). Association for
Computational Linguistics, Beijing, China, pages
174-179. http://www.aclweb.org/anthology/P15-
2029.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. ICLR Workshop .

Alessandro Moschitti. 2004. A Study on Convolution
Kernels for Shallow Semantic Parsing. In Proceed-
ings of the 42nd Annual Meeting on Association for
Computational Linguistics. Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, ACL
"04.

Alessandro Moschitti. 2006. Efficient Convolution
Kernels for Dependency and Constituent Syntac-
tic Trees. In Proceedings of the 17th Euro-
pean Conference on Machine Learning. Springer-
Verlag, Berlin, Heidelberg, ECML’06, pages 318—
329. https://doi.org/10.1007/11871842_32.

Jonas Mueller and Aditya Thyagarajan. 2016.
Siamese Recurrent Architectures for Learning
Sentence Similarity. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelli-
gence. AAAI Press, AAAI’'16, pages 2786-2792.
http://dl.acm.org/citation.cfm?1d=3016100.3016291.

Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva,
Veselin Stoyanov, Alan Ritter, and Theresa Wil-
son. 2013. SemEval-2013 Task 2: Sentiment
Analysis in Twitter. In Second Joint Conference
on Lexical and Computational Semantics (*SEM),
Volume 2: Proceedings of the Seventh Inter-
national Workshop on Semantic Evaluation (Se-
mEval 2013). Association for Computational Lin-
guistics, Atlanta, Georgia, USA, pages 312-320.
http://www.aclweb.org/anthology/S13-2052.

Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru.
2016. Learning Text Similarity with Siamese Recur-
rent Networks. In Proceedings of the 1st Workshop
on Representation Learning for NLP. Association
for Computational Linguistics, Berlin, Germany,
pages 148—157. http://anthology.aclweb.org/W16-
1617.

Thien Hai Nguyen and Kiyoaki Shirai. 2015. Aspect-
Based Sentiment Analysis Using Tree Kernel Based
Relation Extraction. In Alexander Gelbukh, editor,
Computational Linguistics and Intelligent Text Pro-
cessing: 16th International Conference, CICLing
2015. Springer International Publishing, Cairo,
Egypt, pages 114-125.

Thien Huu Nguyen, Barbara Plank, and Ralph Grish-
man. 2015. Semantic Representations for Domain
Adaptation: A Case Study on the Tree Kernel-based
Method for Relation Extraction. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Beijing, China, pages 635-644.
http://www.aclweb.org/anthology/P15-1062.

Truc Vien T. Nguyen and Alessandro Moschitti. 2011.
End-to-End Relation Extraction Using Distant Su-
pervision from External Semantic Repositories. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, Portland, Oregon, USA, pages 277-
282. http://www.aclweb.org/anthology/P11-2048.

Truc-Vien T. Nguyen, Alessandro Moschitti, and
Giuseppe Riccardi. 2009. Convolution Kernels on
Constituent, Dependency and Sequential Structures
for Relation Extraction. In Proceedings of the
2009 Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics, Singapore, pages 1378-1387.
http://www.aclweb.org/anthology/D/D09/D09-
1143.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors
for Word Representation. In Empirical Methods
in Natural Language Processing. pages 1532—1543.
http://www.aclweb.org/anthology/D14-1162.

Barbara Plank and Alessandro Moschitti. 2013. Em-
bedding Semantic Similarity in Tree Kernels for
Domain Adaptation of Relation Extraction. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Compu-
tational Linguistics, Sofia, Bulgaria, pages 1498-
1507. http://www.aclweb.org/anthology/P13-1147.

Jinfeng Rao, Hua He, and Jimmy Lin. 2016. Noise-
Contrastive Estimation for Answer Selection with
Deep Neural Networks. In Proceedings of the 25th
ACM International on Conference on Information
and Knowledge Management. ACM, New York, NY,
USA, CIKM ’16, pages 1913-1916.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing 45(11):2673-2681.

Aliaksei Severyn and Alessandro Moschitti. 2015a.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM,
pages 373-382.

Aliaksei Severyn and Alessandro Moschitti. 2015b.
UNITN: Training Deep Convolutional Neural Net-
work for Twitter Sentiment Classification. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015). Association for
Computational Linguistics, Denver, Colorado, pages
464-469. http://www.aclweb.org/anthology/S15-
2079.

270

Aliaksei Severyn, Massimo Nicosia, and Alessandro

Moschitti. 2013. Learning Semantic Textual Sim-
ilarity with Structural Representations. In Pro-
ceedings of the 51st Annual Meeting of the ACL
(Volume 2: Short Papers). ACL, pages 714-718.
http://aclweb.org/anthology/P13-2125.

Jodo Silva, Luisa Coheur, Ana Cristina Mendes, and

Andreas Wichert. 2010. From symbolic to sub-
symbolic information in question classification. Ar-
tificial Intelligence Review 35(2):137-154.

Richard Socher, Brody Huval, Christopher D. Man-

ning, and Andrew Y. Ng. 2012. Semantic
Compositionality through Recursive Matrix-Vector
Spaces. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning. Association for Computational
Linguistics, Jeju Island, Korea, pages 1201-1211.
http://www.aclweb.org/anthology/D12-1110.

Richard Socher, Alex Perelygin, Jean Wu, Jason

Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive Deep Mod-
els for Semantic Compositionality Over a Senti-
ment Treebank. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics, Seattle, Washington, USA, pages 1631-1642.
http://www.aclweb.org/anthology/D13-1170.

Kai Sheng Tai, Richard Socher, and Christopher D.

Manning. 2015. Improved Semantic Representa-
tions From Tree-Structured Long Short-Term Mem-
ory Networks. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Compu-
tational Linguistics, Beijing, China, pages 1556—
1566. http://www.aclweb.org/anthology/P15-1150.

Ming Tan, Cicero dos Santos, Bing Xiang, and

Bowen Zhou. 2016. Improved Representation
Learning for Question Answer Matching. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 464—473.
http://www.aclweb.org/anthology/P16-1044.

Andrew Trask, Phil Michalak, and John Liu.

2015. sense2vec - A Fast and Accurate
Method for Word Sense Disambiguation In Neu-
ral Word Embeddings. CoRR abs/1511.06388.
http://arxiv.org/abs/1511.06388.

Kateryna Tymoshenko and Alessandro Moschitti.

2015. Assessing the Impact of Syntactic and Se-
mantic Structures for Answer Passages Reranking.
In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Man-
agement, CIKM 2015, Melbourne, VIC, Australia,
October 19 - 23, 2015. pages 1451-1460.

