
Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 248–259,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

A Probabilistic Generative Grammar for Semantic Parsing

Abulhair Saparov
Carnegie Mellon University

Machine Learning Department
Pittsburgh, P.A.

asaparov@cs.cmu.edu

Vijay Saraswat
IBM T.J. Watson
Research Center

Yorktown Heights, N.Y.
vijay@saraswat.org

Tom M. Mitchell
Carnegie Mellon University

Machine Learning Department
Pittsburgh, P.A.

tom.mitchell@cmu.edu

Abstract

We present a generative model of nat-
ural language sentences and demon-
strate its application to semantic pars-
ing. In the generative process, a logical
form sampled from a prior, and condi-
tioned on this logical form, a grammar
probabilistically generates the output
sentence. Grammar induction using
MCMC is applied to learn the gram-
mar given a set of labeled sentences
with corresponding logical forms. We
develop a semantic parser that finds the
logical form with the highest posterior
probability exactly. We obtain strong
results on the GeoQuery dataset and
achieve state-of-the-art F1 on Jobs.

1 Introduction

Accurate and efficient semantic parsing is a
long-standing goal in natural language pro-
cessing. Existing approaches are quite suc-
cessful in particular domains (Zettlemoyer and
Collins, 2005, 2007; Wong and Mooney, 2007;
Liang et al., 2011; Kwiatkowski et al., 2010,
2011, 2013; Li et al., 2013; Zhao and Huang,
2014; Dong and Lapata, 2016). However, they
are largely domain-specific, relying on addi-
tional supervision such as a lexicon that pro-
vides the semantics or the type of each to-
ken in a set (Zettlemoyer and Collins, 2005,
2007; Kwiatkowski et al., 2010, 2011; Liang
et al., 2011; Zhao and Huang, 2014; Dong
and Lapata, 2016), or a set of initial syn-
chronous context-free grammar rules (Wong
and Mooney, 2007; Li et al., 2013). To ap-
ply the above systems to a new domain, addi-
tional supervision is necessary. When begin-
ning to read text from a new domain, humans
do not need to re-learn basic English gram-

Semantic prior

Logical form
turn on device(Ada,gpu cluster)

Generative semantic grammarParser

S

VP

NP

NPPNP

V

NP

“Ada started the machine with the GPU”

Figure 1: High-level illustration of the setting in which
our grammar is applied in this paper. The dark arrows
outline the generative process. During parsing, the in-
put is the observed sentence, and we wish to find the
most probable logical form and derivation given the
training data under the semantic prior.

mar. Rather, they may encounter novel ter-
minology. With this in mind, our approach
is akin to that of (Kwiatkowski et al., 2013)
where we provide domain-independent super-
vision to train a semantic parser on a new do-
main. More specifically, we restrict the rules
that may be learned during training to a set
that characterizes the general syntax of En-
glish. While we do not explicitly present and
evaluate an open-domain semantic parser, we
hope our work provides a step in that direc-
tion.

Knowledge plays a critical role in natural
language understanding. Even seemingly triv-
ial sentences may have a large number of am-
biguous interpretations. Consider the sentence
“Ada started the machine with the GPU,” for
example. Without additional knowledge, such
as the fact that “machine” can refer to com-
puting devices that contain GPUs, or that
computers generally contain devices such as

248



GPUs, the reader cannot determine whether
the GPU is part of the machine or if the GPU
is a device that is used to start machines. Con-
text is highly instrumental to quickly and un-
ambiguously understand sentences.

In contrast to most semantic parsers, which
are built on discriminative models, our model
is fully generative: To generate a sentence, the
logical form is first drawn from a prior. A
grammar then recursively constructs a deriva-
tion tree top-down, probabilistically selecting
production rules from distributions that de-
pend on the logical form (see Figure 1 for a
high-level schematic diagram). The seman-
tic prior distribution provides a straightfor-
ward way to incorporate background knowl-
edge, such as information about the types of
entities and predicates, or the context of the
utterance. Additionally, our generative model
presents a promising direction to jointly learn
to understand and generate natural language.

This article describes the following contri-
butions:
• In Section 2, we present our grammar for-

malism in its general form.
• Section 2.2 discusses aspects of the model

in its application to the later experiments.
• In Section 3, we present a method to per-

form grammar induction in this model.
Given a set of observed sentences and
their corresponding logical forms, we ap-
ply Markov chain Monte Carlo (MCMC) to
infer the posterior distributions of the pro-
duction rules in the grammar.
• Given a trained grammar, we also develop

a method to perform parsing in Section 4:
to find the k-best logical forms for a given
sentence, leveraging the semantic prior to
guide its search.
• Using the GeoQuery and Jobs datasets,

we demonstrate in Section 6 that this
framework can be applied to create nat-
ural language interfaces for semantic for-
malisms as complex as Datalog/lambda cal-
culus, which contain variables, scope ambi-
guity, and superlatives.

All code and datasets are available at github.
com/asaparov/parser.

2 Semantic grammar

A grammar in our formalism operates over a
set of nonterminals N and a set of terminal

S→ N:select arg1 VP:delete arg1
VP→ V:identity N:select arg2
VP→ V:identity

N→ “tennis” V→ “swims”
N→ “Andre Agassi” V→ “plays”
N→ “Chopin”

Figure 2: Example of a grammar in our framework.
This grammar operates on logical forms of the form
predicate(first argument, second argument). The se-
mantic function select arg1 returns the first argu-
ment of the logical form. Likewise, the function
select arg2 returns the second argument. The func-
tion delete arg1 removes the first argument, and
identity returns the logical form with no change. In
our use of the framework, the interior production rules
(the first three listed above) are examples of rules that
we specify, whereas the terminal rules and the posterior
probabilities of all rules are learned via grammar in-
duction. We also use a richer semantic formalism than
in this example. Section 2.2 provides more detail.

S plays sport(agassi,tennis)

Nagassi

“Andre Agassi”

VP plays sport(,tennis)

V

“plays”

N tennis

“tennis.”
Figure 3: Example of a derivation tree under the gram-
mar given in Figure 2. The logical form corresponding
to every node is shown in blue beside the respective
node. The logical form for V is plays sport(,tennis)
and is omitted above to reduce clutter.

symbolsW. It can be understood as an exten-
sion of a context-free grammar (CFG) (Chom-
sky, 1956) where the generative process for the
syntax is dependent on a logical form, thereby
coupling syntax with semantics. In the top-
down generative process of a derivation tree, a
logical form guides the selection of production
rules. Production rules in our grammar have
the form A→ B1:f1 . . . Bk :fk where A ∈ N is
a nonterminal, Bi ∈ N∪W are right-hand side
symbols, and fi are semantic transformation
functions. These functions can encode how
to “decompose” this logical form when recur-
sively generating the subtrees rooted at each
Bi. Thus, they enable semantic composition-
ality. An example of a grammar in this frame-
work is shown in Figure 2, and a derivation
tree is shown in Figure 3. Let R be the set
of production rules in the grammar and RA

be the set of production rules with left-hand
nonterminal symbol A.

2.1 Generative process

A parse tree (or derivation) in this formalism
is a tree where every interior node is labeled

249



with a nonterminal symbol, every leaf is la-
beled with a terminal, and the root node is
labeled with the root nonterminal S. More-
over, every node in the tree is associated with
a logical form: let xn be the logical form as-
signed to the tree node n, and x0 = x for the
root node 0.

The generative process to build a parse tree
begins with the root nonterminal S and a log-
ical form x. We expand S by randomly draw-
ing a production rule from RS , conditioned
on the logical form x. This provides the first
level of child nodes in the derivation tree. So
if, for example, the rule S → B1 :f1 . . . Bk :fk
were drawn, the root node would have k
child nodes, n1, . . . ,nk, respectively labeled
B1, . . . , Bk. The logical form associated with
each node is determined by the semantic trans-
formation function: xni = fi(x). These func-
tions describe the relationship between the
logical form at a child node and that of its
parent node. This process repeats recursively
with every right-hand side nonterminal sym-
bol, until there are no unexpanded nontermi-
nal nodes. The sentence is obtained by taking
the yield of the terminals in the tree (a con-
catenation).

The semantic transformation functions are
specific to the semantic formalism and may be
defined as appropriate to the application. In
our parsing application, we define a domain-
independent set of transformation functions
(e.g., one function selects the left n conjuncts
in a conjunction, another selects the nth argu-
ment of a predicate instance, etc).

2.2 Selecting production rules

In the above description, we did not specify
the distribution from which rules are selected
from RA. There are many modeling options
available when specifying this distribution. In
our approach, we choose a hierarchical Dirich-
let process (HDP) prior (Teh et al., 2006). Ev-
ery nonterminal in our grammar A ∈ N will
be associated with an HDP hierarchy. For each
nonterminal, we specify a sequence of semantic
feature functions, {g1, . . . , gm}, each of which
return a discrete feature (such as an integer)
of an input logical form x. We use this se-
quence of feature functions to define the hier-
archy of the HDP: starting with the root node,
we add a child node for every possible value of
the first feature function g1. For each of these

child nodes, we add a grandchild node for ev-
ery possible value of the second feature func-
tion g2, and so forth. The result is a complete
tree of depth m. Each node n in this tree is
assigned a distribution Gn as follows:

G0 ∼ DP(α0, H), (1)

Gn ∼ DP(αn, Gπ(n)),

where 0 is the root node, π(n) is the parent
of n, α are a set of concentration parameters,
and H is a base distribution over RA. This
base distribution is independent of the logical
form x.

To select a rule in the generative process,
given the logical form x, we can compute its
feature values (g1(x), . . . , gm(x)) which specify
a unique path in the HDP hierarchy to a leaf
node Gx. We then draw the production rule
from Gx. The specified set of production rules
and semantic features are included with the
code package. The specified rules and features
do not change across our experiments.

Take, for example, the derivation in Figure
3. In the generative process where the node
VP is expanded, the production rule is drawn
from the HDP associated with the nontermi-
nal VP. Suppose the HDP was constructed
using a sequence of two semantic features:
(predicate, arg2). In the example, the fea-
ture functions are evaluated with the logical
form plays sport(,tennis) and they return
the sequence (plays sport, tennis). This se-
quence uniquely identifies a path in the HDP
hierarchy from the root node 0 to a leaf node
n. The production rule VP→ V N is drawn
from this leaf nodeGn, and the generative pro-
cess continues recursively.

In our implementation, we divide the set of
nonterminals N into two groups: (1) the set
of “interior” nonterminals, and (2) pretermi-
nals. The production rules of preterminals are
restricted such that the right-hand side con-
tains only terminal symbols. The rules of inte-
rior nonterminals are restricted such that only
nonterminal symbols appear on the right side.

1. For preterminals, we set H to be a distri-
bution over sequences of terminal symbols
as follows: we generate each token in the
sequence i.i.d. from a uniform distribution
over a finite set of terminals and a special
stop symbol with probability φA. Once the
stop symbol is drawn, we have finished gen-

250



erating the rule. Note that we do not spec-
ify a set of domain-specific terminal sym-
bols in defining this distribution.

2. For interior nonterminals, we specify H
as a discrete distribution over a domain-
independent set of production rules. This
requires specifying a set of nonterminal
symbols, such as S, NP, VP, etc. Since these
production rules contain semantic transfor-
mation functions, they are specific to the
semantic formalism.

We emphasize that only the prior is specified
here, and we will use grammar induction to
infer the posterior. In principle, a more re-
laxed choice of H may enable grammar induc-
tion without pre-specified production rules,
and therefore without dependence on a partic-
ular semantic formalism or natural language,
if an efficient inference algorithm can be de-
veloped in such cases.

3 Induction

We describe grammar induction indepen-
dently of the choice of rule distribution. Let
θ be the random variables in the grammar: in
the case of the HDP prior, θ is the set of all dis-
tributions Gn at every node in the hierarchies.
Given a set of sentences y , {y1, . . . , yn} and
corresponding logical forms x , {x1, . . . , xn},
we wish to compute the posterior p(t,θ|x,y)
over the unobserved variables: the grammar
θ and the latent derivations/parse trees t ,
{t1, . . . , tn}. This is intractable to compute
exactly, and so we resort to Markov chain
Monte Carlo (MCMC) (Gelfand and Smith,
1990; Robert and Casella, 2010). To perform
blocked Gibbs sampling, we pick initial values
for t and θ and repeat the following:

1. For i = 1, . . . , n, sample ti|θ, xi, yi.
2. Sample θ|t.

However, since the sampling of each tree t de-
pends on θ, and we need to resample all n
parse trees before sampling θ, this Markov
chain can be slow to mix. Thus, we employ
collapsed Gibbs sampling by integrating out
θ. In this algorithm, we repeatedly sample
from ti|t−i, xi, yi where t−i = t \ {ti}.
p(ti|t−i, xi, yi) = (2)

1{yield(ti) = yi}
∏
A∈N

p

( ⋂
{n∈ti :n

has label A}

rn

∣∣∣∣∣ t−i, xi
)
,

where the intersection is taken over tree nodes
n ∈ ti labeled with the nonterminal A, rn is
the production rule at node n, and 1{·} is 1 if
the condition is true and zero otherwise. With
θ integrated out, the probability does not nec-
essarily factorize over rules. In the case of the
HDP prior, selecting a rule will increase the
probability that the same rule is selected again
(due to the “rich get richer” effect observed in
the Chinese restaurant process). We instead
use a Metropolis-Hastings step to sample ti,
where the proposal distribution is given by the
fully factorized form:

p(t∗i |t−i, xi, yi) = (3)

1{yield(t∗i ) = yi}
∏
n∈t∗i

p (rn | t−i, xni ) .

After sampling t∗i , we choose to accept the new
sample with probability∏

n∈ti p(r
n|xn, t−i)

p
(⋂

n∈ti r
n|x, t−i

) p
(⋂

n∈t∗i r
n|x, t−i

)
∏

n∈t∗i p(r
n|xn, t−i) ,

where ti, here, is the old sample, and t∗i is the
newly proposed sample. In practice, this ac-
ceptance probability is very high. This ap-
proach is very similar in structure to that
in Johnson et al. (2007); Blunsom and Cohn
(2010); Cohn et al. (2010).

If an application requires posterior samples
of the grammar variables θ, we can obtain
them by drawing from θ|t after the collapsed
Gibbs sampler has mixed. Note that this algo-
rithm requries no further supervision beyond
the utterances y and logical forms x. However,
it is able to exploit additional information such
as supervised derivations/parse trees. For ex-
ample, a lexicon can be provided where each
entry is a terminal symbol yi with a corre-
sponding logical form label xi. We evaluate
our method with and without such a lexicon.

Refer to Saparov and Mitchell (2016) for
details on HDP inference and computing
p(rn|xn, t−i).

3.1 Sampling t∗i
To sample from equation (3), we use inside-
outside sampling (Finkel et al., 2006; John-
son et al., 2007), a dynamic programming
approach, where the inside step is imple-
mented using an agenda-driven chart parser
(Indurkhya and Damerau, 2010). The algo-
rithm fills a chart, which has a cell for every

251



nonterminal A, sentence start position i, end
position j, and logical form x. The algorithm
aims to compute the inside probability of ev-
ery chart cell: that is, for every cell (A, i, j, x),
we compute the probability that t∗i contains
a subtree rooted with the nonterminal A and
logical form x, spanning the sentence positions
(i, j). Let I(A,i,j,x) be the inside probability at
the chart cell (A, i, j, x):

I(A,i,j,x) =
∑

A→B1:f1...BK :fK∑
i=l1<...<lK+1=j

K∏
u=1

I(Bu,lu,lu+1,fu(x)). (4)

Each item in the agenda represents a snapshot
of the computation of this expression for a sin-
gle rule A → B1 : f1 . . . BK : fK . The agenda
item stores the current position in the rule k,
the set of sentence spans that correspond to
the first k right-hand side symbols l1, . . . , lk+1,
the span of the rule (i, j), the logical form x,
and the inside probability of the portion of the
rule computed so far. At every iteration, the
algorithm pops an item from the agenda and
adds it to the chart, and considers the next
right-hand side symbol Bk.
• If Bk is a terminal, it will match it against

the input sentence. If the terminal does not
match the sentence, this agenda item is dis-
carded and the algorithm continues to the
next iteration. If the terminal does match,
the algorithm increments the rule. That
is, for each possible value of lk+2, the al-
gorithm constructs a new agenda item con-
taining the same contents as the old agenda
item, but with rule position k + 1.
• If Bk is a nonterminal, the algorithm will

expand it (if it was not previously expanded
at this cell). The algorithm considers ev-
ery production rule of the form Bk → β,
and every possible end position for the next
nonterminal lk+2 = lk+1 + 1, . . . , j − 1,
and enqueues a new agenda item with rule
Bk → β, rule position set to 1, span set
to (lk, lk+1), logical form set to fk(x), and
inside probability initialized to 1. The orig-
inal agenda item is said to be “waiting” for
Bk to be completed later on in the algo-
rithm.
• If the rule is complete (there are no sub-

sequent symbols in the rule of this agenda
item), we can compute its inner probabil-

ity p(A → B1 :f1 . . . BK :fK |x, t−i). First,
we record that this rule was used to com-
plete the left-hand nonterminalA at the cell
(A, i, j, x). Then, we consider every agenda
item in the chart that is currently “wait-
ing” for the left-hand nonterminal A at this
sentence span. The search increments each
“waiting” item, adding a new item to the
agenda for each, whose log probability is
the sum of the log probability of the old
agenda item and the log probability of the
completed rule.

We prioritize items in the agenda by i − j
(so items with smaller spans are dequeued
first). This ensures that whenever the search
considers expanding Bk, if Bk was previously
expanded at this cell, its inside probabil-
ity is fully computed. Thus, we can avoid
re-expanding Bk and directly increment the
agenda item. The algorithm terminates when
there are no items in the agenda.

All that remains is the outside step: to sam-
ple the tree given the computed inside proba-
bilities. To do so, we begin with the chart cell
(S, 0, |yi|, xi) where |yi| is the length of sen-
tence yi, and we consider all completed rules
at this cell (these rules will be of the form
S → β). Each rule will have a computed inside
probability, and we can sample the rule from
the categorical distribution according to these
inside probabilities. Then, we consider the
right-hand side nonterminals in the selected
rule, and continue sampling recursively. The
end result is a tree sampled from equation (3).

4 Parsing

For a new sentence y∗, we aim to find the log-
ical form x∗ and derivation t∗ that maximizes

p(x∗, t∗|y∗,θ) ∝ p(x∗)p(y∗|t∗)p(t∗|x∗,θ),

= 1{yield(t∗) = y∗}p(x∗)
∏
n∈t∗

p(rn|xn∗ ,θ). (5)

Here, θ is a point estimate of the grammar,
which may be obtained from a single sample,
or from a Monte Carlo average over a finite set
of samples.

To perform parsing, we first describe an
algorithm to compute the derivation t∗ that
maximizes the above quantity, given the log-
ical form x∗ and input sentence y∗. We will
later demonstrate how this algorithm can be
used to find the optimal logical form and

252



derivation x∗, t∗. To find the optimal t∗, we
again use an agenda-driven chart parser to
perform the optimization, with a number of
important differences. Each agenda item will
keep track the derivation tree completed so far.

The algorithm is very similar in structure to
the inside algorithm described above. At every
iteration of the algorithm, an item is popped
from the agenda and added to the chart, ap-
plying one of the three operations available to
the inside algorithm. The algorithm begins by
expanding the root nonterminal S at (0, |y∗|)
with the logical form x∗.

4.1 Agenda prioritization

The most important difference from the in-
side algorithm is the prioritization of agenda
items. For a given agenda item with rule
A → B1 : f1 . . . BK : fK with logical form x
at sentence position (i, j), we aim to assign as
its priority an upper bound on equation (5) for
any derivation that contains this rule at this
position. To do so, we can split the product in
the objective

∏
n∈t∗ p(r

n|xn∗ ,θ) into a product
of two components: (1) the inner probability
is the product of the terms that correspond to
the subtree of t∗ rooted at the current agenda
item, and (2) the outer probability is the prod-
uct of the remaining terms, which correspond
to the parts of t∗ outside of the subtree rooted
at the agenda item. A schematic decomposi-
tion of a derivation tree is shown in Figure 4.

We define an upper bound on the log inner
probability I(A,i,j) for any subtree rooted at
nonterminal A at sentence span (i, j).

I(A,i,j) , (6)

max
A→B1...BK

(
max
x′

log p(A→ B1, . . . , BK |x′,θ)

+ max
l2<...<lK

K∑
k=1

I(Bk,lk,lk+1)

)
,

where l1 = i, lK+1 = j. Note that the left
term is a maximum over all logical forms x′,
and so this upper bound only considers syntac-
tic information. The right term can be maxi-
mized using dynamic programming in O(K2).
As such, classical syntactic parsing algorithms
can be applied to compute I for every chart
cell in O(n3). For any terminal symbol T , we
define I(T,i,j) = 0.

We similarly define O(A,i,j,x) representing a

bound on the outer probability at every cell.

O(A,i,j,x) , max
{t:yield(t)=y∗}

(
log p(x) (7)

+ log p(tL|x,θ) +
∑

(A′,i′,j′)∈r(tR)

I(A′,i′,j′)

)
,

where the maximum is taken over t which is a
derivation containing a subtree rooted at A at
sentence position (i, j). In this expression, tL
is the outer-left portion of the derivation tree
t, tR is the outer-right portion, and r(tR) is
the set of root vertices of the trees in tR.

Using these two upper bounds, we define the
priority of any agenda item with rule A →
B1 :f1 . . . BK :fK at rule position k, with log
probability score ρ, and logical form x as:

ρ+ max
lk+2<...<lK+1

K∑
u=k

I(Bu,lu,lu+1)+O(A,i,j,x). (8)

Thm 1. If the priority of agenda items is com-
puted as in equation (8), then at every itera-
tion of the chart parser, the priority of new
agenda items will be at most the priority of
the current item.

Proof. See supplementary material A.

Thus, the search is monotonic1. That is,
the maximum priority of items in the agenda
never increases.

This property allows us to compute the
outer probability bound O(A,i,j,x) for free.
Computing it directly is intractable. Consider
the expansion step for an agenda item with
rule A → B1 :f1 . . . BK :fK at rule position k,
with log probability score ρ, and logical form
x. The nonterminal Bk is expanded next at
sentence position (lk, lk+1), and its outer prob-
ability is simply

O(Bk,lk,lk+1,fk(x)) = ρ + (9)

max
lk+2<...<lK+1

K∑
u=k+1

I(Bu,lu,lu+1) +O(A,i,j,x).

The monotonicity of the search guarantees
that any subsequent expansion of Bk at
(lk, lk+1) will not yield a more optimal bound.

Monotonicity also guarantees that when the
algorithm completes a derivation for the root
nonterminal S, it is optimal (i.e. the Viterbi

1In the presentation of the algorithm as an A*
search, the heuristic is consistent.

253



S

NP

N

VP

V NP

N

PP

P N

full parse
=

S

NP

N

VP

V

left outer parse

+
NP

N

inner parse

+
PP

P N

right outer parse

Figure 4: Decomposition of a parse tree into its left outer parse, inner parse, and its right outer parse. This
is one example of such a decomposition. For instance, we may similarly produce a decomposition where the
prepositional phrase is the inner parse, or where the verb is the inner parse. The terminals are omitted and only
the syntactic portion of the parse is displayed here for conciseness.

parse). In this way, we can continue execu-
tion to obtain the k-best parses for the given
sentence.

4.2 Optimization over logical forms

The above algorithm finds the optimal deriva-
tion t∗, given a sentence y∗, logical form x∗,
and grammar θ. To jointly optimize over both
the derivation and logical form, given θ, imag-
ine running the above algorithm repeatedly
for every logical form. This approach, imple-
mented naively, is clearly infeasible due to the
sheer number of possible logical forms. How-
ever, there is a great deal of overlap across
the multiple runs, which corresponds to shared
substructures across logical forms, which we
can exploit to develop an efficient and exact
algorithm. At the first step of every run, the
root nonterminal is expanded for every logi-
cal form. This would create of a new agenda
item for every logical form, which are identi-
cal in every field except for the logical form
(and therefore, its prior probability). Thus,
we can represent this set of agenda items as a
single agenda item, where instead of an indi-
vidual logical form x, we store a logical form
set X. The outer probability bound is now
defined over sets of logical forms: O(A,i,j,X) ,
maxx∈X O(A,i,j,x). We can use this quantity in
equation (8) to compute the priority of these
“aggregated” agenda items. Thus, this algo-
rithm is a kind of branch-and-bound approach
to the combinatorial optimization problem. A
sparse representation of a set of logical forms
is essential for efficient parsing.

Another difference arises after completing
the parsing of a rule A → B1 : f1 . . . BK : fK
with a set of logical forms X, where we need
to compute log p(A → B1 :f1 . . . BK :fK |x,θ).
In the inside algorithm, this was straightfor-
ward since there was only a single logical
form. But in the parsing setting, X is a set
of logical forms, and the aforementioned prob-

ability can vary across instances within this
set (for the HDP prior, for example, the set
may correspond to multiple distinct paths in
the HDP hierarchy). Therefore, we divide X
into its equivalence classes. More precisely,
consider the set of disjoint subsets of X =
X1
⋃
. . .
⋃
Xm where Xi

⋂
Xj = ∅ for i 6= j,

such that p(A→ B1:f1 . . . BK :fK |x′,θ) is the
same for every x′ ∈ Xi. For each equivalence
class Xi, we create a “completed nonterminal”
item with the appropriate parse tree, log prob-
ability, and logical form set Xi. With these, we
continue inspecting the chart for search states
“waiting” for the nonterminal A.

The increment operation is also slightly dif-
ferent in the parser. When we increment a rule
A → B1 :f1 . . . BK :fK after completing pars-
ing for the symbol Bk with logical form set X,
we create a new agenda item with the same
contents as the old item, but with the rule po-
sition increased by one. The log probability
of the new agenda item is the sum of the log
probabilities of the old agenda item and the
completed subtree. Similarly the logical form
set of the new agenda item will be the inter-
section of {f−1

k (x) : x ∈ X} and the logical
forms in the old agenda item.

Our implementation is available for refer-
ence at github.com/asaparov/grammar and
github.com/asaparov/parser.

5 Semantic prior

The modular nature of the semantic prior al-
lows us to explore many different models of
logical forms. We experiment with a fairly
straightforward prior: Predicate instances are
generated left-to-right, conditioned only on
the last predicate instance that was sampled
for each variable. When a predicate instance
is sampled, its predicate, arity, and “direc-
tion”2 are simultaneously sampled from a cat-

2size(A), size(A,B), vs size(B,A), etc.

254



Method
Additional
Supervision

GeoQuery Jobs
P R F1 P R F1

WASP (Wong and Mooney, 2006) 1,2 87.2 74.8 80.5
λ-WASP (Wong and Mooney, 2007) 1,2,6 92.0 86.6 89.2
Extended GHKM (Li et al., 2013) 2,6 93.0 87.6 90.2

Zettlemoyer and Collins (2005) 3,5,6 96.3 79.3 87.0 97.3 79.3 87.4
Zettlemoyer and Collins (2007) 3,5,6 91.6 86.1 88.8
UBL (Kwiatkowski et al., 2010) 5 94.1 85.0 89.3
FUBL (Kwiatkowski et al., 2011) 5 88.6 88.6 88.6
TISP (Zhao and Huang, 2014) 5,6 92.9 88.9 90.9 85.0 85.0 85.0
GSG − lexicon − type-checking 4 86.9 75.7 80.9 89.5 67.1 76.7
GSG + lexicon − type-checking 4,5 88.4 81.8 85.0 91.4 75.7 82.8
GSG − lexicon + type-checking 4,6 89.3 77.9 83.2 93.2 69.3 79.5
GSG + lexicon + type-checking 4,5,6 90.7 83.9 87.2 97.4 81.4 88.7

Legend for sources of additional supervision are:
1. Training set containing 792 examples, 2. Domain-specific set of initial synchronous CFG rules,
3. Domain-independent set of lexical templates, 4. Domain-independent set of interior production rules,
5. Domain-specific initial lexicon, 6. Type-checking and type specification for entities.

Figure 5: The methods in the top part of the table were evaluated using 10-fold cross validation, whereas those
in the bottom part were evaluated with an independent test set.

Logical form: answer(A,smallest(A,state(A))) answer(A,largest(B,(state(A),population(A,B))))
Test sentence: “Which state is the smallest?” “Which state has the most population?”
Generated: “What state is the smallest?” “What is the state with the largest population?”

Figure 6: Examples of sentences generated from our trained grammar on logical forms in the GeoQuery test set.
Generation is performed by computing arg maxy∗ p(y∗|x∗,θ).

egorical distribution. Functions like largest,
shortest, etc, are sampled in the same pro-
cess. We again use an HDP to model the
discrete distribution conditioned on a discrete
random variable.

We also follow Wong and Mooney (2007); Li
et al. (2013); Zhao and Huang (2014) and ex-
periment with type-checking, where every en-
tity is assigned a type in a type hierarchy, and
every predicate is assigned a functional type.
We incorporate type-checking into the seman-
tic prior by placing zero probability on type-
incorrect logical forms. More precisely, logical
forms are distributed according to the original
prior, conditioned on the fact that the logical
form is type-correct. Type-checking requires
the specification of a type hierarchy. Our hi-
erarchy contains 11 types for GeoQuery and
12 for Jobs. We run experiments with and
without type-checking for comparison.

6 Results

To evaluate our parser, we use the GeoQuery
and Jobs datasets. Following Zettlemoyer and
Collins (2007), we use the same 600 Geo-
Query sentences for training and an indepen-
dent test set of 280 sentences. On Jobs, we
use the same 500 sentences for training and
140 for testing. We run our parser with two se-

tups: (1) with no domain-specific supervision,
and (2) using a small domain-specific lexicon
and a set of beliefs (such as the fact that Port-
land is a city). For each setup, we run the
experiments with and without type-checking,
for a total of 4 experimental setups. A given
output logical form is considered correct if it
is semantically equivalent to the true logical
form.3 We measure the precision and recall
of our method, where precision is the num-
ber of correct parses divided by the number of
sentences for which our parser provided out-
put, and recall is the number of correct parses
divided by the total number of sentences in
each dataset. Our results are shown compared
against many other semantic parsers in Figure
5. Our method is labeled GSG for “genera-
tive semantic grammar.” The numbers for the
baselines were copied from their respective pa-
pers, and so their specified lexicons/type hier-
archies may differ slightly.

Many sentences in the test set contain to-
kens previously unseen in the training set. In
such cases, the maximum possible recall is
88.2 and 82.3 on GeoQuery and Jobs, re-
spectively. Therefore, we also measure the ef-
fect of adding a domain-specific lexicon, which

3The result of execution of the output logical form
is identical to that of the true logical form, for any
grounding knowledge base/possible world.

255



maps semantic constants like maine to the
noun “maine” for example. This lexicon is
analogous to the string-matching and argu-
ment identification steps previous parsers. We
constructed the lexicon manually, with an en-
try for every city, state, river, and mountain
in GeoQuery (141 entries), and an entry for
every city, company, position, and platform in
Jobs (180 entries).

Aside from the lexicon and type hierarchy,
the only training information is given by the
set of sentences y, corresponding logical forms
x, and the domain-independent set of interior
production rules, as described in section 2.2.
In our experiments, we found that the sampler
converges rapidly, with only 10 passes over the
data. This is largely due to our restriction
of the interior production rules to a domain-
independent set.

We emphasize that the addition of type-
checking and a lexicon are mainly to enable a
fair comparison with past approaches. As ex-
pected, their addition greatly improves pars-
ing performance. Our method achieves state-
of-the-art F1 on the Jobs dataset. How-
ever, even without such domain-specific super-
vision, the parser performs reasonably well.

7 Related work

Our grammar formalism can be related to
synchronous CFGs (SCFGs) (Aho and Ull-
man, 1972) where the semantics and syntax
are generated simultaneously. However, in-
stead of modeling the joint probability of the
logical form and natural language utterance
p(x, y), we model the factorized probability
p(x)p(y|x). Modeling each component in isola-
tion provides a cleaner division between syntax
and semantics, and one half of the model can
be modified without affecting the other (such
as the addition of new background knowl-
edge, or changing the language/semantic for-
malism). We used a CFG in the syntactic
portion of our model (although our grammar
is not context-free, due to the dependence
on the logical form). Richer syntactic for-
malisms such as combinatory categorial gram-
mar (Steedman, 1996) or head-driven phrase
structure grammar (Pollard and Sag, 1994)
could replace the syntactic component in our
framework and may provide a more uniform
analysis across languages. Our model is simi-
lar to lexical functional grammar (LFG) (Ka-

plan and Bresnan, 1995), where f -structures
are replaced with logical forms. Nothing in our
model precludes incorporating syntactic infor-
mation like f-structures into the logical form,
and as such, LFG is realized in our framework.
Our approach can be used to define new gener-
ative models of these grammatical formalisms.
We implemented our method with a particu-
lar semantic formalism, but the grammatical
model is agnostic to the choice of semantic for-
malism or the language. As in some previous
parsers, a parallel can be drawn between our
parsing problem and the problem of finding
shortest paths in hypergraphs using A* search
(Klein and Manning, 2001, 2003; Pauls and
Klein, 2009; Pauls et al., 2010; Gallo et al.,
1993).

8 Discussion

In this article, we presented a generative model
of sentences, where each sentence is gener-
ated recursively top-down according to a se-
mantic grammar, where each step is condi-
tioned on the logical form. We developed a
method to learn the posterior of the gram-
mar using a Metropolis-Hastings sampler. We
also derived a Viterbi parsing algorithm that
takes into account the prior probability of the
logical forms. Through this semantic prior,
background knowledge and other information
can be easily incorporated to better guide the
parser during its search. Our parser provides
state-of-the-art results when compared with
past approaches.

As a generative model, there are promising
applications to interactive learning, caption
generation, data augmentation, etc. Richer
semantic priors can be applied to perform on-
tology learning, relation extraction, or con-
text modeling. Applying this work to semi-
supervised settings is also interesting. The av-
enues for future work are numerous.

Acknowledgments

We thank the anonymous reviewers for their
helpful feedback, and we also thank Em-
manouil A. Platanios for insightful discus-
sion and comments. This research is based
upon work supported in part by the Office of
the Director of National Intelligence (ODNI),
IARPA, and by DARPA under contract num-
ber FA8750-13-2-0005. The views and conclu-
sions contained herein are those of the authors

256



and should not be interpreted as necessar-
ily representing the official policies, either ex-
pressed or implied of ODNI, IARPA, DARPA,
or the US government. The US Government
is authorized to reproduce and distribute the
reprints for governmental purposed notwith-
standing any copyright annotation therein.

References

Albert V. Aho and Jeffery D. Ullman. 1972. The
Theory of Parsing, Translation, and Compiling ,
volume 1. Prentice-Hall, Englewood Cliffs, NJ.

Phil Blunsom and Trevor Cohn. 2010. Inducing
synchronous grammars with slice sampling. In
HLT-NAACL. The Association for Computa-
tional Linguistics, pages 238–241.

Noam Chomsky. 1956. Three models for the de-
scription of language. IRE Transactions on In-
formation Theory 2:113–124.

Trevor Cohn, Phil Blunsom, and Sharon Goldwa-
ter. 2010. Inducing tree-substitution grammars.
Journal of Machine Learning Research 11:3053–
3096.

Li Dong and Mirella Lapata. 2016. Language
to logical form with neural attention. CoRR
abs/1601.01280.

Jenny Rose Finkel, Christopher D. Manning, and
Andrew Y. Ng. 2006. Solving the problem
of cascading errors: approximate bayesian in-
ference for linguistic annotation pipelines. In
EMNLP ’06: Proceedings of the 2006 Confer-
ence on Empirical Methods in Natural Language
Processing . Association for Computational Lin-
guistics, Morristown, NJ, USA, pages 618–626.

Giorgio Gallo, Giustino Longo, and Stefano Pallot-
tino. 1993. Directed hypergraphs and applica-
tions. Discrete Applied Mathematics 42(2):177–
201.

Alan E. Gelfand and Adrian F. M. Smith.
1990. Sampling-based approaches to calculat-
ing marginal densities. Journal of the American
Statistical Association 85(410):398–409.

Nitin Indurkhya and Fred J. Damerau, editors.
2010. Handbook of Natural Language Process-
ing, Second Edition. Chapman and Hall/CRC.

M. Johnson, T. L. Griffiths, and S. Goldwater.
2007. Bayesian inference for PCFGs via Markov
chain Monte Carlo. In Proceedings of the North
American Conference on Computational Lin-
guistics (NAACL ’07).

Ronald M. Kaplan and Joan Bresnan. 1995.
Lexical-functional grammar: A formal system
for grammatical representation.

Dan Klein and Christopher D. Manning. 2001.
Parsing and hypergraphs. In IWPT . Tsinghua
University Press.

Dan Klein and Christopher D. Manning. 2003. A*
parsing: Fast exact viterbi parse selection. In
HLT-NAACL.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and
Luke S. Zettlemoyer. 2013. Scaling semantic
parsers with on-the-fly ontology matching. In
EMNLP . ACL, pages 1545–1556.

Tom Kwiatkowski, Luke S. Zettlemoyer, Sharon
Goldwater, and Mark Steedman. 2010. Induc-
ing probabilistic ccg grammars from logical form
with higher-order unification. In EMNLP . ACL,
pages 1223–1233.

Tom Kwiatkowski, Luke S. Zettlemoyer, Sharon
Goldwater, and Mark Steedman. 2011. Lexical
generalization in ccg grammar induction for se-
mantic parsing. In EMNLP . ACL, pages 1512–
1523.

Peng Li, Yang Liu, and Maosong Sun. 2013. An
extended ghkm algorithm for inducing lambda-
scfg. In Marie desJardins and Michael L.
Littman, editors, AAAI . AAAI Press.

Percy Liang, Michael I. Jordan, and Dan Klein.
2011. Learning dependency-based composi-
tional semantics. CoRR abs/1109.6841.

Adam Pauls and Dan Klein. 2009. K-best a*
parsing. In Keh-Yih Su, Jian Su, and Janyce
Wiebe, editors, ACL/IJCNLP . The Association
for Computer Linguistics, pages 958–966.

Adam Pauls, Dan Klein, and Chris Quirk. 2010.
Top-down k-best a* parsing. In Proceedings of
the ACL 2010 Conference Short Papers. Asso-
ciation for Computational Linguistics, Strouds-
burg, PA, USA, ACLShort ’10, pages 200–204.

Carl Pollard and Ivan A. Sag. 1994. Head-
driven phrase structure grammar . University of
Chicago Press, Chicago.

C. P. Robert and G. Casella. 2010. Monte Carlo
Statistical Methods. Springer, New York, NY.

Abulhair Saparov and Tom M. Mitchell. 2016. A
probabilistic generative grammar for semantic
parsing. In arXiv:1606.06361 .

Mark Steedman. 1996. Surface structure and in-
terpretation. Linguistic inquiry monographs, 30.
MIT Press.

Yee Whye Teh, Michael I. Jordan, Matthew J.
Beal, and David M. Blei. 2006. Hierarchical
dirichlet processes. Journal of the American
Statistical Association 101(476):1566–1581.

257



Yuk Wah Wong and Raymond J. Mooney. 2006.
Learning for semantic parsing with statistical
machine translation. In Robert C. Moore,
Jeff A. Bilmes, Jennifer Chu-Carroll, and Mark
Sanderson, editors, HLT-NAACL. The Associa-
tion for Computational Linguistics.

Yuk Wah Wong and Raymond J. Mooney. 2007.
Learning synchronous grammars for semantic
parsing with lambda calculus. In John A. Car-
roll, Antal van den Bosch, and Annie Zaenen,
editors, ACL. The Association for Computa-
tional Linguistics.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form:
Structured classification with probabilistic cat-
egorial grammars. In UAI . AUAI Press, pages
658–666.

Luke S. Zettlemoyer and Michael Collins. 2007.
Online learning of relaxed ccg grammars for
parsing to logical form. In Jason Eisner, editor,
EMNLP-CoNLL. ACL, pages 678–687.

Kai Zhao and Liang Huang. 2014. Type-driven in-
cremental semantic parsing with polymorphism.
CoRR abs/1411.5379.

A Proof of Thm 1

Induct on the iteration of the algorithm. Let a
be the current agenda item, where the produc-
tion rule of the item is A → B1 :f1 . . . BK :fK ,
the rule position is k, the set of sentence spans
that correspond to the first k right-hand side
symbols is l1, . . . , lk+1, the span of the rule is
(i, j), the logical form is x, and the log proba-
bility of the first k right-hand side symbols is
ρ. For notational brevity, we let c(a) denote
the priority of the agenda item a as defined in
equation (8). There are three cases:

Case 1 If Bk is a terminal, a new agenda
item is created only if the terminal matches
the token in the input sentence. Then for each
possible value of lk+2, a new agenda item a′ is
created, where ρ is the same as that in the old
agenda item a. Since the logical form is the
same, and

I(Bk,lk,lk+1) + max
lk+3<...<lK+1

K∑
u=k+1

I(Bu,lu,lu+1)

≤ max
lk+2<...<lK+1

K∑
u=k

I(Bu,lu,lu+1),

the priority of the new agenda item is at most
that of the old item c(a′) ≤ c(a).

Case 2 If Bk is a nonterminal, it proceeds
to “expand” it. Suppose to the contrary that
we create an agenda item whose priority is
greater than that of the current item. This
implies that there exists a production rule
Bk → C1 . . . CK′ and a set of sentence spans
l′2 < . . . < l′K′+1 such that

c(a) =

ρ+ max
lk+2<...<lK+1

K∑
u=k

I(Bu,lu,lu+1) +O(A,i,j,x),

<

K′∑
u=1

I(Cu,l′u,l′u+1) +O(Bk,lk,lk+1,fk(x))

≤ I(Bk,lk,lk+1) +O(Bk,lk,lk+1,fk(x)),

where l′1 = lk and lK′+1 = lk+1. By defini-
tion of the bound on the outer probability,
the above inequality implies that there exists
a derivation t′ and logical form x′ such that
fk(x′) = fk(x) and

c(a) < log p(x′) + log p(t′L|x′,θ)

+ I(Bk,lk,lk+1) +
∑

(A′,i′,j′)∈r(t′R)

I(A′,i′,j′). (10)

Let D → E1 . . . EK′′ be the production rule in
t′ that contains theBk nonterminal at sentence
span (lk, lk+1), and so for some m, Em = Bk.
In addition, let s′i be the sibling derivation tree
rooted at Ei for all i = 1, . . . ,m − 1. There-
fore, there must exist an agenda item a′ with
the same production rule, with rule position
m, (lk, lk+1) as the sentence spans of Dm, log
probability of the first m right-hand side sym-
bols

∑m−1
i=1 log p(s′i|x′,θ), and logical form x′.

The priority of this rule state is

c(a′) =
m−1∑
i=1

log p(s′i|x′,θ)

+ max
lm+2<...<lK′′+1

K′′∑
u=m

I(Eu,lu,lu+1) +O(D,i′,j′,x′).

By definition of the outer probability
bound, we have O(D,i′,j′,x′) ≥ log p(x′) +
log p(t′′L|x′,θ) +

∑
(A′,i′,j′)∈r(t′′R) I(A′,i′,j′) where

t′′L is the outer-left portion of the derivation
tree t′ not containing the subtree rooted
at the nonterminal C, and t′′R is similarly
the outer-right portion. Thus, we can lower

258



bound c(a′)

c(a′) ≥

log p(x′) + log p(t′′L|x′,θ) +
m−1∑
i=1

log p(s′i|x′,θ)

+ max
lm+2<...<lK′′+1

K′′∑
u=m

I(Du,lu,lu+1) +
∑

(A′,i′,j′)∈r(t′′R)

I(A′,i′,j′),

which is at least the quantity in equation (10),
since

log p(t′L|x′,θ) =

log p(t′′L|x′,θ) +
m−1∑
i=1

log p(s′i|x′,θ),∑
(A′,i′,j′)∈r(t′R)

I(A′,i′,j′) ≤

max
lm+2<...<lK′′+1

K′′∑
u=m+1

I(Du,lu,lu+1) +
∑

(A′,i′,j′)∈r(t′′R)

I(A′,i′,j′).

Thus, c(a′) > c(a), and so by the inductive hy-
pothesis, a′ was processed by the algorithm at
an earlier iteration. However, this would mean
that the nonterminal Bk is expanded more
than once at the sentence location (lk, lk+1),
which is disallowed.

Case 3 If the rule is complete, the algo-
rithm looks for previously-processed agenda
items that are “waiting” for a derivation of
Bk at positions (lk, lk+1). The algorithm will
combine the completed derivation with the
waiting state and create a new agenda item
where the rule position is incremented by 1.
Suppose to the contrary that the new agenda
item a′ has priority greater than the current
item a. Let the production rule of a′ be
D → E1 : f1 . . . EK′ :: fK′ where Em = A for
some m, and so m is the rule position of a′.
Additionally, let the sentence spans of the first
m− 1 right-hand symbols be l′1, . . . , l′m−1, and
ρ′ is the log probability of the first m−1 right-
hand symbols, and the logical form is x′ where
fm(x′) = x. Therefore, we can write

c(a) = log p(t′A|x,θ) +O(A,i,j,x),

< ρ′ + log p(t′A|x,θ) +O(D,i′,j′,x′)

+ max
lm+3<...<lK′

K′∑
u=m+1

I(Du,l′u,l′u+1) = c(a′).

This expression implies

O(A,i,j,x) < ρ′ +

max
lm+3<...<lK′

K′∑
u=m+1

I(Du,l′u,l′u+1) +O(C,i′,j′,x′),

but this is not possible by the definition of
O(A,i,j,x) in equation (7), as we would have
found a derivation with a strictly better ob-
jective. �

259


