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Abstract

This paper presents a novel approach to
character identification, that is an entity
linking task that maps mentions to charac-
ters in dialogues from TV show transcripts.
We first augment and correct several cases
of annotation errors in an existing corpus so
the corpus is clearer and cleaner for statisti-
cal learning. We also introduce the agglom-
erative convolutional neural network that
takes groups of features and learns mention
and mention-pair embeddings for corefer-
ence resolution. We then propose another
neural model that employs the embeddings
learned and creates cluster embeddings for
entity linking. Our coreference resolution
model shows comparable results to other
state-of-the-art systems. Our entity linking
model significantly outperforms the previ-
ous work, showing the F1 score of 86.76%
and the accuracy of 95.30% for character
identification.

1 Introduction

Character identification (Chen and Choi, 2016) is a
task that identifies each mention as a character in a
multiparty dialogue.! Let a mention be a nominal
referring to a human (e.g., she, mom, Judy), and an
entity be a character in the dialogue. The objective
is to assign each mention to an entity, who may or
may not appear as a speaker in the dialogue. For
the example in Table 1, the mention comedian is
not one of the speakers in the dialogue; nonetheless,
it clearly refers to a real person that may appear in
some other dialogues. Identifying such mentions
as actual characters requires cross-document entity
resolution, which makes this task challenging.

!The dialogues are extracted from TV show transcripts by the
previous work (Chen and Choi, 2016).

216

Character identification can be viewed as a task of
entity linking. Most of the previous work on entity
linking focuses on Wikification (Mihalcea and Cso-
mai, 2007a; Ratinov et al., 2011a; Guo et al., 2013).
Unlike Wikification, entities in this task have no
precompiled information from a knowledge base,
which is another challenging aspect. This task is
similar to coreference resolution in the sense that it
groups mentions into entities, but distinct because
it requires the identification of mention groups as
real entities. Furthermore, even if it can be tackled
as a coreference resolution task, only a few coref-
erence resolution systems are designed to handle
dialogues well (Rocha, 1999; Niraula et al., 2014)
although several state-of-the-art systems have been
proposed for the general domain (Peng et al., 2015;
Clark and Manning, 2016; Wiseman et al., 2016).
Due to the nature of multiparty dialogues where
speakers take turns to complete a context, charac-
ter identification becomes a critical step to adapt
higher-level NLP tasks (e.g., question answering,
summarization) to this domain. This task can
also bring another level of sophistication to intelli-
gent personal assistants and intelligent tutoring sys-
tems. Perhaps the most challenging aspect comes
from colloquial writing that consists of ironies,
metaphors, or rhetorical questions. Despite all the
challenges, we believe that the output of this task
will enhance inference on dialogue contexts by pro-
viding finer-grained information about individuals.
In this paper, we augment and correct the exist-
ing corpus for character identification, and propose
an end-to-end deep-learning system that combines
neural models for coreference resolution and entity
linking to tackle the task of character identification.
The updated corpus and the source code of our
models are published and publicly available.> This
combined system utilizes the strengths from both
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Speaker H

Utterance

Yeah. For uss, it’s like the stand-up comediany yous have to sit through before the main dudeg starts.

Joey Yeah, right! ... You; serious?

Rachel Everything youz need to know is in that first kiss.
Chandler

Ross

It’s not that we don’t like the comediansg, it’s that ... that’s not why weg bought the ticket.

{You1} — Rachel, {uss, wer 9} — Collective, {yous 5} — General, {comedians,s} — Generic, {dude¢} — Other

Table 1: An example of a multiparty dialogue extracted from the corpus.

models. We introduce a novel approach, agglomer-
ative convolution neural network, for coreference
resolution to learn mention, mention-pair, and clus-
ter embeddings, and the results are taken as input
to our entity linking model that assigns mentions to
their real entities. Entities, including main charac-
ters and recurring support characters, are selected
from a TV show to mimic a realistic scenario. To
the best of our knowledge, this is the first end-to-
end model that performs character identification on
multiparty dialogues.

2 Related Work

The latest coreference systems employ advanced
context features in tandem with deep networks to
achieve state-of-the-art performance (Clark and
Manning, 2016; Wiseman et al., 2015). Since our
task is similar to coreference resolution, we take a
similar approach to feature engineering by building
mention and cluster embeddings with word em-
beddings (Clark and Manning, 2016) and include
additional mention features described by Wiseman
et al. (2015). We are motivated to use convolu-
tional networks through the work of Wu and Ma
(2017), but we distinguish our approach by using
deep convolution to build embeddings for character
identification.

Entity linking has traditionally relied heavily on
knowledge databases, most notably, Wikipedia, for
entities (Mihalcea and Csomai, 2007b; Ratinov
et al., 2011b; Gattani et al., 2013; Francis-Landau
et al., 2016).> Although we do not make use of
knowledge bases, our task is closely aligned to en-
tity linking. Recent advances in entity linking are
also applicable to our task since we see Francis-
Landau et al. (2016) use convolutional nets to cap-
ture semantic similarity between a mention and an
entity by comparing context of the mention with the
description of the entity. This work validates our
usage of deep learning for character identification.

3This task is known as ‘Wikification’.

Dialogue tracking has been an expanding task
as shown by the Dialogue State Tracking Chal-
lenges hosted by Microsoft (Kim et al., 2015).
That an ongoing conversation can be dynamically
tracked (Henderson et al., 2013) is exciting and
applicable to our task because the state of a conver-
sation may yield significant hints for entity linking
and coreference resolution. Speaker identification,
a task similar to character identification, has already
shown some success with partial dialogue tracking
by dynamically identifying speakers at each turn in
a dialogue using conditional random field models.

3 Corpus

The character identification corpus created by Chen
and Choi (2016) includes entity annotation of per-
sonal mentions specific to the domain of multiparty
dialogues. While the corpus covers a large amount
of entities that appear in the first two seasons of the
TV show, Friends, some of its annotation remains
ambiguous, particularly around the label Unknown.

An example of Unknown mentions in a snippet
of a conversation is provided in Table 1. Men-
tions comediany g and dudeg are originally labeled
Unknown, but they are two different entities such
that their labels should be distinguished. Even
though their entities are not immediately identi-
fiable, the Unknown label provides no clarity; thus,
mentions under this label needs to be subcatego-
rized. We propose to disambiguate these Unknown
mentions (Section 3.2), comprising 10% of the an-
notation. Such disambiguation allows finer-grained
categories of entity annotations of mentions. We
believe the resultant annotations are more realis-
tic and can be used to train more robust model on
character identification.

3.1 Corpus Correction

Before disambiguating the corpus, we find some
recurring data malformations and errors in mention
detection within the corpus. For example:
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Rachel: (To guy with a phone) Hello, excuse me.

The underlined action note is accidentally included
in the utterance as a part of the dialogue due to a
missing parentheses, and the mention guy is conse-
quently incorporated into the corpus. These mal-
formations are fixed, and mentions included are
removed from the corpus manually before disam-
biguation. The correction is necessary since the
inclusion of action notes is inconsistent throughout
the corpus, and they are removed to avoid confu-
sion for our models.

3.2 Corpus Disambiguation

Three labels are introduced to disambiguate Un-
known mentions: General, Generic, and Other.
Generic provides abstract groupings for unidentifi-
able entities, and each group is assigned a unique
number for differentiation:

e General: Mention used in reference to a gen-
eral case (e.g., yous 5 in Table 1).

e Generic: Mention referring to a unidentifiable
entity (e.g., comediany g in Table 1).

e Other: Mention referred to insignificant sin-
gleton entity (e.g., dudeg in Table 1).

We perform this disambiguation manually with two
main guidelines: only mentions originally labeled
Unknown are included, and the labels introduced
above are provided to annotators in addition to
the known entities. We limit the Generic men-
tion groups to 5 per iteration of disambiguation for
simplicity, and the scenes that requires more than 5
groups are recursively annotated until all unknowns
are disambiguated. Unlike the previous work, our
annotators are familiar with the TV show, and the
task takes about 3 weeks to complete.

| P | 8 | €C|G|N|O]| =
FI | 51012610 | 1,259 | 109 | 152 | 184 | 9,306
F2 | 53122432 | 1,280 | 42 | 111|167 || 9,304

¥ [ 10,413 [ 5,042 | 2,388 | 151 | 263 | 351 || 18,608

Table 2: Counts of disambiguated mentions. P/S:
main and secondary character entities. C/G/N/O:
Collectivel/ General/Generic/Other.

4 Coreference Resolution

The task of character identification needs rich fea-
tures extracted from mention clusters generated by

a coreference resolution system. Thus, the end re-
sult of this task largely depends on the quality of the
coreference resolution model. Several coreference
resolution systems have been proposed and shown
state-of-the-art performance (Pradhan et al., 2012);
however, they are not necessarily designed for the
genre of multiparty dialogue, where each document
comprises utterances from multiple speakers.

This section describes a novel approach to coref-
erence resolution using Convolutional Neural Net-
works (CNN). Our model takes groups of fea-
tures incorporating several dialogue aspects, feeds
them into deep convolution layers, and dynamically
generates mention embeddings and mention-pair
embeddings, which are used to create the cluster
embeddings that significantly improve the perfor-
mance of our entity linking model (Section 5).

4.1 Agglomerative CNN

Our coreference resolution model, Agglomerative
Convolutional Neural Network (ACNN), takes ad-
vantage of deep layers in CNN. The model is called
agglomerative since it aggregates multiple feature
groups into several convolution layers for the gen-
eration of mention and mention-pair embeddings.
Each layer aims to consolidate and learn different
combinations of the input features, and additional
features are included at each layer. The unique na-
ture of our model allows incremental feature aggre-
gations to create more robust embeddings. Figure 1
illustrates the complete architecture of ACNN.
The first part of the network learns the mention
embedding for each of two mentions compared
for a coreferent relation. Given two feature maps
$¥(m) and ¢4(m) where m is a mention, ¢*(m)
extracts the embedding features based on word em-
beddings, and ¢4(m) extracts the discrete features
(Table 3). The first convolution layer CONV’f with
n-gram filters of size d is applied to each embed-
ding group k, and the result from each filter is max-
pooled to generate a feature vector € R'*?. The
second convolution layer CONVy is then applied to
the 3D feature matrix € R"™*%** from the previous
convolution layer on all embedding groups. The
result of CONVy is max-pooled and concatenated
with discrete features extracted by ¢,4(m) to form
the mention embedding rs(m), defined as follows:

CONVy (e (1))

) || ¢a(m)
CONVE (g (m))

rs(m) = CONVy(
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Figure 1: The overview of our agglomerative convolutional neural network.

The second part of the network utilizes the learned
mention embedding rs(m) to create the mention-
pair embedding. Another feature map ¢, (m;, m;)
is defined to extract pairwise features between men-
tions m; and m; (Table 3). The third convolution
layer CONV3 is applied to the stacked mention em-
beddings, ry(m;) and rs(m;). The result is max-
pooled and concatenated with the pairwise features
extracted by ¢, (m;, m;) to form the mention-pair
embedding r,(m;, m;), defined as follows:

rp(mi, m]’) = CONV3( r, (mj)
The learned mention-pair embedding is put through
the hidden layer with the linear rectifier activation
function (ReLu) before applying the sigmoid func-
tion o (m;, m;) to determine the coreferent relation
between mentions m; and m;, defined as follows:

r“m”}ﬂ<%0n%mﬂ

h(z) = ReLU(wp, - x + by,)

o(m, mj) = sigmoid(wy - h(rp(mi’ m])) + bs)

The purpose of the sigmoid function o (m;, m;) is
twofold. For each mention m;, it performs binary
classifications between m; and m; where j € [1,1).
If max (o (m;, m;)) < 0.5, the model considers no
coreferent relation between m; and any mention
prior to it, and create a new cluster containing only
m; s.t. m; becomes a singleton for the moment.
If max (o (m;, mj)) > 0.5, m; is put to the exist-
ing cluster C,,, that my, belongs to, where my, is
arg; max(o (m;, m;)). This formalism of mention
clustering is defined as follows:

o If Vi<j<;. max(o(m;,m;)) < 0.5, then
create a new cluster Cy,,.
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o If 31<j<;. max(o(m;,m;)) > 0.5, then
Cong  Comy U {mi,
where my, = arg; max(o (m;, m;)).

Table 3 shows feature templates used for our
ACNN model. Sentence and utterance embed-
dings are the average vectors of all word embed-
dings in the sentence and utterance, respectively.
Speaker embeddings are randomly generated using
the Gaussian distribution. Gender and plurality in-
formation are from Bergsma and Lin (2006), and
word animacy is from Durrett and Klein (2013).

Map
e (m)

¢z(m)

‘ Features

Embeddings of 1% three words in m
Embeddings of 3 proceeding words of m
Embeddings of 3 succeeding words of m
Average embedding of all words in m
Embeddings of 3 proceeding sentences
Embeddings of 1 succeeding sentence
Embedding of the current sentence
Embeddings of 3 proceeding utterances
Embeddings of 1 succeeding utterances
Embeddings of the current utterance

¢e(m)

¢(m)

Avg. gender info. of all words in m
Avg. plurality info. of all words in m
Avg. word animacy of all words in m
Embedding of the current speaker
Embeddings of the previous 2 speakers

Ba(m)

Exact string match between m; and m;
Relaxed string match between m; and m;
Speaker match between m; and m;
Mention distance between m; and m;;
Sentence distance between m; and m;;

bp(mi, my)

Table 3: Complete feature templates for ACNN.
¢¥(m): embedding features, ¢4(m): discrete fea-
tures, ¢p,(m;, m;): pairwise features.



4.2 Configuration

For our experiments, word embeddings of dimen-
sion 50 are trained with FastText (Bojanowski et al.,
2016) on the aggregation of New York Times,*
Wikipedia,® and Amazon reviews.® The t anh acti-
vation function and a filter size of 280 is used for all
convolution layers. A dropout rate of 0.8 is applied
to all max-pooled convoluted results, and ¢5 regu-
larization is applied to the sigmoid function. The
hidden layer has the same dimension as the filter
size. Binary labels of 0 and 1 are assigned to each
mention-to-mention pair based on the gold clus-
ter information. The model is trained on a mean
squared error loss function with the RMSprop opti-
mizer.

5 Entity Linking

Coreference resolution groups mentions into clus-
ters; however, it does not assign character labels
to the clusters, which is required for character
identification. This section describes our entity
linking model that takes the mention embeddings
and the mention-pair embeddings generated ACNN
and classifies each mention to one of the charac-
ter labels (Figure 3). These embeddings are used
to create cluster and cluster-mention embeddings
through pooling, which give a significant improve-
ment to character identification when included as
features in our linker (Section 6).

ReLu ‘

ReLu ‘

Mention Embedding

MtlD Ce D‘

Clusterm Embedding

O

CONYV;

Avg. Pooling ’lD <o D‘ ID e D‘
Max Pooling ID v D‘ ID A D‘

Cluster, Embedding

0O -0

CONV,

M lD .. D‘ Mg, lD .. D‘

Figure 2: The overview of our entity linking model.
Clustery, and Cluster, embeddings are derived from
mention and mention-pair embeddings, resp.

4catalog .ldc.upenn.edu/1dc2008t19
Sdumps.wikimedia.org/enwiki/
6snap .stanford.edu/data/web-Amazon.html

Figure 2 illustrates our entity linking model based
on a feed-forward neural network with two hid-
den layers. For each mention m, the model takes
the mention embedding rs(m) and two cluster em-
beddings derived from mention embeddings and
mention-pair embeddings within the cluster C(m)
(Section 5.2) and classifies m into one of the entity
labels using the Softmax regression.

5.1 Cluster Embedding

Two types of cluster embeddings are derived to cap-
ture cluster information. Given a mention m and
its cluster C,,, cluster embedding R(C,,) repre-
sents the collective mention embedding of all men-
tions within C,,,, and mention-cluster embedding
R, (C,,, m) represents the collective mention-pair
embedding between m and all the other mentions
in C,, that are compared to m during coreference
resolution (V;. m; € Cp,):

Rs(cm) = [rs(m1>7rs(m2)v ey rs(m|6’m|)]

Ry (Cin, m) = [rp(my, m) | my 7 m]

CONVy and CONV,, are two separate convolution
layers with unigram filters using the tanh activa-
tion. The results from these layers are max-pooled.
The cluster embedding r4(C,,) and the mention-
cluster embedding r,,(C,,, m) are defined as fol-
lows:

rs(cm) = CONVS( [anpOOl RS(CW)%])

(
max_pool(Rs(Cp)
(

o) = cony 275222

max_pool(R,(Cp,m))

The mention embedding, the cluster embedding,
and the mention-cluster embedding are concate-
nated and fed into the network as input, and the
scores of all character labels are activated as output.

5.2 Configuration

A dropout layer of rate 0.8 is applied to all inputs.
The model is trained as a multi-class classifier with
the categorical cross-entropy loss function and the
RMSprop optimizer. All hidden layers use the
ReLU activation function and have the same num-
ber of hidden units as the dimension of the mention
embeddings. The convolution layers use the same
filter sizes as the dimensions of input embeddings.

6 Experiments

Following Chen and Choi (2016), experiments are
conducted on two tasks, coreference resolution and
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Episode-Level

Scene-Level

Model MUC | B’ | CEAF, |

p | IC| [MUC| B® [CEAF.| p | |C|

Clark and Manning (2016) || 89.58 | 69.12 | 47.33 | 68.68 | 15.19 || 90.38 | 76.79 | 56.95 | 74.70 | 8.13
Wiseman et al. (2016) 89.80 | 57.66 | 45.48 | 64.31 | 14.86 || 89.60 | 78.08 | 65.95 | 77.88 | 6.20

This work (ACNN) 89.92 | 70.33 | 44.09 | 68.11 | 16.40 || 88.09 | 78.77 | 59.72 | 75.53 | 7.49

Table 4: Coreference resolution results on the evaluation set (in %).

p=(MUC + B3 + CEAF,) / 3.

entity linking. Our coreference resolution model
shows robust performance compared to other state-
of-the-art systems (Section 6.2). Our entity linking
model significantly outperforms the heuristic-based
approach from the previous work (Section 6.3). All
models are evaluated on the gold mentions to focus
purely on the analysis of these two tasks.

6.1 Data Split

The corpus is split into the training, development,
and evaluation sets (Table 5). For the episode-level,
all mentions referring to the same character in each
episode are grouped into one cluster (Cg;). For the
scene-level, this grouping is done by each scene
such that there can be multiple mention clusters that
refer to the same character within an episode (Csce).
Ambiguous mention types such as collective, gen-
eral, and other are excluded from our experiments
(Section 3); including those mentions requires de-
veloping different resolution models that we shall
explore in the future.

|E|S |[DC|Ce| C | M
TRN || 38 | 362 | 371 || 820 | 2,026 || 12,842
DEV | 3| 28| 44| 58| 159 | 991

TsT || 5| 58| 80| 113 ] 301 | 1885
Total || 46 | 448 | 444 || 991 | 2,486 || 15,718

Table 5: The training (TRN), development (DEV),
and evaluation (TST) sets. E/S/DC/Cg/Cg/M: the
numbers of episodes, scenes, distinct characters,
episode/scene-level clusters, and mentions.

For entity linking, entity labels are predetermined
by collecting characters that appear in all three sets;
characters that do not appear in any of the three sets
are put together and labeled as Unknown. This is
reasonable because it is not possible for a statistical
model to learn about characters that do not appear
in the training set. Likewise, characters that appear
in the training set but not in the other sets cannot
be developed or evaluated. A total of ten labels
are used for entity linking that consist of the top-9
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|C|: the average cluster size.

most frequently appeared characters across all sets
and unknown (Figure 3).

6.2 Coreference Resolution

To benchmark the robustness of our ACNN model
(Section 4), two state-of-the-art coreference resolu-
tion systems are also experimented. Episode and
scene-level models are developed separately for all
three systems using the same dataset in Table 5. All
system outputs are evaluated with the MUC (Vi-
lain et al., 1995), B3 (Bagga and Baldwin, 1998),
and CEAF, (Luo, 2005) metrics suggested by the
CoNLL’ 12 shared task (Pradhan et al., 2012). The
average score of five trials is reported for each met-
ric to minimize variance because these systems use
neural network approaches with random initializa-
tion to produce varying results per trial (Table 4).

Ross
Rachel
Chandler
Monica
Joey
Phoebe
Carol
Barry
Mindy
Other

Figure 3: Character labels used for entity linking.

Comparison between the State-of-the-Art

When trained and evaluated on our dataset, both the
Stanford (Clark and Manning, 2016) and the Har-
vard (Wiseman et al., 2016) systems give compara-
ble results to their performance on the CoNLL’ 12
dataset.” The Stanford system using its pre-trained
model gives the u scores of 47.67% and 64.14% for
the episode and scene-level respectively, which sig-
nifies the importance of the in-domain training data.

"The Stanford and the Harvard systems reported 1 scores of
65.73% and 64.21% on the CoNLL’ 12 dataset, respectively.



Model H Ross ‘ Joey ‘ Chandler ‘ Monica ‘ Phoebe ‘ Rachel ‘ Carol ‘ Mindy ‘ Barry ‘ Unk. H Avg ‘ Acc

B || 57.54 | 80.94 64.91 89.82 87.86 76.47 | 30.14 0 16.67 | 70.24 || 57.46 | 72.52
E | ME || 72.81 | 80.31 82.43 79.78 82.71 82.94 | 4484 | 20.00 | 53.05 | 76.23 | 67.51 | 77.80
CE || 93.46 | 97.90 98.23 95.42 98.24 95.02 | 100.00 0 95.65 | 93.71 | 86.76 | 95.30
B || 60.00 | 69.09 61.05 72.51 57.27 78.77 | 34.38 0 11.76 | 67.62 | 51.24 | 66.68
S | ME || 74.75 | 81.76 80.71 88.83 84.33 85.43 | 53.15 | 20.00 | 62.90 | 80.82 || 71.27 | 81.07
CE | 91.29 | 90.64 86.33 94.10 85.41 90.16 | 6535 | 18.71 | 83.45 | 85.82 || 79.12 | 87.64

Table 6: Entity linking results on the evaluation set (in %). The F1 score is reported for each character.
E/S: episode/scene level. Unk.: unknown. Avg: the macro-average F1 score between all characters.
Acc: (the number of correctly labeled mentions) / (the total number of mentions).

All systems show higher scores for the scene-level
than the episode-level consistently, which confirms
the difficulty of this task on larger documents.
Although both systems take advantage of global
cluster features, they reveal different strengths on
resolving mentions with respect to the cluster size.
The Stanford system excels for the episode-level,
which is primarily attributed to the cluster-based na-
ture of this system,; it is able to find more accurate
coreferent chains when the clusters are larger. The
Harvard system performs best for the scene-level,
indicating that its neural architecture with Long
Short-Term Memory cells captures more meaning-
ful cluster features when the clusters are smaller.

Comparison to Agglomerative CNN

In comparison to the other state-of-the-art systems,
our ACNN model shows competitive performance;
it gives the highest B® and comparable ;. scores
for both episode and scene levels. We measure
the average cluster size produced by each system
for further analysis (|C| in Table 4). The Harvard
system produces smaller clusters than the other
two systems. Such a tendency gives more pure
clusters, favored by the CEAF, metric for the scene-
level. However, it is prone to breaking up too many
links, which leads to poor performance in the B3
evaluation on the episode-level.

The performance of our model is encouraging
although coreference resolution is not the end goal.
We design this model to automatically generate
mention embeddings and mention-pair embeddings
that are used to construct cluster features for entity
linking. However, even though this model’s success
in coreference resolution is not our final objective,
its success directly correlates to the success of en-
tity linking because of the similarity between these
two tasks. Due to the similar nature of these two
tasks, the success of coreference resolution directly
correlates to that of entity linking. These embed-

dings are the essence of our entity linking model,
leading to a huge improvement.

6.3 Entity Linking

The heuristic-based approach proposed by Chen
and Choi (2016) is adapted to establish the baseline.
Two statistical models are experimented for both
the episode and scene levels, one using only men-
tion embeddings and the other using both mention
embeddings and cluster embeddings (Section 5).
All models are evaluated with the F1 scores of char-
acter labels, the macro-average F1 scores between
all labels, and the label accuracies. The average
scores of five trials are reported in Table 6.

B: Baseline Model

The heuristic-based approach is applied to the men-
tion clusters found by our coreference resolution
model. Two rules, "proper noun and ?first-person
pronoun matches, are used to assign character la-
bels to all mentions. The label of each cluster is
then determined by the majority vote between the
mention labels within the cluster. Finally, the clus-
ter label is assigned to all mentions in that cluster.
This model performs better when it is applied to
the episode-level clusters because larger clusters
provide more mention labels, which makes the ma-
jority vote more reliable.

ME: Mention Embedding Model

This model takes advantage of the mention embed-
dings generated by our ACNN model. Compared to
the baseline, it gives over a 21% higher average F1
score, and over a 15% higher label accuracy for the
episode and the scene levels, respectively. Interest-
ingly, this model shows higher performance for the
scene-level, which is not the case for the other two
models. This implies that the mention embeddings
learned from scene-level documents are more infor-
mative than those learned from episode-level ones.
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System

H Ross ’ Joey ’ Chandler ’ Monica ’ Phoebe ‘ Rachel ‘ Carol ’ Mindy ’ Barry ’ Unk. H 3

Ross 182 7 1 190

Joey 186 6 192
Chandler 235 235
Monica 1 200 201

Y Phoebe 141 2 143
8~ Rachel 2 237 239
Carol 49 49
Mindy 0 9 9
Barry 11 11
Other 11 1 11 21 5 1 562 || 616

s o387 | 247 | 223 | 145 | 244 [ 54 | o0 | 12 | 580 [ 1885

Table 7: The confusion matrix between gold and system annotation for all character labels (in #).

This case is also reflected on its coreference resolu-
tion performance where the scene-level scores are
higher than the episode-level scores (Table 4).

CE: Cluster Embedding Model

While the mention embeddings give a significant
improvement over the baseline, further improve-
ment is made when they are coupled with the clus-
ter and mention-cluster embeddings. The episode-
level cluster embedding model shows an average
F1 score of 86.76% and a label accuracy of 95.30%,
which is another 15% improvement, suggesting a
practical use of this model in real applications. A
couple of important observations are made:

e Cluster and mention-cluster embeddings, al-
though learned during coreference resolution,
are crucial for entity linking such that a coref-
erence resolution model specifically designed
for multiparty dialogues is necessary to build
the state-of-the-art entity linking model for
this genre.

o Clusters generated from the episode-level doc-
uments provide more information than those
from the scene-level do, which aligns with the
conclusion made by Chen and Choi (2016).

Error Analysis

An error analysis is performed on the episode-level
cluster embedding model. From the confusion ma-
trix in Table 7, two common system errors are de-
tected. First, most of the mispredictions identify
Unknown as specific characters. Second, the perfor-
mance on the secondary characters, Carol, Mindy,
and Barry, is subpar with respect to other enti-
ties. This subpar performance likely stems from
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a paucity of appearances by these secondary char-
acters. For example, Mindy constitutes 1% of the
dataset (Figure 3) and has only nine occurrences in
the evaluation set. Our best model is robust in iden-
tifying the primary characters, showing an average
F1 score of 96.38% and an accuracy of 98.42% on
the evaluation set.

7 Conclusion

In this paper, we explore a relatively new task, char-
acter identification on multiparty dialogues, and
introduce a novel perspective on approaching the
task with coreference resolution and entity linking.
We improve and augment finer-grained annotation
over the existing corpus that simulates real conver-
sations. We propose a deep convolutional neural
network to agglomerate groups of features into
mention, mention-pair, cluster, and mention-cluster
embeddings that are optimized for entity predic-
tion. Our coreference resolution result shows an
improvement on the updated version of the corpus.
Our entity linking result reaches to the accuracy
that is sufficient for real-world applications.

To the best of our knowledge, our work is the
first time that such deep convolution layers have
been used for training mention and cluster embed-
dings. Our results show that the generation of these
embeddings is crucial for the success of entity link-
ing on multiparty dialogues. For future work, we
will continue to increase the size of the corpus with
high-quality and disambiguated annotation. We
also wish to improve the embeddings to represent
plural and collective mentions, thus we can build
upon our entity linking model incorporating many-
to-many linkings between entities and mentions.
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