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Abstract

Conventional word embeddings are train-
ed with specific criteria (e.g., based on
language modeling or co-occurrence) in-
side a single information source, disre-
garding the opportunity for further calibra-
tion using external knowledge. This paper
presents a unified framework that lever-
ages pre-learned or external priors, in the
form of a regularizer, for enhancing con-
ventional language model-based embed-
ding learning. We consider two types of
regularizers. The first type is derived from
topic distribution by running latent Dirich-
let allocation on unlabeled data. The sec-
ond type is based on dictionaries that are
created with human annotation efforts. To
effectively learn with the regularizers, we
propose a novel data structure, trajectory
softmax, in this paper. The resulting em-
beddings are evaluated by word similarity
and sentiment classification. Experimental
results show that our learning framework
with regularization from prior knowledge
improves embedding quality across multi-
ple datasets, compared to a diverse collec-
tion of baseline methods.

1 Introduction

Distributed representation of words (or word em-
bedding) has been demonstrated to be effec-
tive in many natural language processing (NLP)
tasks (Bengio et al., 2003; Collobert and We-
ston, 2008; Turney and Pantel, 2010; Collobert
et al.,, 2011; Mikolov et al., 2013b,d; Weston
et al., 2015). Conventional word embeddings are
trained with a single objective function (e.g., lan-
guage modeling (Mikolov et al., 2013c) or word
co-occurrence factorization (Pennington et al.,
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2014)), which restricts the capability of the
learned embeddings from integrating other types
of knowledge. Prior work has leveraged relevant
sources to obtain embeddings that are best suited
for the target tasks, such as Maas et al. (2011) us-
ing a sentiment lexicon to enhance embeddings for
sentiment classification. However, learning word
embeddings with a particular target makes the ap-
proach less generic, also implying that customized
adaptation has to be made whenever a new knowl-
edge source is considered.

Along the lines of improving embedding qual-
ity, semantic resources have been incorporated as
guiding knowledge to refine objective functions in
a joint learning framework (Bian et al., 2014; Xu
et al., 2014; Yu and Dredze, 2014; Nguyen et al.,
2016), or used for retrofitting based on word re-
lations defined in the semantic lexicons (Faruqui
etal., 2015; Kiela et al., 2015). These approaches,
nonetheless, require explicit word relations de-
fined in semantic resources, which is a difficult
prerequisite for knowledge preparation.

Given the above challenges, we propose a novel
framework that extends typical context learning
by integrating external knowledge sources for en-
hancing embedding learning. Compared to a well
known work by Faruqui et al. (2015) that focused
on tackling the task using a retrofitting! frame-
work on semantic lexicons, our method has an
emphasis on joint learning where two objectives
are considered for optimization simultaneously. In
the meantime, we design a general-purpose infras-
tructure which can incorporate arbitrary external
sources into learning as long as the sources can
be encoded into vectors of numerical values (e.g.
multi-hot vector according to the topic distribu-
tions from a topic model). In prior work by Yu
and Dredze (2014) and Kiela et al. (2015), the ex-

'In their study, joint learning was reported to be less ef-
fective than retrofitting.
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ternal knowledge has to be clustered beforehand
according to their semantic relatedness (e.g., cold,
icy, winter, frozen), and words of similar mean-
ings are added as part of context for learning. This
may set a high bar for preparing external knowl-
edge since finding the precise word-word relations
is required. Our infrastructure, on the other hand,
is more flexible as knowledge that is learned else-
where, such as from topic modeling or even a sen-
timent lexicon, can be easily encoded and incor-
porated into the framework to enrich embeddings.

The way we integrate external knowledge is
performed by the notion of a regularizer, which is
an independent component that can be connected
to the two typical architectures, namely, continu-
ous bag-of-words (CBOW) and skip-gram (SG),
or used independently as a retrofitter. We construct
the regularizers based on the knowledge learned
from both unlabeled data and manually crafted
information sources. As an example of the for-
mer, a topic model from latent Dirichlet allocation
(LDA) (Blei et al., 2003) is first generated from
a given corpus, based on which per-word topical
distributions are then added as extra signals to aid
embedding learning. As an example of the latter,
one can encode a dictionary into the regularizer
and thus adapt the learning process with the en-
coded knowledge.

Another contribution of this paper is that we
propose a novel data structure, trajectory softmax,
to effectively learn prior knowledge in the regu-
larizer. Compared to conventional tree based hi-
erarchical softmax, trajectory softmax can greatly
reduce the space complexity when learning over a
high-dimension vector. Our experimental results
on several different tasks have demonstrated the
effectiveness of our approach compared to up-to-
date studies.

The rest of the paper is organized as follows. In
section 2, we describe in detail our framework and
show how we learn the regularizer in section 3.
Section 4 presents and analyzes our experimental
results and section 5 surveys related work. Finally,
conclusions and directions of future work are dis-
cussed in section 6.

2 Approach

Conventionally word embeddings are learned
from word contexts. In this section, we describe
our method of extending embedding learning to
incorporate other types of information sources.

Previous work has shown that many different
sources can help learn better embeddings, such as
semantic lexicons (Yu and Dredze, 2014; Faruqui
et al., 2015; Kiela et al., 2015) or topic distribu-
tions (Maas et al., 2011; Liu et al., 2015b). To
provide a more generic solution, we propose a uni-
fied framework that learns word embeddings from
context (e.g., CBOW or SG) together with the flex-
ibility of incorporating arbitrary external knowl-
edge using the notion of a regularizer. Details are
unfolded in following subsections.

2.1 The Proposed Learning Framework

Preliminaries: The fundamental principle for
learning word embeddings is to leverage word
context, with a general goal of maximizing the
likelihood that a word is predicted by its context.
For example, the CBOW model can be formulated
as maximizing

V1

mipA Zlogp wi | Y wvigy), Ywi €V
0<|jl<c
(1)

where v;; refers to the embedding of a word in

wiT¢, and c defines the window size of words ad-
jacent to the word w;. The optimization for £ over
the entire corpus is straightforward.

The left part of Figure 1 illustrates the con-
cept of such context learning. It is a typical ob-
jective function for language modeling, where w;
is learned by the association with its neighboring
words. Since context greatly affects the choice of
the current word, this modeling strategy can help
finding reasonable semantic relationships among
words.

Regularizer: To incorporate additional sources
for embedding learning, we introduce the notion
of a regularizer, which is designed to encode in-
formation from arbitrary knowledge corpora.
Given a knowledge resource W, one can en-
code the knowledge carried by a word w with
¥ (w), where 1) can be any function that maps w
to the knowledge it encapsulates. Fie)xample,

a word has a topic vector ¥ (w) = e(wi)®[1:K7:},

. —
resulting Y(w) = @y = (P10, P20 - PKw)>

where 1.k is the topic distribution matrix for
—

all words with K topics; e(*#) is the standard basis
vector with 1 at the i-th position in the vocabulary
V. Therefore, regularization for all w with given
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Figure 1:

regularization matrix

Ilustration of joint learning word embeddings with context and regularization from prior

knowledge. The green lines refer to the prediction and the red dotted lines refer to the updating process.

a knowledge source can be conceptually used to
maximize ), .- R(v), where R is the regular-
izer, defined as a function of the embedding v of a
given word w and formulated as:

R(v) =logp(¢(w)lv), Yw e V,¥  (2)

The right part of Figure 1 shows an instantiation
of a regularizer that encodes prior knowledge of
vocabulary size |V|, each with D dimensions.

Joint Learning: To extend conventional embed-
ding learning, we combine context learning from
an original corpus with external knowledge en-
coded by a regularizer, where the shared vocabu-
lary set forms a bridge connecting the two spaces.
In particular, the objective function for CBOW
with integrating the regularizer can be formulated
as maximizing

Vi

|V|Zlogp wi, h(ws) | D i) (3)

0<|jl<e

where not only w;, but also R(w;) is predicted by
the context words w;y; via their embeddings v; 4 ;.

Figure 1 as a whole illustrates this idea. Re-
call that each row of the matrix corresponds to a
vector of a word in V, representing prior knowl-
edge across D dimensions (e.g., semantic types,
classes or topics). When learning/predicting a
word within this framework, the model needs to
predict not only the correct word as shown in the
context learning part in the figure, but also the cor-
rect vector in the regularizer. In doing so, the
prior knowledge will be carried to word embed-
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dings from regularization to context learning by
back-propagation through the gradients obtained
from the learning process based on the regulariza-
tion matrix.

Retrofitting: With joint learning as our goal,
we should emphasize that the proposed frame-
work supports simultaneous context learning and
prior knowledge retrofitting with a unified objec-
tive function. This means that the retrofitters can
be considered as a stand-alone component at dis-
posal, where the external knowledge vectors are
regarded as supervised-learning target and the em-
beddings are updated through the course of fitting
to the target. In §4, we will evaluate the perfor-
mance of both joint learner and retrofitter in detail.

2.2 Parameter Estimation

As shown in Equation 3, prior knowledge par-
ticipates in the optimization process for predict-
ing the current word and contributes to embedding
updating during training a CBOW model. Using
stochastic gradient descent (SGD), embeddings
can be easily updated by both objective functions
for language modeling and regularization through:

Uihs = Vi = AV [logp(wi| Y wvigy)+R(v])]
0<]j|<e
“4)

where R is defined as in Eq.2 for ¢(w;). For SG
model, prior knowledge is introduced in a similar
way, with the difference being that context words
are predicted instead of the current word.

Therefore, when learned from the context, em-



Wiws
Wsws,

wowy
WeWs

Figure 2: Comparison of hierarchical softmax (left) and trajectory softmax (right) based on an example of
eight words in binary coding. The bold arrow lines refer to the path for encoding ws in both hierarchical

and trajectory softmax.

beddings are updated in the same way as in nor-
mal CBOW and SG models. When learned from
the regularizer, embeddings are updated via a su-
pervised learning over ¥, on the condition that W
is appropriately encoded by 1. The details of how
it is performed will be illustrated in the next sub-
section.

2.3 Trajectory Softmax

Hierarchical softmax is a good choice for reducing
the computational complexity when training prob-
abilistic neural network language models. There-
fore, for context learning on the left part of Fig-
ure 1, we continue using hierarchical softmax
based on Huffman coding tree (Mikolov et al.,
2013a). Typically to encode the entire vocabulary,
the depth of the tree falls in a manageable range
around 15 to 18.

However, different from learning context
words, to encode a regularizer as shown on the
right part of Figure 1, using hierarchical softmax is
intractable due to exponential space demand. Con-
sider words expressed with D-dimensional vectors
in a regularizer, a tree-based hierarchical softmax
may require 2° — 1 nodes, as illustrated in the
left hand side of Figure 2. Since each node con-
tains a d-dimensional “node vector” that is to be
updated through training, the total space required
is O(2P - d) for hierarchical softmax to encode the
regularizer. When D is very large, such as D = 50
meaning that tree depth is 50, the space demand
tends to be unrealistic as the number of nodes in
the tree grows to 2.

To avoid the exponential requirement in space,
in this work, we propose a trajectory softmax acti-
vation to effectively learn over the D-dimensional
vectors. Our approach follows a grid hierarchical
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structure along a path when conducting learning
in the regularizer. From the right hand side of Fig-
ure 2, we see that the same regularizer entry is en-
coded with a path of D nodes, using a grid struc-
ture instead of a tree one. Consequently the total
space required will be reduced to O(2 - D - d).

As a running example, Figure 2 shows that
when D = 4, the conventional hierarchical soft-
max needs at least 15 nodes to perform softmax
over the path, while trajectory softmax greatly re-
duces space to only 7 nodes. Compared to tree-
based hierarchical softmax, the paths in trajectory
softmax are not branches of a tree, but a fully
connected grid of nodes with space complexity of
D x |C] in general. Here |C| refers to the num-
ber of choices on the paths for a node to the next
node, and thus |C| 2 is the binary case. In
Figure 2, we see an activation trajectory for a se-
quence of “Root— 100" for encoding word ws. wy
is then learned and updated through the nodes on
the trajectory when ws is predicted by w;. The
learning and updating are referred by the dashed
arrow lines. Overall, trajectory softmax greatly re-
duces the space complexity than hierarchical soft-
max, especially when words sharing similar infor-
mation, in which case the paths of these words will
be greatly overlapped.

More formally, learning with trajectory softmax
in the binary case is similar to hierarchical soft-
max, which is to maximize p over the path for a
vector encoded in ¥ (w), where p is defined below
with an input vector v:

D—-1
p((w)v) = [T o([nG + DI -vfv) &)
=1

where v; is the inner vector in i-th node on the
trajectory. [n(i + 1)] = 1 or —1 when (i + 1)-th



node is encoded with 0 or 1, respectively. The final
update to word embedding v with the regularizer
is conducted by:

T

v =v—7(o(v, v) —t;) v 6)
which is applied to ¢ = 1,2,...,D — 1, where
o(x) = exp(x)/(1 + exp(z)); ti = [n(i + D]

~ is a discount learning rate.

Since the design of trajectory softmax is com-
patible with the conventional hierarchical softmax,
one can easily implement the joint learning by
concatenating its Root with the terminal node in
the hierachical tree. The learning process is thus
to traverse all the nodes from the hierarchical tree
and the trajectory path.

3 Constructing Regularizers

We consider two categories of information sources
for constructing regularizers. The first type of reg-
ularizer is built based on resources without anno-
tation. On the contrary, the second type uses text
collections with annotation. For brevity, through-
out the paper we refer to the former as unannotated
regularizer whereas the latter is recognized as an-
notated regularizer.

3.1 Unannotated Regularizer

The unannotated regularizer constructs its regular-
ization matrix based on an LDA learned topic dis-
tribution, which reflects topical salience informa-
tion of a given word from prior knowledge. Us-
ing LDA not only serves our purpose of learn-
ing according to word semantics reflected by co-
occurrences but can also bring in knowledge inex-
pensively (i.e., no annotations needed).

To start, a classic LDA is first performed on an
arbitrary base corpus for retrieving word topical
distribution, resulting in a topic model with K top-
ics. All the units in the corpus are then assigned
with a word-topic probability ¢; corresponding to
topic k, based on which a matrix is formed with all
gw, as described in §2.1. Next we convert each
& into ) a 0-1 vector based on the maximum val-
ues in ®. In particular, positions with maximum
values are set to 1 and the rest are set to O (e.g.
[0.1,0.1,04,04] — [0, 0, 1, 1]). This converted
matrix functions as the final regularization matrix
as shown in right hand side of Figure 1. We set
K = 50 in our experiments.”> An in-house LDA

2We experimented with other numbers for K, and their

performance didn’t vary too much when K > 40. We didn’t
include this comparison due to the similar results.
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implementation? is used for training 1.k, , With
1,000 iterations.

3.2 Annotated Regularizer

We use three sources for training annotated regu-
larizers in this work. Two of the sources are se-
mantic lexicons, namely, the Paraphrase Database
(PPDB)* (Ganitkevitch et al., 2013) and synonyms
in the WordNet (WN,,,,)°> (Miller, 1995). They
are used in the word similarity task. The third
source is a semantic dictionary, SentiWordNet 3.0
(SWN) (Baccianella et al., 2010), which is used
in the sentiment classification task. All of the
three sources were created with annotation efforts,
where either lexical or semantic relations were
provided by human experts beforehand.

Before constructing the regularizer, we need en-
code each word in the sources as a vector accord-
ing to its relations to other words or predefined in-
formation. For PPDB and WN,,,, we use them in
different ways for joint learning and retrofitting.
In order to optimize the efficiency in joint learn-
ing, we compress the word relations with topic
representations. We use an LDA learner to get
topic models for the lexicons®, with K 50.
Therefore, the word relations are transferred into
topic distributions that are learned from their co-
occurrences defined in the lexicon. The way we
construct regularization matrix may be lossy, risk-
ing losing information that is explicitly delivered
in the lexicon. However, it provides us effective
encodings for words, and also yields better learn-
ing performance empirically in our experiments.
In retrofitting, we directly use words’ adjacent ma-
trices extracted from their relations defined in the
lexicons, then take the adjacent vector for each
word as the regularization vector.

The SWN includes 83K words (147K words
and phrases in total). Every word in SWN has two
scores for its degree towards positive and negative
polarities. For example, the word “pretty” receives
0.625 and O for positive and negative respectively,
which means it is strongly associated with positive
sentiment. The scores range from 0 to 1 with step

31t is a Markov Chain Monte Carlo (MCMC) based LDA
using Gibbs sampling.

“We use PPDB-XL in this paper.

>We use WN,,,, because in our experiment only using
synonyms perform better than using synonyms, hypernyms
and hyponyms.

The lexicons are organized in the similar way as in
Faruqui et al. (2015), where synonyms are grouped together
and treated as a document for LDA learning.



. MEN-3k SimLex-999 | WordSim-353
Embeddings

v | »p v | »p v [ op

LDA | 57.17 | 58.86 [ 20.39 | 22.12 | 55.48 | 54.81 |

CBOW 62.93 | 65.84 | 28.34 | 2831 | 68.50 | 66.67

+PPDB || 65.35 | 65.84 | 35.56 | 33.30 | 72.75 | 72.43

Yuand Dredze COI4) 1= 5176520 | 65.74 | 36.15 | 33.65 | 72.79 | 72.58

+LDA | 67.33 | 69.51 | 29.79 | 29.78 | 71.19 | 69.58

This work +PPDB || 65.25 | 66.87 | 36.43 | 33.28 | 69.45 | 68.89

+WN,,, || 64.42 | 66.98 | 33.86 | 33.69 | 66.13 | 67.11

SG 64.79 | 66.71 | 26.97 | 26.59 | 68.88 | 67.80

. +PPDB || 61.13 | 60.04 | 36.47 | 34.29 | 70.14 | 68.76

Kielactal. QO15) =N, [757.02 [ 59.84 | 29.02 | 29.99 | 6361 | 61.22

+LDA | 65.02 | 65.32 | 25.19 | 24.04 | 66.16 | 69.21

This work +PPDB || 70.83 | 71.35 | 37.10 | 35.72 | 73.94 | 73.11

¥WN,,, || 66.58 | 68.14 | 36.72 | 35.91 | 68.50 | 67.90

Table 1: Word similarity results for joint learning on three datasets in terms of Pearson’s coefficient cor-
relation () and Spearman’s rank correlation (p) in percentages. Higher score indicates better correlation
of the model with respect to the gold standard. Bold indicates the highest score for each embedding type.

of 0.125 for both positive and negative polarities.
Therefore there are 9 different degrees for a word
to be annotated for the two sentiments. For en-
coding this dictionary, we design a 18-dimension
vector, in which the first 9 dimension represents
the positive sentiment while the last 9 for negative
sentiment. A word is thus encoded into a binary
form where the corresponding dimension is set
to 1 with others 0. For the aforementioned word
“pretty”, its encoded vector will be “000001000
000000000, in which the score 0.625 of positive
activates the 6th dimension in the vector. In doing
so, we form a 83K x 18 regularization matrix for
the SWN dictionary.

4 Experiments

The resulting word embeddings based on joint
learning as well as retrofitting are evaluated in-
trinsically and extrinsically. For intrinsic evalu-
ation, we use word similarity benchmark to di-
rectly test the quality of the learned embeddings.
For extrinsic evaluation, we use sentiment analy-
sis as a downstream task with different input em-
beddings. Regularizers based on LDA, PPDB and
WN,y, are used in word similarity experiment,
while SentiWordNet regularization is used in sen-
timent analysis. The experimental results will be
discussed in §4.1 and §4.2.

We experiment with three learning paradigms,
namely CBOW, SG and GloVe. GloVe is only
tested in retrofitting since our regularizer is not
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compatible with GloVe learning objective in joint
learning. In all of our retrofitting experiments, we
only train the regularizer with one iteration, con-
sistent with Kiela et al. (2015).

The base corpus that we used to train ini-
tial word embeddings is from the latest articles
dumped from Wikipedia and newswire’, which
contains approximately 8 billion words. When
training on this corpus, we set the dimension of
word embeddings to be 200 and cutoff threshold
of word frequency threshold to be 5 times of oc-
currence. These are common setups shared across
the following experiments.

4.1 Word Similarities Evaluation

We use the MEN-3k (Bruni et al., 2012), SimLex-
999 (Hill et al., 2015) and WordSim-353 (Finkel-
stein et al., 2002) datasets to perform quantitative
comparisons among different approaches to gen-
erating embeddings. The cosine scores are com-
puted between the vectors of each pair of words in
the datasets®. The measures adopted are Pearson’s
coefficient of product-moment correlation () and
Spearman’s rank correlation (p), which reflect how

"This corpus is constructed by the script demo-train-big-
model-vl.sh from https://storage.googleapis.com/google-
code-archive-source/v2/code.google.com/word2vec/source-
archive.zip

8For LDA embeddings (topic distributions), we tried
Jenson-Shannon divergence, which is much worse than co-
sine scores in measuring the similarity. Therefore we still use
cosine for LDA embeddings.



. MEN-3k SimLex-999 | WordSim-353
Embeddings

v | »p v | »p v [ op

GloVe 66.84 | 66.97 | 28.87 | 27.52 | 59.78 | 61.46

Faruqui et al, 2015) | "FPDB_| 6698 | 67.04 2925 | 2825 | 61.44 | 6335

FWN,,, || 64.29 | 63.92 | 27.32 | 24.39 | 57.40 | 58.88

FLDA || 59.65 | 60.23 | 22.25 | 22.70 | 55.65 | 57.57

This work YPPDB | 68.99 | 68.99 | 31.35 | 29.85 | 62.31 | 63.96

FWN,,, || 66.72 | 66.84 | 29.78 | 2847 | 59.62 | 61.34

CBOW 62.93 | 65.84 | 28.34 | 2831 | 68.50 | 66.67

YPPDB | 65.08 | 65.52 | 36.16 | 34.01 | 72.75 | 72.39

Yuand Dredze QOI) 1= 765.34 [ 65.77 | 35.68 | 33.33 | 72.72 | 72.74

Faruqui et al, 2015) | "FPDB_| 6307 | 6755 3707 | 3502 | 7176 | 7118

FWN,,, || 63.71 | 6644 | 30.15 | 29.83 | 71.24 | 69.39

FLDA | 50.07 | 56.64 | 21.47 | 23.01 | 41.56 | 47.27

This work YPPDB | 6530 | 67.68 | 37.34 | 35.74 | 72.01 | 72.05

FWN,, | 63.80 | 66.74 | 33.96 | 33.82 | 68.70 | 66.91

SG 64.79 | 66.71 | 26.97 | 26.59 | 68.88 | 67.80

_ +PPDB | 67.38 | 69.05 | 32.49 | 31.84 | 71.59 | 69.82

Kielaetal. @015) 1= —1764.38 | 67.02 | 20.43 | 28.12 | 69.15 | 68.36

Faruqui et al, 2015) | "PPDB_| 6344 16702 3412 | 3372 | 7124 | 7031

*WN.,n || 65.65 | 66.71 | 28.25 | 27.61 | 70.21 | 69.47

FLDA | 64.02 | 65.33 | 24.64 | 2428 | 59.43 | 60.60

This work YPPDB | 67.17 | 69.09 | 34.93 | 34.57 | 72.63 | 71.15

*WN.,n || 65.62 | 67.38 | 20.96 | 29.82 | 69.70 | 68.91

Table 2: Word similarity results for retrofitting on three datasets in terms of Pearson’s coefficient corre-
lation (vy) and Spearman’s rank correlation (p) in percentages. Higher score indicates better correlation
of the model with respect to the gold standard. Bold indicates the highest score for each embedding type.

close the similarity scores to human judgments.

For both joint learning and retrofitting, we test
our approach with using PPDB and WN,,,, as the
prior knowledge applied to our regularizer. Con-
sidering that LDA can be regarded as soft cluster-
ing for words, it is very hard to present words with
deterministic relations like in PPDB and WN;,,
therefore we do not apply retrofitting on LDA re-
sults for previous studies.

The evaluation results are shown in Table 1 and
Table 2 for joint learning and retrofitting, respec-
tively. Each block in the tables indicates an em-
bedding type and its corresponding enhancement
approaches. For comparison, we also include the
results from the approaches proposed in previous
studies, i.e., Yu and Dredze (2014)° for CBOW,
Kiela et al. (2015)'° for SG and Faruiqui et al.
(2015)!"! for all initial embeddings. Their settings
are equal to that used in our approach.

“https://github.com/Gorov/JointRCM
10We re-implemented their approach in our own code.
"https://github.com/mfaruqui/retrofitting

Table 1 shows that directly using LDA topic dis-
tributions as embeddings can give reasonable re-
sults for word similarities. Because LDA captures
word co-occurrences globally so that words share
similar contexts are encoded similarly via topic
distributions. This is a good indication showing
that LDA could be a useful guidance to help our
regularize to incorporate global information.

For other joint learning results in Table 1, our
approach shows significant gain over the base-
lines, the same for the approaches from previ-
ous studies (Yu and Dredze, 2014; Faruqui et al.,
2015). However, using WNy,,, in Kiela et al.
(2015) does not help, this may owe to the fact that
using the words defined in WN,,, as contexts will
affect the real context learning and thus deviate the
joint objective function. Interestingly, using LDA
in regularizer significantly boosts the performance
on MEN-3k, even better than that with using se-
mantic lexicons. The reason might be that LDA
enhances word embeddings with the relatedness
inherited in topic distributions.
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For retrofitting, Table 2 shows that our approach
demonstrates its effectiveness for enhancing ini-
tial embeddings with prior knowledge. It performs
consistently better than all other approaches in a
wide range of settings, including three embedding
types on three datasets, with few exceptions. Since
retrofitting only updates those words in the exter-
nal sources, e.g., LDA word list or lexicons, it is
very sensitive to the quality of the corresponding
sources. Consequently, it can be observed from
our experiment that unannotated knowledge, i.e.,
topic distributions, is not an effective source as a
good guidance. In contrast, PPDB, which is of
high quality of semantic knowledge, outperforms
other types of information in most cases.

4.2 Sentiment Classification Evaluation

We perform sentiment classification on the IMDB
review data set (Maas et al., 2011), which has 50K
labeled samples with equal number of positive and
negative reviews. The data set is pre-divided into
training and test sets, with each set containing 25K
reviews. The classifier is based on a bi-directional
LSTM model as described in Dai and Le (2015),
with one hidden layer of 1024 units. Embeddings
from different approaches are used as inputs for
the LSTM classifier. For determining the hyper-
parameters (e.g., training epoch and learning rate),
we use 15% of the training data as the validation
set and we apply early stopping strategy when the
error rate on the validation set starts to increase.
Note that the final model for testing is trained on
the entire training set.

As reported in Table 3, the embeddings trained
by our approach work effectively for sentiment
classification. Both joint learning and retrofitting
with our regularizer outperform other baseline ap-
proaches from previous studies, with joint learn-
ing being somewhat better than retrofitting. Over-
all, our joint learning with CBOW achieves the
best performance on this task. A ten-partition two-
tailed paired t-test at p < 0.05 level is performed
on comparing each score with the baseline result
for each embedding type. Considering that sen-
timent is not directly related to word meaning,
the results indicate that our regularizer is capa-
ble of incorporating different type of knowledge
for a specific task, even if it is not aligned with
the context learning. This task demonstrates the
potential of our framework for encoding external
knowledge and using it to enrich the representa-
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’ Embeddings ‘ Accuracy ‘

| Maas et al. (2011) [ 88.89 |
GloVe 90.66
Faruqui et al. (2015) | +Retro 90.43
This work | +Retro 90.89
CBOW 91.29
+Joint 91.14
Yu and Dredze (2014) TRetro 9071
Faruqui et al. (2015) | +Retro 90.77
. +Joint 92.09*
This work = R ctro | 91817
SG 91.30
Faruqui et al. (2015) | +Retro 91.03
. +Joint 91.45
Kiela et al. (2015) TRetro 0114
. +Joint 92.07*
This work |0 o | 91.42

Table 3: Sentiment classification results on IMDB
data set (Maas et al., 2011). Bold indicates the
highest score for each embedding type. * indi-
cates t-test significance at p < 0.05 level when
compared with the baseline.

tions of words, without the requirement to build a
task-specific, customized model.

5 Related Work

Early research on representing words as dis-
tributed continuous vectors dates back to Rumel-
hart et al. (1986). Recent previous studies (Col-
lobert and Weston, 2008; Collobert et al., 2011)
showed that, the quality of embeddings can be im-
proved when training multi-task deep models on
task-specific corpora, domain knowledge that is
learned over the process. Yet one downside is that
huge amounts of labeled data is often required.
Another methodology is to update embeddings by
learning with external knowledge. Joint learn-
ing and retrofitting are two mainstreams of this
methodology. Leveraging semantic lexicons (Yu
and Dredze, 2014; Bian et al., 2014; Faruqui et al.,
2015; Liu et al., 2015a; Kiela et al., 2015; Wieting
et al., 2015; Nguyen et al., 2016) or word distri-
butional information (Maas et al., 2011; Liu et al.,
2015b) has been proven as effective in enhancing
word embeddings, especially for specific down-
stream tasks. Bian et al. (2014) proposed to im-
prove embedding learning with different kinds of
knowledge, such as morphological, syntactic and



semantic information. Wieting et al. (2015) im-
proves embeddings by leveraging paraphrase pairs
from the PPDB for learning phrase embeddings in
the paraphrasing task. In a similar way, Hill et
al. (2016) uses learned word embeddings as super-
vised knowledge for learning phrase embeddings.

Although our approach is conceptually similar
to previous work, it is different in several ways.
For leveraging unlabeled data, the regularizer in
this work is different from applying topic distri-
butions as word vectors (Maas et al., 2011) or
treating topics as conditional contexts (Liu et al.,
2015b). For leveraging semantic knowledge, our
regularizer does not require explicit word relations
as used in previous studies (Yu and Dredze, 2014;
Faruqui et al., 2015; Kiela et al., 2015), but takes
encoded information of words. Moreover, in order
to appropriately learn the encoded information, we
use trajectory softmax to perform the regulariza-
tion. As a result, it provides a versatile data struc-
ture to incorporate any vectorized information into
embedding learning. The above novelties make
our approach versatile so that it can integrate dif-
ferent types of knowledge.

6 Conclusion and Future Work

In this paper we proposed a regularization frame-
work for improving the learning of word embed-
dings with explicit integration of prior knowl-
edge. Our approach can be used independently
as a retrofitter or jointly with CBOW and SG to
encode prior knowledge. We proposed trajectory
softmax for learning over the regularizer, which
can greatly reduce the space complexity compared
to hierarchical softmax using the Huffman coding
tree, which enables the regularizer to learn over
a long vector. Moreover, the regularizer can be
constructed from either unlabeled data (e.g., LDA
trained from the base corpus) or manually crafted
resources such as a lexicon. Experiments on word
similarity evaluation and sentiment classification
show the benefits of our approach.

For the future work, we plan to evaluate the ef-
fectiveness of this framework with other types of
prior knowledge and NLP tasks. We also want
to explore different ways of encoding external
knowledge for regularization.
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