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Abstract

Vector representations of word meaning
have found many applications in the field
of natural language processing. Word vec-
tors intuitively represent the average con-
text in which a given word tends to oc-
cur, but they cannot explicitly model the
diversity of these contexts. Although re-
gion representations of word meaning of-
fer a natural alternative to word vectors,
only few methods have been proposed that
can effectively learn word regions. In this
paper, we propose a new word embedding
model which is based on SVM regression.
We show that the underlying ranking in-
terpretation of word contexts is sufficient
to match, and sometimes outperform, the
performance of popular methods such as
Skip-gram. Furthermore, we show that
by using a quadratic kernel, we can effec-
tively learn word regions, which outper-
form existing unsupervised models for the
task of hypernym detection.

1 Introduction

Word embedding models such as Skip-gram
(Mikolov et al., 2013b) and GloVe (Pennington
et al., 2014) represent words as vectors of typi-
cally around 300 dimensions. The relatively low-
dimensional nature of these word vectors makes
them ideally suited for representing textual in-
put to neural network models (Goldberg, 2016;
Nayak, 2015). Moreover, word embeddings have
been found to capture many interesting regulari-
ties (Mikolov et al., 2013b; Kim and de Marn-
effe, 2013; Gupta et al., 2015; Rothe and Schiitze,
2016), which makes it possible to use them as
a source of semantic and linguistic knowledge,
and to align word embeddings with visual features
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(Frome et al., 2013) or across different languages
(Zou et al., 2013; Faruqui and Dyer, 2014).

Notwithstanding the practical advantages of
representing words as vectors, a few authors have
advocated the idea that words may be better repre-
sented as regions (Erk, 2009), possibly with grad-
ual boundaries (Vilnis and McCallum, 2015). One
important advantage of region representations is
that they can distinguish words with a broad mean-
ing from those with a more narrow meaning, and
should thus in principle be better suited for tasks
such as hypernym detection and taxonomy learn-
ing. However, it is currently not well understood
how such region based representations can best be
learned. One possible approach, suggested in (Vil-
nis and McCallum, 2015), is to learn a multivari-
ate Gaussian for each word, essentially by requir-
ing that words which frequently occur together
are represented by similar Gaussians. However,
for large vocabularies, this is computationally only
feasible with diagonal covariance matrices.

In this paper, we propose a different approach to
learning region representations for words, which
is inspired by a geometric view of the Skip-gram
model. Essentially, Skip-gram learns two vectors
Pw and p,, for each word w, such that the prob-
ability that a word ¢ appears in the context of a
target word ¢ can be expressed as a function of
Pt - Pe (see Section 2). This means that for each
threshold A € [—1,1] and context word c, there
is a hyperplane HY which (approximately) sepa-
rates the words ¢ for which p; - p. > A from the
others. Note that this hyperplane is completely de-
termined by the vector p. and the choice of A\. An
illustration of this geometric view is shown in Fig-
ure 1(a), where e.g. the word c is strongly related
to a (i.e. a has a high probability of occurring in
the context of c) but not closely related to b. Note
in particular that there is a half-space containing
those words which are strongly related to a (w.r.t.
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a given threshold \).

Our contribution is twofold. First, we empir-
ically show that effective word embeddings can
be learned from purely ordinal information, which
stands in contrast to the probabilistic view taken
by e.g. Skip-gram and GloVe. Specifically, we
propose a new word embedding model which uses
(a ranking equivalent of) max-margin constraints
to impose the requirement that p; - p. should be
a monotonic function of the probability P(c|t)
of seeing c in the context of ¢. Geometrically,
this means that, like Skip-gram, our model asso-
ciates with each context word a number of paral-
lel hyperplanes. However, unlike in the Skip-gram
model, only the relative position of these hyper-
planes is imposed (i.e. if \; < Ay < A3 then H?
should occur between H2' and H23). Second, by
using a quadratic kernel for the max-margin con-
straints, we obtain a model that can represent con-
text words as a set of nested ellipsoids, as illus-
trated in Figure 1(b). From these nested ellipsoids
we can then estimate a Gaussian which acts as a
convenient region based word representation.

Note that our model thus jointly learns a vector
representation for each word (i.e. the target word
representations) as well as a region based repre-
sentation (i.e. the nested ellipsoids representing
the context words). We present experimental re-
sults which show that the region based represen-
tations are effective for measuring synonymy and
hypernymy. Moreover, perhaps surprisingly, the
region based modeling of context words also ben-
efits the target word vectors, which match, and
in some cases outperform the vectors obtained
by standard word embedding models on various
benchmark evaluation tasks.

2 Background and Related Work

2.1 Word Embedding

Various methods have already been proposed for
learning vector space representations of words,
e.g. based on matrix factorization (Turney and
Pantel, 2010) or neural networks. Here we briefly
review Skip-gram and GloVe, two popular models
which share some similarities with our model.
The basic assumption of Skip-gram (Mikolov
et al., 2013b) is that the probability P(c|t) of see-
ing word c in the context of word ¢ is given as:

Dbt 'ﬁc

Plelt) = > bt D
c c/
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(a) Linear kernel

(b) Quadratic kernel

Figure 1: The (dark) green region covers words
that are (strongly) related to a. Similarly, the
(dark) blue region expresses relatedness to b.

In principle, based on this view, the target vec-
tors p,, and context vectors p,, could be learned
by maximizing the likelihood of a given corpus.
Since this is computationally not feasible, how-
ever, it was proposed in (Mikolov et al., 2013b)
to instead optimize the following objective:

N
> " log(o(pu, Be))+ D log(—0 (pu, Ber))

i=1 ¢'eC; el

where the left-most summation is over all N word
occurrences in the corpus, w; is the i** word in the
corpus, C; are the words appearing in the context
of w; and C; consists of k - |C;| randomly chosen
words, called the negative samples for w;. The
context C; contains the ¢; words immediately pre-
ceding and succeeding w;, where t; is randomly
sampled from {1, ..., ¢, } for each i (Goldberg
and Levy, 2014). The probability of choosing
word w as a negative sample is proportional to

0.75
oce(w) , with occ(w) the number of occur-

rences of word w in the corpus. Finally, to reduce
the impact of frequent words, some word occur-
rences are removed from the corpus before apply-
ing the model, with the probability of removing an



occurrence of word w being 1 —  / %Ew)' Default

parameter values are ¢,,,, = 5 and § = 1075,
GloVe is another popular model for word em-
bedding (Pennington et al., 2014). Rather than
explicitly considering all word occurrences, it di-
rectly uses a global co-occurrence matrix X
(xi5) where z;; is the number of times the word
w; appears in the context of w;. Like Skip-gram,
it learns both a target vector p,, and context vec-
tor p,, for each word w, but instead learns these
vectors by optimizing the following objective:

tog

where b,,, and ij are bias terms, and f is a
weighting function to reduce the impact of very
rare terms, defined as:

fij) = {(

1
The default values are x,,, = 100 and o« = 0.75.

)a if Tij < Tmax

Lmax

otherwise

2.2 Region Representations

The idea of representing words as regions was
advocated in (Erk, 2009), as a way of model-
ing the diversity of the contexts in which a word
appears. It was argued that such regions could
be used to more accurately model the meaning
of polysemous words and to model lexical en-
tailment. Rather than learning region represen-
tations directly, it was proposed to use a vector
space representation of word occurrences. Two
alternatives were investigated for estimating a re-
gion from these occurrence vectors, respectively
inspired by prototype and exemplar based mod-
els of categorization. The first approach defines
the region as the set of points whose weighted dis-
tance to a prototype vector for the word is within a
given radius, while the second approach relies on
the k-nearest neighbor principle.

In contrast, (Vilnis and McCallum, 2015) pro-
posed a method that directly learns a representa-
tion in which each word corresponds to a Gaus-
sian. The model uses an objective function which
requires the Gaussians of words that co-occur to be
more similar than the Gaussians of words of neg-
ative samples (which are obtained as in the Skip-
gram model). Two similarity measures are consid-
ered: the inner product of the Gaussians and the
KL-divergence. It is furthermore argued that the
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asymmetric nature of KL-divergence makes it a
natural choice for modeling hypernymy. In partic-
ular, it is proposed that the word embeddings could
be improved by imposing that words that are in a
hypernym relation have a low KL-divergence, al-
lowing for a natural way to combine corpus statis-
tics with available taxonomies.

Finally, another model that represents words
using probability distributions was proposed in
(Jameel and Schockaert, 2016). However, their
model is aimed at capturing the uncertainty about
vector representations, rather than at modeling the
diversity of words. They show that capturing
this uncertainty leads to vectors that outperform
those of the GloVe model, on which their model
is based. However, the resulting distributions are
not suitable for modeling hypernymy. For exam-
ple, since more information is available for general
terms than for narrow terms, the distributions asso-
ciated with general terms have a smaller variance,
whereas approaches that are aimed at modeling the
diversity of words have the opposite behavior.

2.3 Ranking Embedding

The model we propose only relies on the rank-
ings induced by each context word, and tries to
embed these rankings in a vector space. This
problem of “ranking embedding” has already been
studied by a few authors. An elegant approach
for embedding a given set of rankings, based on
the product order, is proposed in (Vendrov et al.,
2016). However, this method is specifically aimed
at completing partially ordered relations (such as
taxonomies), based on observed statistical corre-
lations, and would not be directly suitable as a ba-
sis for a word embedding method. The computa-
tional complexity of the ranking embedding prob-
lem was characterized in (Schockaert and Lee,
2015), where the associated decision problem was
shown to be complete for the class 3R (which sits
between NP and PSPACE).

Note that the problem of ranking embedding
is different from the learning-to-rank task (Liu,
2009). In the former case we are interested
in learning a vector space representation that is
somehow in accordance with a given completely
specified set of rankings, whereas in the latter case
the focus is on representing incompletely specified
rankings in a given vector space representation.



3 Ordinal Regression Word Embedding
3.1 Learning the Embedding

In this section we explain how a form of ordinal
regression can be used to learn both word vectors
and word regions at the same time. First we intro-
duce some notations.

Recall that the Positive Pointwise Mutual In-
formation (PPMI) between two words w; and w;
is defined as PPMI(w;, w;) = max(0, PMI(w;,
wy)), with PMI(w;, w;) given by:

n(wi, ;) - (Dwew 2wew MW, w'))
o ((Zwew n(wi, w)) - (3 pew n(w, wj)))

where we write n(w;, w;) for the number of times
word w; occurs in the context of w;, and W repre-
sents the vocabulary. For each word w;, we write
Wg s ey Wﬂj for the stratification of the words in
the vocabulary according to their PPMI value with
wj, i.e. we have that:

1. PPMI(w,w;) = 0 for w € W{;

2. PPMI(w,w;) < PPMI(w',w;) for w € W

and w’ € W,ﬁ with 7 < k; and
3. PPMI(w,w;) = PPMI(w',w;) for w,w' €

As a toy example, suppose W = {wy, wa, w3, w4,
ws } and:

PPMI(w2,w1) = 3.4 PPMI(ws,w;) = 4.1
PPMI(wy,w1) =0  PPMI(ws,w;) =0
PPMI(wy,w;) =0

Then we would have VVO1 = {wy, wy, ws}, Wi =
{’LUQ} and W21 = {wg}.

To learn the word embedding, we use the fol-
lowing objective function, which requires that for
each context word w; there is a sequence of par-
allel hyperplanes that separate the representations
of the words in W7 _, from the representations of

the words in WZJ (te{l,...n;}):

5 .. ..
pos(j,i — 1) + neg(j,1) _
Y - - + B, ||
(Wi W/

i \i=1

where

pOS(j,i - 1) = Z [1 - (‘b(pw) : ﬁwj_"b;)]i
wEWL1

neg(4,1) = > (14 (d(pw) - Pu,+)13

weWij

subject to' b} < .. < b?j for each j. Note
that we write [z]; for max(0,x) and ¢ denotes
the feature map of the considered kernel function.
In this paper, we will in particular consider linear
and quadratic kernels. If a linear kernel is used,
then ¢ is simply the identity function. Using a
quadratic kernel leads to a quadratic increase in the
dimensionality of ¢(p,,) and py,. In practice, we
found our model to be about 3 times slower when
a quadratic kernel is used, when the word vectors
P are chosen to be 300-dimensional. Note that
Pw; and b; define a hyperplane, separating the ker-
nel space into a positive and a negative half-space.
The constraints of the form pos(j,i — 1) essen-
tially encode that the elements from W;_; should
be represented in the positive half-space, whereas
the constraints of the form neg(j,4) encode that
the elements from W; should be represented in the
negative half-space.

When using a linear kernel, the model is simi-
lar in spirit to Skip-gram, in the sense that it as-
sociates with each context word a sequence of
parallel hyperplanes. In our case, however, only
the ordering of these hyperplanes is specified,
i.e. the specific offsets bé- are learned. In other
words, we make the assumption that the higher
PPMI(w,wj) the stronger w is related to w;, but
we do not otherwise assume that the numerical
value of PPMI(w, wj;) is relevant. When using a
quadratic kernel, each context word is essentially
modeled as a sequence of nested ellipsoids. This
gives the model a lot more freedom to satisfy the
constraints, which may potentially lead to more in-
formative vectors.

The model is similar in spirit to the fixed margin
variant for ranking with large-margin constraints
proposed in (Shashua and Levin, 2002), but with
the crucial difference that we are learning word
vectors and hyperplanes at the same time, rather
than finding hyperplanes for a given vector space
representation. We use stochastic gradient descent
to optimize the proposed objective. Note that we
use a squared hinge loss, which makes optimizing
the objective more straightforward. As usual, the
parameter A controls the trade-off between main-
taining a wide margin and minimizing classifica-

"While it may seem at first glance that this constraint is

redundant, this is not actually the case; see (Chu and Keerthi,
2005) for a counterexample in a closely related framework.
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tion errors. Throughout the experiments we have
kept A at a default value of 0.5. We have also
added L2 regularization for the word vectors wy
with a weight of 0.01, which was found to increase
the stability of the model. In practice, W] is typ-
ically very large (containing most of the vocabu-
lary), which would make the model too inefficient.
To address this issue, we replace it by a small sub-
sample, which is similar in spirit to the idea of
negative sampling in the Skip-gram model. In our
experiments we use 2k randomly sampled words
from W, where k = 577, |[W7/| is the total num-
ber of positive samples. We simply use a uniform
distribution to obtain the negative samples, as ini-
tial experiments showed that using other sampling
strategies had almost no effect on the result.

3.2 Using Region Representations

When using a quadratic kernel, the hyperplanes
defined by the vector p,,; and offsets b; define a se-
quence of nested ellipsoids. To represent the word
wj, we estimate a Gaussian from these nested el-
lipsoids. The use of Gaussian representations is
computationally convenient and intuitively acts as
a form of smoothing. In Section 3.2.1 we first
explain how these Gaussians are estimated, after
which we explain how they are used for measur-
ing word similarity in Section 3.2.2

3.2.1 Estimating Gaussians

Rather than estimating the Gaussian representa-
tion of a given word w; from the vector p,,; and
offsets b’ directly, we will estimate it from the lo-
cations of the words that are inside the correspond-
ing ellipsoids. In this way, we can also take into
account the distribution of words within each el-
lipsoid. In particular, for each word w;, we first
determine a set of words w whose vector p,, is in-
side these ellipsoids. Specifically, for each word w
that occurs at least once in the context of wj, or is
among the 10 closest neighbors in the vector space
of such a word, we test whether ¢(py)-pu; < —b},
i.e. whether w is in the outer ellipsoid for wj.
Let M,,; be the set of all words w for which this
is the case. We then represent w; as the Gaus-
sian G'(-; fhw, Cw].), where j1,), and C,,; are esti-
mated as the sample mean and covariance of the
set {pw | w € My, }.

We also consider a variant in which each word
w from M, is weighted as follows. First, we
determine the largest k in {1,...,n;} for which
A(Pw) * Pu; < —b;‘?; note that since w € My,
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such a k exists. The weight \,, of w is defined as
the PPMI value that is associated with the set Wf .
When using this weighted setting, the mean i,
and covariance matrix C’wj are estimated as:

Zwe]ww. AwPuw
— J
fow; = <=3

Z”LUEij >\’LU
. Yowety, Mu(Pw = 1) (pw = 1)"
wj B Zweij Aw

Note that the two proposed methods to estimate
the Gaussian G/(.; 1y, , Ciy;) do not depend on the
choice of kernel, hence they could also be applied
in combination with a linear kernel. However,
given the close relationships between Gaussians
and ellipsoids, we can expect quadratic kernels to
lead to higher-quality representations. This will be
confirmed experimentally in Section 4.

3.2.2 Measuring similarity

To compute the similarity between w and w’,
based on the associated Gaussians, we consider
two alternatives. First, following (Vilnis and Mc-
Callum, 2015), we consider the inner product, de-
fined as follows:

E(w,w'") = /G(x;uw, Cw)G (x5 poyr , Copr )dz
= G(Oa Hw — K Cw + Cw/)

The second alternative is the Jensen-Shannon di-
vergence, given by:

JS(U)JU/) = KL(wafw’) + KL(fw’”fw)

with fi, = G(;; pw, Cw)s fur = G5 pwr, Cur),
and KL the Kullback-Leibler divergence. When
computing the KL-divergence we add a small
value ¢ to the diagonal elements of the covariance
matrices, following (Vilnis and McCallum, 2015);
we used 0.01. This is needed, as for rare words,
the covariance matrix may otherwise be singular.

Finally, to measure the degree to which w en-
tails w’, we use KL-divergence, again in accor-
dance with (Vilnis and McCallum, 2015).

4 Experiments

In this section we evaluate both the vector and
region representations produced by our model.
In our experiments, we have used the Wikipedia
dump from November 2nd, 2015 consisting of
1,335,766,618 tokens. We used a basic text



preprocessing strategy, which involved remov-
ing punctuations, removing HTML/XML tags and
lowercasing all tokens. We have removed words
with less than 10 occurrences in the entire cor-
pus. We used the Apache sentence segmentation
tool” to detect sentence boundaries. In all our ex-
periments, we have set the number of dimensions
as 300, which was found to be a good choice in
previous work, e.g. (Pennington et al., 2014). We
use a context window of 10 words before and af-
ter the target word, but without crossing sentence
boundaries. The number of iterations for SGD
was set to 20. The results of all baseline mod-
els have been obtained using their publicly avail-
able implementations. We have used 10 negative
samples in the word2vec code, which gave better
results than the default value of 5. For the base-
line models, we have used the default settings,
apart from the D-GloVe model for which no de-
fault values were provided by the authors. For
D-GloVe, we have therefore tuned the parameters
using the ranges discussed in (Jameel and Schock-
aert, 2016). Specifically we have used the parame-
ters that gave the best results on the Google Anal-
ogy Test Set (see below).

As baselines we have used the following stan-
dard word embedding models: the Skip-gram
(SG) and Continuous Bag-of-Words (CBOW)
models?, proposed in (Mikolov et al., 2013a), the
GloVe model*, proposed in (Pennington et al.,
2014), and the D-GloVe model®> proposed in
(Jameel and Schockaert, 2016). We have also
compared against the Gaussian word embedding
model® from (Vilnis and McCallum, 2015), using
the means of the Gaussians as vector representa-
tions, and the Gaussians themselves as region rep-
resentations. As in (Vilnis and McCallum, 2015),
we consider two variants: one with diagonal co-
variance matrices (Gauss-D) and one with spheri-
cal covariance matrices (Gauss-S). For our model,
we will consider the following configurations:

Reg-li-cos word vectors, obtained using linear
kernel, compared using cosine similarity;

thtps://opennlp.apache.org/
documentation/1.5.3/manual/opennlp.html#
tools.sentdetect
*https://code.google.com/archive/p/
word2vec/
4https://nlp.stanford.edu/projects/
glove/
Shttps://github.com/bashthebuilder/
pGlove
*https://github.com/seomoz/word2gauss

Table 1: Results for the analogy completion task
(accuracy). Reg-li-* and Reg-qu-* are our models
with a linear and quadratic kernel.

Gsem Gsyn MSR
SG 71.5 642  68.6
CBOW 74.2 623 662
GloVe 802 580 503
D-GloVe 814 59.1 59.6

Gauss-D-cos 61.5 53.6 50.7
Gauss-D-eucl 61.5 53.6 50.7
Gauss-S-cos 61.2 53.2 49.8
Gauss-S-eucl 61.4 53.3 49.8
Reg-li-cos 718 624  62.6
Reg-li-eucl 779 62.6  62.6
Reg-qu-cos 78.6 65.7 635
Reg-qu-eucl 78.7 65.7 63.6

Reg-li-eucl word vectors, obtained using linear
kernel, compared using Euclidean distance;

Reg-qu-cos word vectors, obtained using
quadratic kernel, compared using cosine
similarity;

Reg-qu-eucl word vectors, obtained using
quadratic kernel, compared using Euclidean
distance;

Reg-li-prod Gaussian word regions, obtained us-
ing linear kernel, compared using the inner
product F;

Reg-li-wprod Gaussian word regions estimated
using the weighted variant, obtained using
linear kernel, compared using the inner prod-
uct F;

Reg-li-JS Gaussian word regions, obtained us-
ing linear kernel, compared using the Jensen-
Shannon divergence;

Reg-li-wJS Gaussian word regions estimated us-
ing the weighted variant, obtained using lin-
ear kernel, compared using Jensen-Shannon
divergence.

4.1 Analogy Completion

Analogy completion is a standard evaluation task
for word embeddings. Given a pair (w;,wsz) and
a word ws the goal is to find the word w, such
that w3 and wy are related in the same way as w;
and wa. To solve this task, we predict the word w;y
which is most similar to wy — wy + ws, either in
terms of cosine similarity or Euclidean distance.
The evaluation metric is accuracy. We use two
popular benchmark data sets: the Google Analogy



Test Set’ and the Microsoft Research Syntactic
Analogies Dataset®. The former contains both se-
mantic and syntactic relations, for which we show
the results separately, respectively referred to as
Gsem and Gsyn; the latter only contains syntactic
relations and will be referred to as MSR. The re-
sults are shown in Table 1. Recall that the param-
eters of D-GloVe were tuned on the Google Anal-
ogy Test Set, hence the results reported for this
model for Gsem and Gsyn might be slightly higher
than what would normally be obtained. Note that
for our model, we can only use word vectors for
this task.

We outperform SG and CBOW for Gsem and
Gsyn but not for MSR, and we outperform GloVe
and D-Glo Ve for Gsyn and MSR but not for Gsem.
The vectors from the Gaussian embedding model
are not competitive for this task. For our model,
using Euclidean distance slightly outperforms us-
ing cosine. For GloVe, SG and CBOW, we only
show results for cosine, as this led to the best re-
sults. For D-GloVe, we used the likelihood-based
similarity measure proposed in the original paper,
which was found to outperform both cosine and
Euclidean distance for that model.

For our model, the quadratic kernel leads to bet-
ter results than the linear kernel, which is some-
what surprising since this task evaluates a kind
of linear regularity. This suggests that the ad-
ditional flexibility that results from the quadratic
kernel leads to more faithful context word repre-
sentations, which in turn improves the quality of
the target word vectors.

4.2 Similarity Estimation

To evaluate our model’s ability to measure sim-
ilarity we use 12 standard evaluation sets’, for
which we will use the following abbreviations: S1:
MTurk-287, S2:RG-65, S3:MC-30, S4:WS-353-
REL, S5:WS-353-ALL, S6:RW-STANFORD, S7:
YP-130, S8:SIMLEX-999, S9:VERB-143, S10:
WS-353-SIM, S11:MTurk-771, S12:MEN-TR-
3K. Each of these datasets contains similarity
judgements for a number of word pairs. The task
evaluates to what extent the similarity scores pro-
duced by a given word embedding model lead to

7https://nlp.stanford.edu/projects/
glove/

$http://research.microsoft.com/en—-us/
um/people/gzweig/Pubs/myz_naacll3_test_
set.tgz

‘https://github.com/mfaruqui/
eval-word-vectors
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the same ordering of the word pairs as the pro-
vided ground truth judgments. The evaluation
metric is the Spearman p rank correlation coeffi-
cient. For this task, we can either use word vectors
or word regions. The results are shown in Table 2.

For our model, the best results are obtained
when using word vectors and the Euclidean dis-
tance (Reg-qu-eucl), although the differences with
the word regions (Reg-qu-wprod) are small. We
use prod to refer to the configuration where simi-
larity is estimated using the inner product, whereas
we write JS for the configurations that use Jensen-
Shannon divergence. Moreover, we use wprod and
wlJS to refer to the weighted variant for estimating
the Gaussians. We can again observe that using
a quadratic kernel leads to better results than us-
ing a linear kernel. As the weighted versions for
estimating the Gaussians do not lead to a clear im-
provement, for the remainder of this paper we will
only consider the unweighted variant.

With the exception of S9, our model substan-
tially outperforms the Gaussian word embedding
model. Of the standard models SG and D-GloVe
obtain the strongest performance. Compared to
our model, these baseline models achieve similar
results for S2, S10, S11 and S12, worse results for
S1, S3, S4, S5, S6 and better results for S7, S8
and S9. Two general trends can be observed. First,
the data sets where our model performs better tend
to be datasets which describe semantic relatedness
rather than pure synonymy. Second, the standard
models appear to perform better on data sets that
contain verbs and adjectives, as opposed to nouns.

4.3 Modeling properties

In (Rubinstein et al., 2015), it was analysed to
what extent word embeddings can be used to iden-
tify concepts that satisfy a given attribute. While
good results were obtained for taxonomic prop-
erties, attributive properties such as ‘dangerous’,
‘round’, or ‘blue’ proved to be considerably more
problematic. We may expect region-based mod-
els to perform well on this task, since each of
these attributes then explicitly corresponds to a re-
gion in space. To test this hypothesis, Table 3
shows the results for the same 7 taxonomic prop-
erties and 13 attributive properties as in (Rubin-
stein et al., 2015), where the positive and nega-
tive examples for all 20 properties are obtained
from the McRae feature norms data (McRae et al.,
2005). Following (Rubinstein et al., 2015), we use



Table 2: Results for similarity estimation (Spearman p). Reg-li-* and Reg-qu-* are our models with a
linear and quadratic kernel.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
SG 0.656 0.773 0.789 0.648 0.709 0.459 0.500 0.415 0435 0.773 0.655 0.731
CBOW 0.644 0.768 0.740 0.532 0.622 0419 0341 0361 0343 0.707 0.597 0.693
GloVe 0595 0.755 0.746 0.515 0577 0318 0.533 0382 0354 0.690 0.652 0.724
D-GloVe 0.659 0.788 0.785 0.555 0.651 0401 0.535 0413 0388 0.778 0.656 0.746
Gauss-D-cos 0.591 0.622 0.661 0403 0.501 0249 0.388 0337 0411 0.640 0.599 0.643
Gauss-D-eucl | 0.591 0.623 0.661 0.403 0.501 0.250 0.388 0.338 0.411 0.641 0599 0.643
Gauss-D-prod | 0.588 0.618 0.658 0399 0498 0.213 0356 0326 0409 0.631 0.588 0.633
Gauss-D-JS 0.598 0.619 0.665 0403 0.532 0.288 0.381 0339 0410 0.643 0.599 0.644
Gauss-S-cos 0.593 0.632 0.681 0.409 0506 0256 0.392 0337 0416 0.649 0.601 0.644
Gauss-S-eucl | 0.593  0.632 0.681 0.409 0.507 0.356 0393 0337 0416 0.649 0.603 0.644
Gauss-S-prod | 0.591 0.619 0.659 0.403 0505 0.312 0389 0328 0412 0.633 0591 0.633
Gauss-S-JS 0.598 0.622 0.667 0405 0.533 0288 0.385 0.349 0410 0.643 0.601 0.644
Reg-li-cos 0.666 0.764 0.821 0.652 0.713 0489 0469 0.354 0361 0.734 0.642 0.739
Reg-li-eucl 0.668 0.766 0.821 0.654 0.715 0489 0469 0359 0361 0.734 0.643 0.739
Reg-li-prod 0.661 0.759 0818 0.634 0.710 0.481 0445 0358 0360 0.724 0.641 0.729
Reg-li-wprod | 0.663 0.761 0.819 0.638 0.711 0482 0446 0.359 0361 0.725 0.642 0.731
Reg-li-JS 0.663 0.758 0.815 0.638 0.709 0479 0443 0359 0361 0.723 0.641 0.729
Reg-li-wJS 0.665 0.760 0.816 0.638 0.710 0.481 0445 0359 0361 0.725 0.641 0.731
Reg-qu-cos 0.684 0.781 0.839 0.662 0.723 0.505 0479 0367 0368 0.777 0.656 0.744
Reg-qu-eucl 0.685 0.781 0.839 0.664 0.723 0.509 0479 0367 0368 0.779 0.656 0.744
Reg-qu-prod 0.681 0.780 0.831 0.658 0.719 0501 0478 0355 0331 0.778 0.653 0.741
Reg-qu-wprod | 0.684 0.788 0.831 0.663 0.721 0.501 0.475 0370 0.365 0.778 0.653 0.739
Reg-qu-JS 0.680 0.781 0.826 0.661 0.715 0497 0471 0328 0355 0.771 0.649 0.721
Reg-qu-wJS 0.678 0.782 0.824 0.662 0.712 0498 0469 0326 0351 0.771 0.644 0.720

Table 3: Results for McRae feature norms (F1).
Reg-li and Reg-qu are our models with a linear and
quadratic kernel.

man et al., 2010), H4 (Levy et al., 2014) and H5
(Turney and Mohammad, 2015). Each of the data
sets contains positive and negative examples, i.e.

Taxonomic Attributive

lin quad lin quad
SG 0.781 0.784 | 0.365 0.378
CBOW 0.775 0.781 | 0.361 0.371
GloVe 0.785 0.786 | 0.364 0.377
D-GloVe | 0.743 0.749 | 0.342 0.364
Gauss-D | 0.787 0.789 | 0.406 0.414
Gauss-S | 0.781 0.784 | 0.401 0.406
Reg-li 0.791 0.796 | 0.399 0.406
Reg-qu 0.795 0.799 | 0.411 0.421

5-fold cross-validation to train a binary SVM for
each property and compute the average F-score
due to unbalanced class label distribution. We
separately present results for SVMs with a linear
and a quadratic kernel. The results indeed support
the hypothesis that region-based models are well-
suited for this task, as both the Gaussian embed-
ding model and our model outperform the standard
word embedding models.

4.4 Hypernym Detection

For hypernym detection, we have used the follow-
ing 5 benchmark data sets'?: H1 (Baroni et al.,
2012), H2 (Baroni and Lenci, 2011), H3 (Kotler-

Ohttps://github.com/stephenroller/
emnlp2016
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word pairs that are in a hypernym relation and
word pairs that are not. Rather than treating this
problem as a classification task, which would re-
quire selecting a threshold in addition to producing
a score, we treat it as a ranking problem. In other
words, we evaluate to what extent the word pairs
that are in a valid hypernym relation are the ones
that receive the highest scores. We use average
precision as our evaluation metric.

Apart from our model, the Gaussian embedding
model is the only word embedding model that can
by design support unsupervised hyperynym detec-
tion. As an additional baseline, however, we also
show how Skip-gram performs when using cosine
similarity. While such a symmetric measure can-
not faithfully model hypernyny, it was nonetheless
found to be a strong baseline for hypernymy mod-
els (Vuli¢ et al., 2016), due to the inherent diffi-
culty of the task. We also compare with a num-
ber of standard bag-of-words based models for de-
tecting hypernyms: WeedsPrec (Kotlerman et al.,
2010), ClarkeDE (Clarke, 2009) and invCL (Lenci
and Benotto, 2012). These latter models take as
input the PPMI weighted co-occurrence counts.

The results are shown in Table 4, where Reg-li-
KL and Reg-qu-KL refer to variants of our model



Table 4: Results for hypernym detection (AP).
Reg-li-* and Reg-qu-* are our models with a lin-
ear and quadratic kernel.

Model H1 H2 H3 H4 H5
WeedsPrec 0.565 0.376 0.611 0.414 0.685
ClarkeDE 0.588 0.397 0.621 0.426 0.699

invCL 0.603 0.416 0.693 0.439 0.756

SG 0.682 0.434 0.712 0.455 0.789
Gauss-D-KL | 0.865 0.505 0.806 0.515 0.815
Gauss-S-KL. 0.823 0.498 0.801 0.507 0.789
Gauss-D-Cos | 0.846 0.499 0.801 0.509 0.811
Gauss-S-Cos | 0.813 0.484 0.799 0.501 0.778
Gauss-D-KLC | 0.868 0.511 0.809 0.519 0.815
Gauss-S-KLL.C | 0.835 0.501 0.804 0.511 0.795

Reg-li-KL 0.867 0.501 0.805 0.505 0.801
Reg-qu-KL 0.871 0.512 0.811 0.521 0.814
Reg-li-Cos 0.871 0.502 0.807 0.508 0.804
Reg-qu-Cos 0.873 0.513 0.818 0.525 0.819
Reg-li-KLC 0.874 0.509 0.812 0.511 0.806
Reg-qu-KLC | 0.878 0.519 0.825 0.531 0.823

in which Kullback-Leibler divergence is used to
compare word regions. Surprisingly, both for our
model and for the Gaussian embedding model,
we find that using cosine similarity between the
word vectors outperforms using the word regions
with KL-divergence. In general, our model out-
performs the Gaussian embedding model and the
other baselines. Given the effectiveness of the co-
sine similarity, we have also experimented with
the following metric:

hyp(w1, w2) = (1 = cos(wy, wa)) - KL(fu|| fun)

The results are referred to as Reg-1i-KLC and Reg-
qu-KLC in Table 4. These results suggest that the
word regions can indeed be useful for detecting
hypernymy, when used in combination with cosine
similarity. Intuitively, for ws to be a hypernym of
w1, both words need to be similar and wo needs
to be more general than w;. While word regions
are not needed for measuring similarity, they seem
essential for modeling generality (in an unsuper-
vised setting).

The datasets considered so far all treat hyper-
nyms as a binary notion. In (Vuli¢ et al., 2016)
a evaluation set was introduced which contains
graded hypernym pairs. The underlying intuition
is that e.g. cat and dog are more typical/natural hy-
ponyms of animal than dinosaur or amoeba. The
results for this data set are shown in Table 5. In
this case, we use Spearman p as an evaluation met-
ric, measuring how well the rankings induced by
different models correlate with the ground truth.
Following (Vuli¢ et al., 2016), we separately men-
tion results for nouns and verbs. In the case of
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Table 5: Results for HyperLex (Spearman p). Reg-
li-* and Reg-qu-* are our models with a linear and
quadratic kernel.

Model All Nouns  Verbs
WeedsPrec 0.166 0.153 0.201
ClarkeDE 0.165 0.151 0.189
invCL 0.168 0.154 0.198

SG 0.158 0.164 0.297
Gauss-D-KL | 0.185 0.171  0.198
Gauss-S-KL 0.181 0.168 0.184
Gauss-D-Cos | 0.179  0.158  0.161
Gauss-S-Cos 0.166  0.151  0.158
Gauss-D-KLC | 0.191  0.177  0.199
Gauss-S-KLC | 0.189  0.171  0.189
Reg-li-KL 0.181 0.165 0.179
Reg-qu-KL. 0.188 0.169 0.191
Reg-li-Cos 0.184 0.168 0.181
Reg-qu-Cos 0.190 0.180 0.196
Reg-li-KLC 0.189 0.171 0.185
Reg-qu-KLC | 0.208 0.188 0.201

nouns, our findings here are broadly in agreement
with those from Table 4 Interesting, for verbs we
find that Skip-gram substantially outperforms the
region based models, which is in accordance with
our findings in the word similarity experiments.

5 Conclusions

We have proposed a new word embedding model,
which is based on ordinal regression. The input to
our model consists of a number of rankings, cap-
turing how strongly each word is related to each
context word in a purely ordinal way. Word vec-
tors are then obtained by embedding these rank-
ings in a low-dimensional vector space. Despite
the fact that all quantitative information is disre-
garded by our model (except for constructing the
rankings), it is competitive with standard methods
such as Skip-gram, and in fact outperforms them
in several tasks. An important advantage of our
model is that it can be used to learn region repre-
sentations for words, by using a quadratic kernel.
Our experimental results suggest that these regions
can be useful for modeling hypernymy.
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