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Abstract

This paper is concerned with identifying
contexts useful for training word represen-
tation models for different word classes
such as adjectives (A), verbs (V), and
nouns (N). We introduce a simple yet ef-
fective framework for an automatic selec-
tion of class-specific context configurations.
We construct a context configuration space
based on universal dependency relations
between words, and efficiently search this
space with an adapted beam search algo-
rithm. In word similarity tasks for each
word class, we show that our framework is
both effective and efficient. Particularly, it
improves the Spearman’s ρ correlation with
human scores on SimLex-999 over the best
previously proposed class-specific contexts
by 6 (A), 6 (V) and 5 (N) ρ points. With our
selected context configurations, we train on
only 14% (A), 26.2% (V), and 33.6% (N)
of all dependency-based contexts, resulting
in a reduced training time. Our results gen-
eralise: we show that the configurations our
algorithm learns for one English training
setup outperform previously proposed con-
text types in another training setup for En-
glish. Moreover, basing the configuration
space on universal dependencies, it is possi-
ble to transfer the learned configurations to
German and Italian. We also demonstrate
improved per-class results over other con-
text types in these two languages.

1 Introduction

Dense real-valued word representations (embed-
dings) have become ubiquitous in NLP, serving
as invaluable features in a broad range of tasks
(Turian et al., 2010; Collobert et al., 2011; Chen

and Manning, 2014). The omnipresent word2vec
skip-gram model with negative sampling (SGNS)
(Mikolov et al., 2013) is still considered a ro-
bust and effective choice for a word representation
model, due to its simplicity, fast training, as well as
its solid performance across semantic tasks (Baroni
et al., 2014; Levy et al., 2015). The original SGNS
implementation learns word representations from
local bag-of-words contexts (BOW). However, the
underlying model is equally applicable with other
context types (Levy and Goldberg, 2014a).

Recent work suggests that “not all contexts are
created equal”. For example, reaching beyond stan-
dard BOW contexts towards contexts based on de-
pendency parses (Bansal et al., 2014; Melamud
et al., 2016) or symmetric patterns (Schwartz et al.,
2015, 2016) yields significant improvements in
learning representations for particular word classes
such as adjectives (A) and verbs (V). Moreover,
Schwartz et al. (2016) demonstrated that a subset
of dependency-based contexts which covers only
coordination structures is particularly effective for
SGNS training, both in terms of the quality of the
induced representations and in the reduced training
time of the model. Interestingly, they also demon-
strated that despite the success with adjectives and
verbs, BOW contexts are still the optimal choice
when learning representations for nouns (N).

In this work, we propose a simple yet effec-
tive framework for selecting context configurations,
which yields improved representations for verbs,
adjectives, and nouns. We start with a definition of
our context configuration space (Sect. 3.1). Our ba-
sic definition of a context refers to a single typed (or
labeled) dependency link between words (e.g., the
amod link or the dobj link). Our configuration
space then naturally consists of all possible sub-
sets of the set of labeled dependency links between
words. We employ the universal dependencies (UD)
scheme to make our framework applicable across
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languages. We then describe (Sect. 3.2) our adapted
beam search algorithm that aims to select an opti-
mal context configuration for a given word class.

We show that SGNS requires different context
configurations to produce improved results for each
word class. For instance, our algorithm detects that
the combination of amod and conj contexts is
effective for adjective representation. Moreover,
some contexts that boost representation learning for
one word class (e.g., amod contexts for adjectives)
may be uninformative when learning representa-
tions for another class (e.g., amod for verbs). By
removing such dispensable contexts, we are able
both to speed up the SGNS training and to improve
representation quality.

We first experiment with the task of predicting
similarity scores for the A/V/N portions of the
benchmarking SimLex-999 evaluation set, running
our algorithm in a standard SGNS experimental
setup (Levy et al., 2015). When training SGNS with
our learned context configurations it outperforms
SGNS trained with the best previously proposed
context type for each word class: the improvements
in Spearman’s ρ rank correlations are 6 (A), 6 (V),
and 5 (N) points. We also show that by building
context configurations we obtain improvements on
the entire SimLex-999 (4 ρ points over the best
baseline). Interestingly, this context configuration
is not the optimal configuration for any word class.

We then demonstrate that our approach is ro-
bust by showing that transferring the optimal con-
figurations learned in the above setup to three
other setups yields improved performance. First,
the above context configurations, learned with the
SGNS training on the English Wikipedia corpus,
have an even stronger impact on SimLex999 per-
formance when SGNS is trained on a larger corpus.
Second, the transferred configurations also result
in competitive performance on the task of solv-
ing class-specific TOEFL questions. Finally, we
transfer the learned context configurations across
languages: these configurations improve the SGNS
performance when trained with German or Italian
corpora and evaluated on class-specific subsets of
the multilingual SimLex-999 (Leviant and Reichart,
2015), without any language-specific tuning.

2 Related Work

Word representation models typically train on
(word, context) pairs. Traditionally, most models
use bag-of-words (BOW) contexts, which represent

a word using its neighbouring words, irrespective
of the syntactic or semantic relations between them
(Collobert et al., 2011; Mikolov et al., 2013; Mnih
and Kavukcuoglu, 2013; Pennington et al., 2014, in-
ter alia). Several alternative context types have been
proposed, motivated by the limitations of BOW
contexts, most notably their focus on topical rather
than functional similarity (e.g., coffee:cup vs. cof-
fee:tea). These include dependency contexts (Padó
and Lapata, 2007; Levy and Goldberg, 2014a), pat-
tern contexts (Baroni et al., 2010; Schwartz et al.,
2015) and substitute vectors (Yatbaz et al., 2012;
Melamud et al., 2015).

Several recent studies examined the effect of con-
text types on word representation learning. Mela-
mud et al. (2016) compared three context types on
a set of intrinsic and extrinsic evaluation setups:
BOW, dependency links, and substitute vectors.
They show that the optimal type largely depends on
the task at hand, with dependency-based contexts
displaying strong performance on semantic similar-
ity tasks. Vulić and Korhonen (2016) extended the
comparison to more languages, reaching similar
conclusions. Schwartz et al. (2016), showed that
symmetric patterns are useful as contexts for V and
A similarity, while BOW still works best for nouns.
They also indicated that coordination structures,
a particular dependency link, are more useful for
verbs and adjectives than the entire set of dependen-
cies. In this work, we generalise their approach: our
algorithm systematically and efficiently searches
the space of dependency-based context configura-
tions, yielding class-specific representations with
substantial gains for all three word classes.

Previous attempts on specialising word represen-
tations for a particular relation (e.g., similarity vs
relatedness, antonyms) operate in one of two frame-
works: (1) modifying the prior or the regularisation
of the original training procedure (Yu and Dredze,
2014; Wieting et al., 2015; Liu et al., 2015; Kiela
et al., 2015; Ling et al., 2015b); (2) post-processing
procedures which use lexical knowledge to refine
previously trained word vectors (Faruqui et al.,
2015; Wieting et al., 2015; Mrkšić et al., 2017).
Our work suggests that the induced representations
can be specialised by directly training the word rep-
resentation model with carefully selected contexts.

3 Context Selection: Methodology

The goal of our work is to develop a methodology
for the identification of optimal context configura-
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Australian scientist discovers stars with telescope

amod nsubj dobj case

nmod

Scienziato australiano scopre stelle con telescopio

amod

nsubj

dobj case

nmod

Australian scientist discovers stars with telescope

amod nsubj
dobj case

nmod

prep:with

Figure 1: Extracting dependency-based contexts.
Top: An example English sentence from (Levy and
Goldberg, 2014a), now UD-parsed. Middle: the
same sentence in Italian, UD-parsed. Note the sim-
ilarity between the two parses which suggests that
our context selection framework may be extended
to other languages. Bottom: prepositional arc col-
lapsing. The uninformative short-range case arc
is removed, while a “pseudo-arc” specifying the
exact link (prep:with) between discovers and
telescope is added.

tions for word representation model training. We
hope to get improved word representations and,
at the same time, cut down the training time of
the word representation model. Fundamentally, we
are not trying to design a new word representation
model, but rather to find valuable configurations
for existing algorithms.

The motivation to search for such training con-
text configurations lies in the intuition that the dis-
tributional hypothesis (Harris, 1954) should not
necessarily be made with respect to BOW contexts.
Instead, it may be restated as a series of statements
according to particular word relations. For example,
the hypothesis can be restated as: “two adjectives
are similar if they modify similar nouns”, which
is captured by the amod typed dependency rela-
tion. This could also be reversed to reflect noun
similarity by saying that “two nouns are similar
if they are modified by similar adjectives”. In an-
other example, “two verbs are similar if they are
used as predicates of similar nominal subjects” (the
nsubj and nsubjpass dependency relations).

First, we have to define an expressive context
configuration space that contains potential train-
ing configurations and is effectively decomposed
so that useful configurations may be sought algo-
rithmically. We can then continue by designing a
search algorithm over the configuration space.

3.1 Context Configuration Space

We focus on the configuration space based on
dependency-based contexts (DEPS) (Padó and La-
pata, 2007; Utt and Padó, 2014). We choose this
space due to multiple reasons. First, dependency
structures are known to be very useful in captur-
ing functional relations between words, even if
these relations are long distance. Second, they have
been proven useful in learning word embeddings
(Levy and Goldberg, 2014a; Melamud et al., 2016).
Finally, owing to the recent development of the
Universal Dependencies (UD) annotation scheme
(McDonald et al., 2013; Nivre et al., 2016)1 it is
possible to reason over dependency structures in a
multilingual manner (e.g., Fig. 1). Consequently,
a search algorithm in such DEPS-based configura-
tion space can be developed for multiple languages
based on the same design principles. Indeed, in this
work we show that the optimal configurations for
English translate to improved representations in
two additional languages, German and Italian.

And so, given a (UD-)parsed training corpus,
for each target word w with modifiers m1, . . . ,mk

and a head h, the word w is paired with context el-
ements m1_r1, . . . ,mk_rk, h_r−1

h , where r is the
type of the dependency relation between the head
and the modifier (e.g., amod), and r−1 denotes
an inverse relation. To simplify the presentation,
we adopt the assumption that all training data for
the word representation model are in the form of
such (word, context) pairs (Levy and Goldberg,
2014a,c), where word is the current target word,
and context is its observed context (e.g., BOW,
positional, dependency-based). A naive version of
DEPS extracts contexts from the parsed corpus
without any post-processing. Given the example
from Fig. 1, the DEPS contexts of discovers are:
scientist_nsubj, stars_dobj, telescope_nmod.

DEPS not only emphasises functional similar-
ity, but also provides a natural implicit grouping
of related contexts. For instance, all pairs with
the shared relation r and r−1 are taken as an r-
based context bag, e.g., the pairs {(scientist, Aus-
tralian_amod), (Australian, scientist_amod−1)}
from Fig. 1 are inserted into the amod con-
text bag, while {(discovers, stars_dobj), (stars,
discovers_dobj−1)} are labelled with dobj.

Assume that we have obtained M distinct depen-
dency relations r1, . . . , rM after parsing and post-
processing the corpus. The j-th individual context

1http://universaldependencies.org/ (V1.4 used)
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Figure 2: An illustration of Alg. 1. The search space
is presented as a DAG with direct links between
origin configurations (e.g., ri + rj + rk) and all
its children configurations obtained by removing
exactly one individual bag from the origin (e.g., ri+
rj , rj + rk). After automatically constructing the
initial pool (line 1), the entry point of the algorithm
is the RPool configuration (line 2). Thicker blue
circles denote visited configurations, while the gray
circle denotes the best configuration found.

bag, j = 1, . . . ,M , labelled rj , is a bag (or a mul-
tiset) of (word, context) pairs where context has
one of the following forms: v_rj or v_r−1

j , where v
is some vocabulary word. A context configuration
is then simply a set of individual context bags, e.g.,
R = {ri, rj , rk}, also labelled as R: ri + rj + rk.
We call a configuration consisting of K individual
context bags a K-set configuration (e.g., in this
example, R is a 3-set configuration).2

Although a brute-force exhaustive search over
all possible configurations is possible in theory and
for small pools (e.g., for adjectives, see Tab. 2), it
becomes challenging or practically infeasible for
large pools and large training data. For instance,
based on the pool from Tab. 2, the search for the
optimal configuration would involve trying out
210−1 = 1023 configurations for nouns (i.e., train-
ing 1023 different word representation models).
Therefore, to reduce the number of visited con-
figurations, we present a simple heuristic search
algorithm inspired by beam search (Pearl, 1984).

2A note on the nomenclature and notation: Each context
configuration may be seen as a set of context bags, as it does
not allow for repetition of its constituent context bags. For
simplicity and clarity of presentation, we use dependency
relation types (e.g., ri = amod, rj = acl) as labels for context
bags. The reader has to be aware that a configuration R =
{ri, rj , rk} is not by any means a set of relation types/names,
but is in fact a multiset of all (word, context) pairs belonging
to the corresponding context bags labelled with ri, rj , rk.

Algorithm 1: Best Configuration Search
Input :Set of M individual context bags:

S = {r′1, r′2, . . . , r′M}
1 build: pool of those K ≤M candidate individual

context bags {r1, . . . , rK} for which
E(ri) >= threshold, i ∈ {1, . . . , M}, where E(·) is
a fitness function.

2 build: K-set configuration RPool = {r1, . . . , rK} ;
3 initialize: (1) set of candidate configurations

R = {RPool} ; (2) current level l = K ; (3) best
configuration Ro = ∅ ;

4 search:
5 repeat
6 Rn ← ∅ ;
7 Ro ← arg max

R∈R∪{Ro}
E(R) ;

8 foreach R ∈ R do
9 foreach ri ∈ R do

10 build new (l − 1)-set context
configuration R¬ri = R− {ri} ;

11 if E(R¬ri) ≥ E(R) then
12 Rn ← Rn ∪ {R¬ri} ;

13 l← l − 1 ;
14 R← Rn ;
15 until l == 0 or R == ∅;

Output :Best configuration Ro

3.2 Class-Specific Configuration Search

Alg. 1 provides a high-level overview of the al-
gorithm. An example of its flow is given in Fig. 2.
Starting from S, the set of all possibleM individual
context bags, the algorithm automatically detects
the subset SK ⊆ S, |SK | = K, of candidate indi-
vidual bags that are used as the initial pool (line 1
of Alg. 1). The selection is based on some fitness
(goal) function E. In our setup, E(R) is Spear-
man’s ρ correlation with human judgment scores
obtained on the development set after training the
word representation model with the configuration
R. The selection step relies on a simple threshold:
we use a threshold of ρ ≥ 0.2 without any fine-
tuning in all experiments with all word classes.

We find this step to facilitate efficiency at a minor
cost for accuracy. For example, since amod denotes
an adjectival modifier of a noun, an efficient search
procedure may safely remove this bag from the
pool of candidate bags for verbs.

The search algorithm then starts from the full
K-set RPool configuration (line 3) and tests K
(K − 1)-set configurations where exactly one in-
dividual bag ri is removed to generate each such
configuration (line 10). It then retains only the set
of configurations that score higher than the origin
K-set configuration (lines 11-12, see Fig. 2). Us-
ing this principle, it continues searching only over
lower-level (l − 1)-set configurations that further
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improve performance over their l-set origin config-
uration. It stops if it reaches the lowest level or if
it cannot improve the goal function any more (line
15). The best scoring configuration is returned (n.b.,
not guaranteed to be the global optimum).

In our experiments with this heuristic, the search
for the optimal configuration for verbs is performed
only over 13 1-set configurations plus 26 other con-
figurations (39 out of 133 possible configurations).3

For nouns, the advantage of the heuristic is even
more dramatic: only 104 out of 1026 possible con-
figurations were considered during the search.4

4 Experimental Setup

4.1 Implementation Details

Word Representation Model We experiment
with SGNS (Mikolov et al., 2013), the standard
and very robust choice in vector space modeling
(Levy et al., 2015). In all experiments we use
word2vecf, a reimplementation of word2vec
able to learn from arbitrary (word, context)
pairs.5 For details concerning the implementation,
we refer the reader to (Goldberg and Levy, 2014;
Levy and Goldberg, 2014a).

The SGNS preprocessing scheme was replicated
from (Levy and Goldberg, 2014a; Levy et al., 2015).
After lowercasing, all words and contexts that ap-
peared less than 100 times were filtered. When
considering all dependency types, the vocabulary
spans approximately 185K word types.6 Further,
all representations were trained with d = 300 (very
similar trends are observed with d = 100, 500).

The same setup was used in prior work
(Schwartz et al., 2016; Vulić and Korhonen, 2016).
Keeping the representation model fixed across ex-
periments and varying only the context type allows
us to attribute any differences in results to a sole
factor: the context type. We plan to experiment with
other representation models in future work.

3The total is 133 as we have to include 6 additional 1-set
configurations that have to be tested (line 1 of Alg. 1) but are
not included in the initial pool for verbs (line 2).

4We also experimented with a less conservative variant
which does not stop when lower-level configurations do not
improve E; it instead follows the path of the best-scoring
lower-level configuration even if its score is lower than that of
its origin. As we do not observe any significant improvement
with this variant, we opt for the faster and simpler one.

5https://bitbucket.org/yoavgo/word2vecf
6SGNS for all models was trained using stochastic gradient

descent and standard settings: 15 negative samples, global
learning rate: 0.025, subsampling rate: 1e− 4, 15 epochs.

Universal Dependencies as Labels The
adopted UD scheme leans on the universal
Stanford dependencies (de Marneffe et al., 2014)
complemented with the universal POS tagset
(Petrov et al., 2012). It is straightforward to
“translate” previous annotation schemes to UD
(de Marneffe et al., 2014). Providing a consistently
annotated inventory of categories for similar
syntactic constructions across languages, the
UD scheme facilitates representation learning in
languages other than English, as shown in (Vulić
and Korhonen, 2016; Vulić, 2017).

Individual Context Bags Standard post-parsing
steps are performed in order to obtain an initial
list of individual context bags for our algorithm:
(1) Prepositional arcs are collapsed ((Levy and
Goldberg, 2014a; Vulić and Korhonen, 2016), see
Fig. 1). Following this procedure, all pairs where
the relation r has the form prep:X (where X is
a preposition) are subsumed to a context bag la-
belled prep; (2) Similar labels are merged into a
single label (e.g., direct (dobj) and indirect ob-
jects (iobj) are merged into obj); (3) Pairs with
infrequent and uninformative labels are removed
(e.g., punct, goeswith, cc).

Coordination-based contexts are extracted as in
prior work (Schwartz et al., 2016), distinguishing
between left and right contexts extracted from the
conj relation; the label for this bag is conjlr.
We also utilise the variant that does not make the
distinction, labeled conjll. If both are used, the
label is simply conj=conjlr+conjll.7

Consequently, the individual context bags we
use in all experiments are: subj, obj, comp,
nummod, appos, nmod, acl, amod, prep,
adv, compound, conjlr, conjll.

4.2 Training and Evaluation

We run the algorithm for context configuration se-
lection only once, with the SGNS training setup
described below. Our main evaluation setup is pre-
sented below, but the learned configurations are
tested in additional setups, detailed in Sect. 5.

Training Data Our training corpus is the cleaned
and tokenised English Polyglot Wikipedia data
(Al-Rfou et al., 2013),8 consisting of approxi-

7Given the coordination structure boys and girls,
conjlr training pairs are (boys, girls_conj), (girls,
boys_conj−1), while conjll pairs are (boys, girls_conj),
(girls, boys_conj).

8https://sites.google.com/site/rmyeid/projects/polyglot
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mately 75M sentences and 1.7B word tokens. The
Wikipedia data were POS-tagged with universal
POS (UPOS) tags (Petrov et al., 2012) using the
state-of-the art TurboTagger (Martins et al., 2013).9

The parser was trained using default settings (SVM
MIRA with 20 iterations, no further parameter tun-
ing) on the TRAIN+DEV portion of the UD treebank
annotated with UPOS tags. The data were then
parsed with UD using the graph-based Mate parser
v3.61 (Bohnet, 2010)10 with standard settings on
TRAIN+DEV of the UD treebank.

Evaluation We experiment with the verb pair
(222 pairs), adjective pair (111 pairs), and noun
pair (666 pairs) portions of SimLex-999. We re-
port Spearman’s ρ correlation between the ranks
derived from the scores of the evaluated models
and the human scores. Our evaluation setup is bor-
rowed from Levy et al. (2015): we perform 2-fold
cross-validation, where the context configurations
are optimised on a development set, separate from
the unseen test data. Unless stated otherwise, the
reported scores are always the averages of the 2
runs, computed in the standard fashion by apply-
ing the cosine similarity to the vectors of words
participating in a pair.

4.3 Baselines

Baseline Context Types We compare the con-
text configurations found by Alg. 1 against baseline
contexts from prior work:
- BOW: Standard bag-of-words contexts.
- POSIT: Positional contexts (Schütze, 1993; Levy
and Goldberg, 2014b; Ling et al., 2015a), which
enrich BOW with information on the sequential
position of each context word. Given the example
from Fig. 1, POSIT with the window size 2 extracts
the following contexts for discovers: Australian_-2,
scientist_-1, stars_+2, with_+1.
- DEPS-All: All dependency links without any con-
text selection, extracted from dependency-parsed
data with prepositional arc collapsing.
- COORD: Coordination-based contexts are used
as fast lightweight contexts for improved repre-
sentations of adjectives and verbs (Schwartz et al.,
2016). This is in fact the conjlr context bag, a
subset of DEPS-All.
- SP: Contexts based on symmetric patterns (SPs,
(Davidov and Rappoport, 2006; Schwartz et al.,
2015)). For example, if the word X and the word

9http://www.cs.cmu.edu/~ark/TurboParser/
10https://code.google.com/archive/p/mate-tools/

Context Group Adj Verb Noun

conjlr (A+N+V) 0.415 0.281 0.401
obj (N+V) -0.028 0.309 0.390
prep (N+V) 0.188 0.344 0.387
amod (A+N) 0.479 0.058 0.398
compound (N) -0.124 -0.019 0.416
adv (V) 0.197 0.342 0.104
nummod (-) -0.142 -0.065 0.029

Table 1: 2-fold cross-validation results for an illus-
trative selection of individual context bags. Results
are presented for the noun, verb and adjective sub-
sets of SimLex-999. Values in parentheses denote
the class-specific initial pools to which each context
is selected based on its ρ score (line 1 of Alg. 1).

Adjectives Verbs Nouns
amod,
conjlr,
conjll

prep,
acl, obj,
comp, adv,
conjlr,
conjll

amod, prep,
compound, subj,
obj, appos, acl,
nmod, conjlr,
conjll

Table 2: Automatically constructed initial pools of
candidate bags for each word class (Sect. 3.2).

Y appear in the lexico-syntactic symmetric pattern
“X or Y” in the SGNS training corpus, then Y is an
SP context instance for X, and vice versa.

The development set was used to tune the win-
dow size for BOW and POSIT (to 2) and the pa-
rameters of the SP extraction algorithm.11

Baseline Greedy Search Algorithm We also
compare our search algorithm to its greedy vari-
ant: at each iteration of lines 8-12 in Alg. 1, Rn

now keeps only the best configuration of size l − 1
that perform better than the initial configuration of
size l, instead of all such configurations.

5 Results and Discussion

5.1 Main Evaluation Setup

Not All Context Bags are Created Equal First,
we test the performance of individual context bags
across SimLex-999 adjective, verb, and noun sub-
sets. Besides providing insight on the intuition be-
hind context selection, these findings are important
for the automatic selection of class-specific pools
(line 1 of Alg. 1). The results are shown in Tab. 1.

The experiment supports our intuition (see
Sect. 3.2): some context bags are definitely not
useful for some classes and may be safely removed

11The SP extraction algorithm is available online:
homes.cs.washington.edu/∼roysch/software/dr06/dr06.html
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Baselines (Verbs)
BOW (win=2) 0.336
POSIT (win=2) 0.345
COORD (conjlr) 0.283
SP 0.349
DEPS-All 0.344

Configurations: Verbs
POOL-ALL 0.379
prep+acl+obj+adv+conj 0.393
prep+acl+obj+comp+conj 0.344
prep+obj+comp+adv+conj 0.391†
prep+acl+adv+conj (BEST) 0.409
prep+acl+obj+adv 0.392
prep+acl+adv 0.407
prep+acl+conj 0.390
acl+obj+adv+conj 0.345
acl+obj+adv 0.385

Baselines (Nouns)
BOW (win=2) 0.435
POSIT (win=2) 0.437
COORD (conjlr) 0.392
SP 0.372
DEPS-All 0.441

Configurations: Nouns
POOL-ALL 0.469
amod+subj+obj+appos+compound+nmod+conj 0.478
amod+subj+obj+appos+compound+conj 0.487
amod+subj+obj+appos+compound+conjlr 0.476†
amod+subj+obj+compound+conj (BEST) 0.491
amod+subj+obj+appos+conj 0.470
subj+obj+compound+conj 0.479
amod+subj+compound+conj 0.481
amod+subj+obj+compound 0.478
amod+obj+compound+conj 0.481

Table 3: Results on the SimLex-999 test data over (a) verbs and (b) nouns subsets. Only a selection
of context configurations optimised for verb and noun similarity are shown. POOL-ALL denotes a
configuration where all individual context bags from the verbs/nouns-oriented pools (see Table 2) are
used. BEST denotes the best performing configuration found by Alg. 1. Other configurations visited by
Alg. 1 that score higher than the best scoring baseline context type for each word class are in gray. Scores
obtained using a greedy search algorithm instead of Alg. 1 are in italic, marked with a cross (†).

Baselines (Adjectives)
BOW (win=2) 0.489
POSIT (win=2) 0.460
COORD (conjlr) 0.407
SP 0.395
DEPS-All 0.360

Configurations: Adjectives

POOL-ALL: amod+conj (BEST) 0.546†
amod+conjlr 0.527
amod+conjll 0.531
conj 0.470

Table 4: Results on the SimLex-999 adjectives sub-
set with adjective-specific configurations.

when performing the class-specific SGNS training.
For instance, the amod bag is indeed important for
adjective and noun similarity, and at the same time
it does not encode any useful information regarding
verb similarity. compound is, as expected, use-
ful only for nouns. Tab. 1 also suggests that some
context bags (e.g., nummod) do not encode any in-
formative contextual evidence regarding similarity,
therefore they can be discarded. The initial results
with individual context bags help to reduce the pool
of candidate bags (line 1 in Alg. 1), see Tab. 2.

Searching for Improved Configurations Next,
we test if we can improve class-specific represen-
tations by selecting class-specific configurations.
Results are summarised in Tables 3 and 4. Indeed,
class-specific configurations yield better represen-
tations, as is evident from the scores: the improve-

ments with the best class-specific configurations
found by Alg. 1 are approximately 6 ρ points for ad-
jectives, 6 points for verbs, and 5 points for nouns
over the best baseline for each class.

The improvements are visible even with config-
urations that simply pool all candidate individual
bags (POOL-ALL), without running Alg. 1 beyond
line 1. However, further careful context selection,
i.e., traversing the configuration space using Alg. 1
leads to additional improvements for V and N
(gains of 3 and 2.2 ρ points). Very similar improved
scores are achieved with a variety of configurations
(see Tab. 3), especially in the neighbourhood of the
best configuration found by Alg. 1. This indicates
that the method is quite robust: even sub-optimal12

solutions result in improved class-specific repre-
sentations. Furthermore, our algorithm is able to
find better configurations for verbs and nouns com-
pared to its greedy variant. Finally, our algorithm
generalises well: the best scoring configuration on
the dev set is always the best one on the test set.

Training: Fast and/or Accurate? Carefully se-
lected configurations are also likely to reduce
SGNS training times. Indeed, the configuration-
based model trains on only 14% (A), 26.2% (V),
and 33.6% (N) of all dependency-based contexts.
The training times and statistics for each con-
text type are displayed in Tab. 5. All models

12The term optimal here and later in the text refers to the
best configuration returned by our algorithm.
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Context Type Training Time # Pairs

BOW (win=2) 179mins 27s 5.974G
POSIT (win=2) 190mins 12s 5.974G
COORD (conjlr) 4mins 11s 129.69M
SP 1mins 29s 46.37M
DEPS-All 103mins 35s 3.165G

BEST-ADJ 14mins 5s 447.4M
BEST-VERBS 29mins 48s 828.55M
BEST-NOUNS 41mins 14s 1.063G

Table 5: Training time (wall-clock time reported) in
minutes for SGNS (d = 300) with different context
types. BEST-* denotes the best scoring configura-
tion for each class found by Alg. 1. #Pairs shows
a total number of pairs used in SGNS training for
each context type.

were trained using parallel training on 10 Intel(R)
Xeon(R) E5-2667 2.90GHz processors. The results
indicate that class-specific configurations are not
as lightweight and fast as SP or COORD contexts
(Schwartz et al., 2016). However, they also suggest
that such configurations provide a good balance
between accuracy and speed: they reach peak per-
formances for each class, outscoring all baseline
context types (including SP and COORD), while
training is still much faster than with “heavyweight”
context types such as BOW, POSIT or DEPS-All.

Now that we verified the decrease in training
time our algorithm provides for the final training,
it makes sense to ask whether the configurations it
finds are valuable in other setups. This will make
the fast training of practical importance.

5.2 Generalisation: Configuration Transfer

Another Training Setup We first test whether
the context configurations learned in Sect. 5.1 are
useful when SGNS is trained in another English
setup (Schwartz et al., 2016), with more training
data and other annotation and parser choices, while
evaluation is still performed on SimLex-999.

In this setup the training corpus is the 8B words
corpus generated by the word2vec script.13 A
preprocessing step now merges common word
pairs and triplets to expression tokens (e.g.,
Bilbo_Baggins). The corpus is parsed with labelled
Stanford dependencies (de Marneffe and Manning,
2008) using the Stanford POS Tagger (Toutanova
et al., 2003) and the stack version of the MALT
parser (Goldberg and Nivre, 2012). SGNS prepro-
cessing and parameters are also replicated; we now

13code.google.com/p/word2vec/source/browse/trunk/

Context Type Adj Verbs Nouns All

BOW (win=2) 0.604 0.307 0.501 0.464
POSIT (win=2) 0.585 0.400 0.471 0.469
COORD (conjlr) 0.629 0.413 0.428 0.430
SP 0.649 0.458 0.414 0.444
DEPS-All 0.574 0.389 0.492 0.464

BEST-ADJ 0.671 0.348 0.504 0.449
BEST-VERBS 0.392 0.455 0.478 0.448
BEST-NOUNS 0.581 0.327 0.535 0.489

BEST-ALL 0.616 0.402 0.519 0.506

Table 6: Results on the A/V/N SimLex-999 sub-
sets, and on the entire set (All) in the setup from
Schwartz et al. (2016). d = 500. BEST-* are again
the best class-specific configs returned by Alg. 1.

train 500-dim embeddings as in prior work.14

Results are presented in Tab. 6. The imported
class-specific configurations, computed using a
much smaller corpus (Sect. 5.1), again outperform
competitive baseline context types for adjectives
and nouns. The BEST-VERBS configuration is
outscored by SP, but the margin is negligible. We
also evaluate another configuration found using
Alg. 1 in Sect. 5.1, which targets the overall im-
proved performance without any finer-grained di-
vision to classes (BEST-ALL). This configuration
(amod+subj+obj+compound+prep+adv+conj) out-
performs all baseline models on the entire bench-
mark. Interestingly, the non-specific BEST-ALL
configuration falls short of A/V/N-specific configu-
rations for each class. This unambiguously implies
that the “trade-off” configuration targeting all three
classes at the same time differs from specialised
class-specific configurations.

Experiments on Other Languages We next test
whether the optimal context configurations com-
puted in Sect. 5.1 with English training data are
also useful for other languages. For this, we train
SGNS models on the Italian (IT) and German (DE)
Polyglot Wikipedia corpora with those configura-
tions, and evaluate on the IT and DE multilingual
SimLex-999 (Leviant and Reichart, 2015).15

Our results demonstrate similar patterns as for
English, and indicate that our framework can be
easily applied to other languages. For instance, the
BEST-ADJ configuration (the same configuration
as in Tab. 4 and Tab. 7) yields an improvement of 8

14The “translation” from labelled Stanford dependencies
into UD is performed using the mapping from de Marneffe
et al. (2014), e.g., nn is mapped into compound, and rcmod,
partmod, infmod are all mapped into one bag: acl.

15http://leviants.com/ira.leviant/MultilingualVSMdata.html
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Context Type Adj-Q Verb-Q Noun-Q

BOW (win=2) 31/41 14/19 16/19
POSIT (win=2) 32/41 13/19 15/19
COORD (conjlr) 26/41 11/19 8/19
SP 26/41 11/19 12/19
DEPS-All 31/41 14/19 16/19

BEST-ADJ 32/41 12/19 15/19
BEST-VERBS 24/41 15/19 16/19
BEST-NOUNS 30/41 14/19 17/19

Table 7: Results on the A/V/N TOEFL question
subsets. The reported scores are in the following
form: correct_answers/overall_questions. Adj-Q
refers to the subset of TOEFL questions targeting
adjectives; similar for Verb-Q and Noun-Q. BEST-*
refer to the best class-specific configurations from
Tab. 3 and Tab. 4.

ρ points and 4 ρ points over the strongest adjectives
baseline in IT and DE, respectively. We get similar
improvements for nouns (IT: 3 ρ points, DE: 2 ρ
points), and verbs (IT: 2, DE: 4).

TOEFL Evaluation We also verify that the se-
lection of class-specific configurations (Sect. 5.1) is
useful beyond the core SimLex evaluation. For this
aim, we evaluate on the A, V, and N TOEFL ques-
tions (Landauer and Dumais, 1997). The results are
summarised in Tab. 7. Despite the limited size of
the TOEFL dataset, we observe positive trends in
the reported results (e.g., V-specific configurations
yield a small gain on verb questions), showcasing
the potential of class-specific training in this task.

6 Conclusion and Future Work

We have presented a novel framework for select-
ing class-specific context configurations which
yield improved representations for prominent word
classes: adjectives, verbs, and nouns. Its design
and dependence on the Universal Dependencies
annotation scheme makes it applicable in differ-
ent languages. We have proposed an algorithm that
is able to find a suitable class-specific configura-
tion while making the search over the large space
of possible context configurations computation-
ally feasible. Each word class requires a different
class-specific configuration to produce improved
results on the class-specific subset of SimLex-999
in English, Italian, and German. We also show that
the selection of context configurations is robust as
once learned configuration may be effectively trans-
ferred to other data setups, tasks, and languages
without additional retraining or fine-tuning.

In future work, we plan to test the framework
with finer-grained contexts, investigating beyond
POS-based word classes and dependency links. Ex-
ploring more sophisticated algorithms that can ef-
ficiently search richer configuration spaces is also
an intriguing direction. Another research avenue
is application of the context selection idea to other
representation models beyond SGNS tested in this
work, and experimenting with assigning weights to
context subsets. Finally, we plan to test the porta-
bility of our approach to more languages.
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