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Abstract

Predicting the sense of a discourse relation
is particularly challenging when connec-
tive markers are missing. To address this
challenge, we propose a simple deep neu-
ral network approach that replaces man-
ual feature extraction by introducing event
vectors as an alternative representation,
which can be pre-trained using a very large
corpus, without explicit annotation. We
model discourse arguments as a combi-
nation of word and event vectors. Event
information is aggregated with word vec-
tors and a Multi-Layer Neural Network
is used to classify discourse senses. This
work was submitted as part of the CoNLL
2016 shared task on Discourse Parsing.
We obtain competitive results, reaching an
accuracy of 38%, 34% and 34% for the
development, test and blind test datasets,
competitive with the best performing sys-
tem on CoNLL 2015.

1 Introduction

The CoNLL 2016 shared task focuses on Dis-
course Parsing. Building on the CoNLL 2015 task,
this year teams were able to focus on a supple-
mentary task, limited to sense classification of
discourse relations, given their (gold) arguments
(Xue et al., 2016). Identifying the sense is partic-
ularly challenging in the case of implicit relations,
where explicit connective words (e.g., however,
but, because) are not present. Last year, most sub-
mitted systems used algorithms traditionally ap-
plied for this task, such as Support Vector Ma-
chine (SVM) and Maximum Entropy classifiers
learned over binary features as input representa-
tion. This included the best performing system,
which reached an accuracy of 34.45 in the test data

136

and an accuracy of 36.29 in the blind test data for
implicit relations (Xue et al., 2015; Wang and Lan,
2015).

We followed the intuition that obtaining a sig-
nificant increase in performance using traditional
classifiers and feature engineering would be dif-
ficult given the effort that was previously spent
on such systems. Neural-network-based classifiers
present a different and less explored approach to
the discourse sense problem, which can poten-
tially lead to considerable improvement. Our sys-
tem, described in this paper, takes a step in this
direction.

We explore different input representation types
and introduce event vectors for this task. Follow-
ing the work of (Chambers and Jurafsky, 2009),
we look into event chains as a way to represent
structure in the discourse arguments. Then, we
adapt the skip-gram approach originally used to
learn word vectors from sentences (Mikolov et al.,
2013b) to learn event vector representations from
event sequences. To do so, we draw a clear anal-
ogy between words and events, as well as between
sentences and event chains. Finally, each input re-
lation is represented with the pre-trained event and
word vectors of its arguments and a multi-layer
neural network is used to classify senses.

2 System Description

The dataset used in the CoNLL shared task corre-
sponds to the Penn Discourse Treebank (Prasad et
al., 2008), in which pairs of sentences are anno-
tated with an optional discourse connective and a
sense that best explains the discourse relation be-
tween them. The annotation was done over a set of
Wall Street Journal articles.

Each relation, either explicit or implicit, con-
sists of two arguments, typically composed of
short phrases and an associated sense. In the case
of explicit relations, a connective is present in the
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text. This problem can be stated as a standard
multi-class classification problem, where the in-
puts correspond to the argument pairs and there
is a direct mapping to a finite and known set of
labels.

We use two different classifiers for sense iden-
tification: a SVM classifier with linear kernel for
explicit relations that uses state-of-the-art features
and a multi-layer neural network for the implicit
relations, which is the main focus of our submis-
sion. The following sections describe each of the
systems in detail.

2.1 Explicit Discourse Relations

Explicit discourse relation detection depends on
identifying explicit discourse connectives. In the
sense classification task, the connective and the
two corresponding arguments are supplied, there-
fore, we trained a linear SVM multi-class classifier
to choose from 14 different senses.

We used the syntactic features described in
(Lin et al., 2009; Pitler and Nenkova, 2009). We
also used the connective string, PoS tags, the
connective’s previous word and PoS tag from
Lin’s features in our classifier. The features de-
scribed in (Pitler and Nenkova, 2009) are ex-
tracted using constituency parse trees and con-
sist of self-category, parent-category, left-sibling-
category and right-sibling category.

(Pitler and Nenkova, 2009) has shown that using
only the syntactic features, ignoring the identity
of the connective gives better result. As the dis-
course usage of a connective may strongly rely on
the syntactic context it appeared, we have added
Pitler’s pairwise interaction (C-Syn interaction)
features between the connective C and each cat-
egory feature (i.e., self-category, parent-category,
left-sibling-category, right-sibling- category). The
interaction features (Syn-Syn interaction) between
pairs of category features are also used.

2.2 Implicit Discourse Relations

Sense classification for implicit discourse relations
is notoriously hard. For this reason, we focus our
efforts on this task, and explore several types of
input representation and neural net architectures to
deal with the challenges.

We move from the simple lexical representa-
tion of word pairs used in (Lin et al., 2009; Pitler
et al., 2009), and explore the benefits of using
pre-trained word vectors (Mikolov et al., 2013b)
to capture combinations and similarities. Finally,

137

we introduce the notion of an event to discourse
parsing, inspired by the work of (Chambers and
Jurafsky, 2009) as a way to represent structured
knowledge and long range dependencies. Similar
to (Modi and Titov, 2014; Pichotta and Mooney,
2016) we embed the event representation in a low
dimension continuous space. More details on the
definition of events and the derivation of the event
vectors are given in section 2.2.1.

The sense classification task is defined over two
arguments. Each argument is represented as two
single vectors: a series of concatenated event vec-
tors and a series of concatenated word vectors.
A multi-layer neural network architecture receives
these inputs to predict senses. The specifications
of the architecture used are outlined in section 2.3.

2.2.1 Word and Event Embeddings

A word embedding is a function W — R",
mapping words to a dense low-dimensional vec-
tor space. Word embedding, recently popularized
by (Mikolov et al., 2013b), can be trained to cap-
ture semantic and syntactic relationships between
words, by mapping related words to vectors that
lie close in the embedding vector space.

This property is often used to construct feature
representations that can identify similarities and
relationships between words. For example, dis-
course parsers often use lexical features, consist-
ing of the product between words appearing in
each of the two arguments. While such features
can capture relationships between the two argu-
ments, this representation is extremely brittle, as
small variations in word usage are likely to result
in lower performance. Using word embedding, in-
stead of the arguments’ words directly, can help
overcome such issues.

Despite these advantages, using word embed-
ding can potentially have several drawbacks.
For example, the relationships captured between
words sometimes reflect syntactic dependencies
(e.g., determiners tend to be followed by nouns)
rather than semantic ones, and word senses are
typically ignored when word embedding are con-
structed. In addition, word vectors, despite their
robustness, still do not capture the input argument
structure.

To alleviate some of these problems, we looked
for a representation that can capture a higher level
of abstraction of the input arguments. We pro-
pose to represent arguments as a set of events and
use pre-trained event embeddings to facilitate this



Implicit
Class Words | Words + Events | Number of Occurrences
Comparison.Concession 0.000 | 0.000 5
Comparison.Contrast 0.022 | 0.067 90
Contingency.Cause.Reason 0.256 | 0.487 78
Contingency.Cause.Result 0.036 | 0.143 56
Contingency.Condition - - -
EntRel 0.637 | 0.609 215
Expansion.Alternative - - -
Expansion.Alternative.Chosen alternative | 0.000 | 0.000 2
Expansion.Conjunction 0.520 | 0.544 125
Expansion.Instantiation 0.000 | 0.163 49
Expansion.Restatement 0.173 | 0.260 104
Temporal. Asynchronous.Precedence 0.000 | 0.000 28
Temporal. Asynchronous.Succession 0.000 | 0.000 3
Temporal.Synchrony 0.000 | 0.000 20
Total 0.315 | 0.369 775

Table 1: Accuracy in the development data (Unofficial) by sense classes using different input represen-

tations: words, events and words + events
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Figure 1: Training and testing accuracy for 100 epochs with three different implicit classifier models in
Fig (a), (b), (c). Fig (d) shows the cumulative training and testing accuracy as the number of hypothesis

increases from O to 200 in adaboost.

task. Simply put, an event can be defined as a verb
and subject or object dependency relationship. An
event chain is formed by connecting the events
whose argument nodes are coreferent. We adapt
the skip-gram model (Mikolov et al., 2013b) to
generate event embedding by treating event chains
as sentences, in which each event is a word. Note,
that unlike word embedding that relies on word
proximity and as a result captures syntactic infor-
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mation, event proximity is likely to capture tem-
poral and causal relationships which align better
with discourse relationships. Since event embed-
ding omits much of the information contained in
the input arguments, we take advantage of both
word and event embeddings, and build a neural
network model over both representations of the
discourse arguments.



Implicit Explicit

Class Dev Test Blind Dev Test Blind
Comparison.Concession 0.0000 | 0.0000 | 0.0000 | 0.5000 | 0.4667 | 0.0000
Comparison.Contrast 0.1263 | 0.0576 | 0.0000 | 0.9544 | 0.9088 | 0.1633
Contingency.Cause.Reason 0.3673 | 0.3740 | 0.2794 | 0.7568 | 0.8710 | 0.0784
Contingency.Cause.Result 0.1892 | 0.0896 | 0.0400 | 0.8889 | 0.9474 | 0.8571
Contingency.Condition - - - 0.9318 | 0.8718 | 0.9804
EntRel 0.5647 | 0.5475 | 0.5195 | - - -
Expansion.Alternative - - - 0.9231 | 0.7692 | 0.0000
Expansion.Alternative.Chosen alternative | 0.0000 | 0.0000 | 0.0000 | 0.9091 | 1.0000 | -
Expansion.Conjunction 0.4069 | 0.3123 | 0.2269 | 0.9537 | 0.9495 | 0.6194
Expansion.Instantiation 0.2286 | 0.3604 | 0.1852 | 1.0000 | 1.0000 | 0.0000
Expansion.Restatement 0.2647 | 0.2671 | 0.3282 | 0.0000 | 0.4444 | 0.0000
Temporal. Asynchronous.Precedence 0.0000 | 0.3636 | 0.0000 | 0.9375 | 0.9459 | 0.0000
Temporal. Asynchronous.Succession 0.0000 | 0.0000 | - 0.8352 | 0.7429 | 0.1562
Temporal.Synchrony 0.0000 | 0.0000 | 0.0000 | 0.8000 | 0.7742 | 0.4500
Total 0.3818 | 0.3435 | 0.3365 | 0.8968 | 0.8796 | 0.4860

Table 2: F1 score (Unofficial) by sense classes for both implicit and explicit classifier.

Pre-Training of Event Embedding The cre-
ation of event embeddings follows the Skip-gram
model proposed by (Mikolov et al., 2013a). In-
stead of using word sequences as input to train
the embeddings, we use event chains extracted
by connecting events with co-referencing entities.
Each entity has a chain of events and each event
is represented in a form of verb and dependency
pairs.

Specifically, we represent an event e as a pair
e (v,d) where v denotes a verb and d de-
notes a grammatical dependency relation between
the verb and its entity. Vector representations
for events are learned from chains of events ex-
tracted from a large corpus (we used the Wikipedia
dump). To start, we use Stanford CoreNLP toolkit
(Manning et al., 2014) to extract dependency trees
and resolve co-referent entities from the corpus.
For each entity in the co-reference chain, events
are extracted by looking at the adjacent verb v in
the dependency tree and its correspondent gram-
matical dependency relation d, creating tuples
(v, d) as described above. This way, chains of the
form ey, ..., e, are extracted and are used as inputs
to the embedding training model.

Similar to the Word2Vec skip-gram model
(Mikolov et al., 2013a), we use the following ob-
jective function.

1 X
J:fz Z log

t=1 —c<j<c,j#0

exp(Vep Ver)
> e exp(V{Ve,)

Where V, is the vector representation of event
e and ey, ep specify whether the event is an input
or output (Rong, 2014). Note, that in our model,
unlike the Word2Vec model that uses sentences as
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inputs, event chains are used as input for generat-
ing the event embedding (i.e., c refers to current
event and j refers to context events in the equation
above), thus capturing a higher level abstraction of
the sentence semantics.

To make training feasible, we apply negative
sampling following the techniques used in the
word2vec model, including rare event pruning,
high frequency event subsampling and a dynamic
window size (Goldberg and Levy, 2014). Five neg-
ative samples are sampled for each event.

2.3 Discourse Relation Classifier

We used a Multi-layer perceptron with three hid-
den layers to combine the arguments’ representa-
tion in our system. This layout is depicted in figure

‘ Hidden Layer ‘

Hidden Layer Hidden Layer

| Arg1: Words ‘ ‘ Arg1: Events | | Arg2: Words ‘ ‘ Arg2: Events ‘

Figure 2: Three hidden layer Perceptron taking
events and word vectors as input.

Two parallel hidden layers at the same level are
used to combine event and word representations
for every argument, this way, each hidden layer
works as an abstraction of one argument. Another
hidden layer is stacked on top of them to com-
bine both arguments into a single representation.
Finally an output layer with a softmax function is
built on top to classify the sense. A 50% drop-out



rate is applied over all the hidden layers for the
purpose of regularization. The activation function
for all the hidden layers is the rectified linear func-
tion, which sets up a threshold such that all the
values less than zero will be clipped to zero. In ad-
dition to this setting, we applied a drop-out rate of
20% over all the input layers. We argue that due to
the high dimensionality of a combined represen-
tation of event and word embeddings, using drop-
out even on the input layer can boost the model
performance by avoiding overfitting.

The number of hidden units is tuned using a sep-
arate validation set. Events and word vectors are
concatenated in the input layer, where the maxi-
mum number of events and words in an argument
is taken from the entire date set in order to fix
the size of the input and padding is performed on
both sides if the number of words and/or events
are less than the maximum value. In this study, we
used the word embedding pre-trained on Google
news corpus, which is widely used in NLP com-
munity (Mikolov et al., 2013a). For each word in
this discourse parsing task, if it is in the embed-
ding corpus, we used its mapped vector; if it is not
in the embedding corpus, it is initialized to random
values very close to zero. As we trained our own
event embedding, we dealt with all the extracted
events in a similar fashion as word embedding.

In the final model, the number of hidden nodes
is 175 for agument one, 350 for agument two, and
the number of units in the hidden layer stacked on
them is 700.

During training, we used stochastic gradi-
ent descent with mini-batches to minimize our
loss function, which we defined as the negative
log-likelihood of the data. The standard back-
propagation algorithm is used to compute the gra-
dient. The whole training process is performed on
an Nvidia GTX 980 GPU.

3 Experiments

Since our main focus is implicit relations, we car-
ried out a series of experiments to test the three
different input representations in the implicit sense
identification task. In all these experiments, we
used a neural network architecture, and used as a
baseline a simple lexical classifier based on word
pairs. Since during the development of the system
we only had direct access to the train and devel-
opment folds, most of our experiments were per-
formed on the development data set alone.
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Word pairs have been widely used for implicit
sense classification (Lin et al., 2009; Pitler et al.,
2009), and most systems submitted to CoNLL
2015 shared task incorporated word pairs as a fun-
damental part of their feature set. In table 3 we
can see the aggregated results for this simple ap-
proach using Support Vector Machines on the de-
velopment dataset. For this test, the top 500 word
pairs ranked by information gain were used.

Input Precision | Recall | F1

Word Pairs 0.24 0.26 0.25
Word Vectors 0.29 0.31 0.30
Event + Word Vectors | 0.37 0.37 0.37

Table 3: Performance metrics on the development
data for the implicit classifier

The best performing systems, however, had to
go beyond simple word pairs to reach scores near
0.35. To prove the effectiveness of looking at
words in a richer space, we tested a very simple
neural network architecture on word vectors. This
architecture incorporated only one hidden layer to
combine both arguments into a single representa-
tion and an output layer with a softmax function
was built on top to classify the sense. The layout
for this simple architecture can be observed in fig-
ure 3. The input word vectors are concatenated in
the input layer with padding and unknown words
are initialized to random values very close to zero
(see section 2.3).

QOutput Layer

| Hidden Layer |

Argl: Words Arg2: Words

Figure 3: Single hidden layer perceptron taking
word vectors as input.

Results using word vectors can be observed in
table 1. We can see that there is a significant
improvement in the general case, reaching to an
accuracy of 0.315 in the development data. We
attribute this improvement to the word vectors
ability to capture similarities implicitly between
words as well as providing a distributed continu-
ous representation allowing words to be combined
in the hidden layer.

Following the improvement obtained by using
word vectors, we introduce event vectors into the



Implicit Explicit
Class | Dev Test Blind | Dev Test Blind
Total | 0.3805 | 0.3445 | 0.291 | 0.8968 | 0.8796 | -

Table 4: Official TIRA F1 score for both implicit and explicit classifier.

input using the architecture described in section
2.3. After some experimentation, we decided to
keep word vectors as a way to expand the infor-
mation encoded in events, where the reference to
the entities and other helpful lexical information
is lost. Table 1 shows the improvement attained
when throwing event vectors into the picture. We
can observe a stable boost in performance among
all classes, except EntRel, where there is a slight
drop in accuracy. Total accuracy improves from
0.315 to 0.369 using event vectors, a result that
is competitive with the best performing system in
CoNLL 2015.

Figure 1 (a)-(c) shows the learning curve of the
implicit classifier for all input types and architec-
tures. The baseline corresponds to the word pair
classifier with an accuracy of 0.25. We can observe
that using word embedding overfits quickly, as the
neural network starts to memorize the the training
set vocabulary. Using event embedding helps com-
bat overfitting, and the best behavior is obtained
when combining the two embedding types. In this
case, the learning curve in the development set
reaches a higher peak. We can see the combined
model overfits as the number of training epochs
increases, albeit slower compared to word embed-
ding alone. We tried to slow overfitting even fur-
ther by experimenting with random sampling from
training data set and combining multiple hypothe-
sis using Adaboost, Figure 1 (d) shows the learn-
ing curve resulting from these attempts. While
overfitting is indeed slower, performance suffers.
We speculate that increasing the number of epochs
until training accuracy reaches the optimum, may
give even more competitive performance.

Tables 2 and 4 include our final results. On ta-
ble 2 we can observe the performance by class
on the three evaluation datasets: development, test
and blind test for both the implicit and the explicit
classifier. In our preliminary experiments for the
implicit case, we obtained a very low score for
infrequent classes. For this reason, we opted for
removing infrequent classes from the training set
and improved overall results, increasing F1 score
from 0.36 to 0.38 for the development data.

Table 4 includes the official results obtained
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through TIRA (Potthast et al., 2014). Due to tech-
nical difficulties, we had to use an older model for
the blind test set, that was trained over all labels
(including the infrequent ones). The improvement
from 0.291 to 0.3365 corresponds to the elimina-
tion of infrequent labels from the training proce-
dure. Similarly, the system used for the blind data
did not include the explicit classifier. For this rea-
son, the result is omitted in table 4.

We looked at the class distribution in the dataset
in table 1, and identified common senses that our
classifier fails to distinguish. Analyzing the con-
fusion matrix we identified the following: It is
hard to differentiate Expansion.Instantiation from Ex-
pansion.Restatement and Contingency.Cause.Result from
Contingency.Cause.Reason, and finally, the rest of
the classes get confused with Expansion.Conjunction,
which is the biggest class after EntRel.

4 Conclusion

We presented our submission for the CoNLL 2016
shared task, focusing on implict discourse sense
identification!. We looked into deep learning ap-
proaches, as it seems that approaches that manu-
ally craft features have reached their peak. We ex-
plored different input representations for the prob-
lem and reached competitive results with CoNLL
2015 best performing system without engineering
features directly.

Two types of embedding were combined:
Google News pre-trained word vectors (Mikolov
et al., 2013b) and our main contribution, event
vectors inspired by the work of (Chambers and
Jurafsky, 2009) and (Modi and Titov, 2014). We
showed that event embedding for argument pairs
can provide rich semantic information for the im-
plicit discourse parsing task, significantly improv-
ing the performance of word pairs alone, even
when using a very simple neural network model.

Our experiments suggest several possible future
directions. First, improving event representations
to include more structure seems promising. We
also intend to explore using more complex learn-
ing architectures.

To submit a complete system we developed a different
model for explicit relations
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