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Abstract

This paper describes the Shallow Dis-
course Parser (SDP) submitted as a part
of the Shared Task of CoNLL, 2016. The
discourse parser takes newswire text as in-
put and outputs relations between various
components of the text. Our system is a
pipeline of various sub-tasks which have
been elaborated in the paper. We choose
a data driven approach for each task and
put a special focus on utilizing the re-
sources allowed by the organizers for cre-
ating novel features. We also give details
of various experiments with the dataset
and the lexicon provided for the task.

1 Introduction

Shallow Discourse Parsing (SDP) is a linguistic
task that identifies semantic relations between a
pair of lexical units in a piece of discourse. Dis-
course relation is defined by three entities: a con-
nective, a pair of lexical units between which the
relation exists and the type or sense of relation be-
tween them (Xue et al., 2016). The discourse re-
lations can be explicit, in which relations are ex-
pressed by certain words or phrases, or implicit,
where words are not directly used to convey the re-
lation, but instead, the meaning is implied. These
words or phrases which convey the existence of a
discourse relation directly are called connectives.
The lexical units between which relation exists,
could be a pair of clauses, a pair of sentences or
even multiple sentences which can be adjacent or
non-adjacent. These are called arguments.

A discourse treebank called the Penn Discourse
TreeBank or PDTB (Prasad et al., 2008) serves
as the gold standard for this task and is used as
training data. The output of our system follows
the same format as PDTB. Development data is
also provided to perform experiments on the sys-
tem. Phrase structure and dependency parses of
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both the training and development data have also
been provided to assist in the task. Further details
of the Shared Task can be found in the overview
paper (Xue et al., 2016). Final evaluation of the
parser is on test and blind data sets through TIRA
platform set up by (Potthast et al., 2014). Besides
automating the submission and evaluation system,
TIRA also has provision for plagiarism detection,
author identification and author profiling.

The SDP task can be broadly classified into two
categories of explicit and non-explicit relation de-
tection. We discuss the pipeline for explicit parser
in section 2 and non-explicit parser in Section 3.
Various results and experiments carried out are re-
ported in the relevant sub-sections. These results
are based on individual stages without error prop-
agation from previous stages, unless specified oth-
erwise. We report results on test and blind datasets
and conclude our work in Section 4 and 5 respec-
tively.

2 Explicit SDP

Identification of explicit discourse relations con-
sists of several stages. First stage is the detection
of discourse connectives in the text. This connec-
tive binds the arguments syntactically and seman-
tically (Prasad et al., 2008) which is helpful in fea-
ture creation for the following tasks of argument
position detection and argument span extraction.
Once the arguments of the relation are extracted,
we perform sense classification of the relation.

2.1 Connective Detection

This is the first stage of the parser which de-
tects the existence of discourse connectives in the
text. The input to this stage is raw text and we
analyze the entire text for the presence of con-
nectives which could form a discourse relation.
Around 100 connective spans have been identified
upon extensive research by the team that annotated
PDTB (Prasad et al., 2008). However, the occur-
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rence of these words does not guarantee that it will
form a discourse connective as can be seen in the
following example:

My Father once worked on that project.

- ‘once’ is a non-discourse connective

You cannot change your statement once it comes
out of your mouth.

-‘once’ is a discourse connective

Here the connective ‘once’ acts as a dis-
course connective based on the context. A
string matching script is not sufficient for this
task and we therefore use Maximum Entropy
Classifier to identify whether a potential con-
nective keyword actually forms a discourse re-
lation or not. This task has been sufficiently
mastered and high F1 scores have been re-
ported by previous teams. Mostly syntactic
features have been used for this classification
task such as Connective, connectivePOS, Pre-
vWord, PrevPOSTag, PrevPOS + connectivePOS,
nextWord, nextPOSTag, nextPOS + connective-
POS, root2Leaf, root2LeafCompressed, leftSib-
ling, rightSibling, parentCategory. These features
have been borrowed from previous work of (Wang
and Lan, 2015).

2.2 Argument Labeler

After identifying the discourse connective span
present in the input text, we need to locate the
relative position of the arguments w.r.t. the sen-
tence containing the connective. Arg?2 is taken as
the argument which occurs in the same sentence
as the connective and is therefore syntactically as-
sociated with it (Prasad et al., 2008). Hence, we
identify the position of Argl relative to Arg2 and
the connective. The Argument Labeling task can
be divided into the following sub-tasks:

o Identifying the relative position of Argl w.r.t.
Arg? (and the connective)

e Extracting clauses which are potential argu-
ment spans

e Classifying the candidate clauses into Argl,
Arg?2 or Null

2.2.1 Argument Position Classifier

We need to identify whether arguments are located
in the same sentence (the SS case) or in a sentence
before the connective (the PS case). We ignore the
following sentence (FS) case and the non-adjacent
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PS case since these types have a small percentage
of instances.

Features used for Argument Position Classifier
are connectiveString, connecivePOS, connecive-
Position, prevWord, prevWord+connecive, pre-
vPOS, prevPOS+connecivePOS, prev2Word,
prev2Word+connecive, prev2POStag,
prev2POS+connecivePOS. The feature names
are self-explanatory. Connective string itself is
a very good feature for this stage. For instance,
when the connective token is ‘And’ (with first
letter capitalized), there is a continuation of an
idea from previous sentence and thus Argl is
likely to be in PS. Whereas, when the first letter
of connective is in lowercase such as ‘and’, Argl
is very likely to be the clause on the left-hand side
of ‘and’, making Argl in SS as connective. Con-
nective position, which takes the values ‘start’,
‘middle’ and ‘end’ is also a very useful feature.
This argument position classifier is trained using
Maximum Entropy Classifier.

2.2.2 Argument Span Extractor

This stage of the pipeline extracts the span of the
arguments from the sentence or sentences con-
taining the discourse relation. To extract argu-
ments, we first break the sentence into clauses.
Two methods have been proposed in literature to
carry out this task: Lin’s tree subtract method (Lin
et al., 2014) and Kong’s constituency based
method (Kong et al., 2014). According to (Kong
et al.,, 2014), Kong’s constituency based ap-
proach outperforms Lin’s tree subtraction algo-
rithm. However, since Kong’s method is based
on using the connective node in the parse tree as
the base node for recursion, we can only use this
method for those sentences which contain the con-
nective. Hence, we use Kong’s extraction method
for Same Sentence Argument Extraction.

SS  Argument Extractor: Kong’s
constituency-based approach is a recursion
in which the connective’s lowest tree node is
chosen as the target node, and its left and right
siblings are chosen as candidates for arguments.
The target node is updated to the current target
node’s parent and the process is repeated. There
is a slight modification in the algorithm for
multi-word connectives. Similar to Kong et al’s
approach for multi-word connectives, we choose
the immediate left siblings of the first word in the
connective and immediate right siblings of the last
word of the connective as candidate arguments
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Figure 1: Parse tree showing candidate argument nodes using Kong’s Extraction algorithm for a multi-

word connective

in addition to taking left and right siblings of the
lowest node that covers the entire connective. This
modification of algorithm for multi-word cases is
important as the modified algorithm extracts more
refined constituents from the sentence. In the
following example, the updated algorithm extracts
‘the New York market opened’ as a constituent,
whereas the algorithm without multi-word case
would not have extracted it at all.

Consider the following example with its gold-
standard parse tree as shown in Figure 1:

(1) In the center of the trading floor, chief trader
Roger Streeter and two colleagues scrambled for
the telephones as soon as the new York market
opened — plummeting more than 60 points in the
first few minutes.

Argument candidates detected are: ‘In the cen-
ter of the trading floor’ , *, , ‘chief trader Roger
Streeter and two colleagues’ , ‘scrambled’ , ‘for
the telephones’ , ‘the New York market opened’ ,
‘", ‘plummeting more than 60 points in the first
few minutes’ ,’.

The final extracted arguments are:

Argl - ‘In the center of the trading floor, chief
trader Roger Streeter and two colleagues scram-
bled for the telephones’

Arg2 - ‘the New York market opened’

Table 1 compares the results of Kong’s Ex-
tractor with and without incorporating multi-word
scenario. As expected, the F1 score of Arg2 with
multi-word case is better by about 2.7%.
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Argl F1 | Arg2 Fl1
score score
Kong’s prun- | 50.11 70.02
ing algo (w/o
multi-word case)
Kong’s prun- | 50.11 72.71
ing algo (W/
multi-word case)

Table 1: Argument Extraction experiments on de-
velopment data

PS Argument Extractor: In this case, we take
the entire previous sentence as Argl. Arg2 is
taken as the sentence containing the connective
after subtracting connective tokens from the sen-
tence. For this task, we can also use Lin’s clause
tree subtraction method (2014) to extract Argl and
Kong’s constituency based approach (2014) to ex-
tract Arg2 for better performance.

2.2.3 Argument Classification

Features used for classification of extracted
phrases into arguments have been borrowed from
previous works of Kong (Kong et al., 2014) and
Wang (Wang and Lan, 2015). These features are
used to classify each candidate into one of the
three categories: ‘Argl’, ‘Arg2’ or ‘Null’. Both
connective and constituent-candidate based fea-
tures are used: Connective String, POS
tag of the connective, leftSiblingNo is



Connective | Argl | Arg2 | Argl+Arg2 | Sense | Overall

Our Dev 93.39 51.35 | 65.02 39.79 3494 | 3494

Parser Test 93.01 43.93 | 58.47 34.10 29.74 | 29.74

Explicit Blind 89.03 40.37 | 60.09 29.49 2343 | 2343
Wang’s Test 94.16 50.68 | 77.33 45.22 34.93 -
Parser Blind 91.86 48.31 | 74.29 41.35 2591 -

Our Dev - 41.22 | 40.96 32.25 4.59 4.59

Parser Test - 38.59 | 36.44 27.42 3.44 3.44

Implicit Blind - 37.03 | 41.49 26.24 8.78 8.78
Wang’s Test - 67.08 | 68.32 52.98 9.06 -
parser Blind - 60.87 | 74.58 50.41 7.69 -

Our Dev 93.39 45.52 | 49.63 34.97 15.41 15.41

Test 93.01 41.34 | 44.36 29.82 12.82 | 12.82

Overall | P?™" [ Blina | 8903 |3877|48.19| 2741 1241 | 1241

Wang’s Test 94.16 60.10 | 72.52 49.36 29.83 | 29.72

parser Blind 91.86 55.84 | 74.45 46.37 21.82 | 24.00

Table 2: System performance and comparison on development, test and blind datasets

F1 score | Accuracy
Naive Bayes 82.27 88.2
Maxent 75.6 86.9

Table 3: Explicit sense classification: feature ex-
perimentation with NB and MaxEnt on develop-
ment data

the number of left siblings of the connective,
rightSiblingNo is the number of right sib-
lings of the connective, ConnCat is the syntac-
tic category of the connective which takes the val-
ues ‘subordinating’, ‘coordinating’ or ‘discourse
adverbial’, clauseRelPos is position of the
constituent candidate relative to the connective
which takes the values ‘left’ , ‘right’ or ‘previ-
ous’, clausePOS is the POS tag of the con-
stituent candidate, clauseContext is the con-
text of the constituent, i.e., POS combination of
the constituent, its parent, left sibling and right
sibling (when there is no parent or sibling, it is
marked as NULL), conn2clausePath is the
path from connective node to the node of the con-
stituent.

Once, the classifier tags the clauses with its la-
bels, Argl and Arg2 are obtained by stitching the
strings of ordered argl clauses and arg2 clauses
respectively.

2.3 Explicit Sense Classification

After determining the spans of Argl and Arg2,
we feed these arguments into the next stage of
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the pipeline which detects the sense of the explicit
discourse relation. The connective string itself is
a good indicator of the sense of the relation due
to lexical mapping between them. However, there
are cases of ambiguity, in which a connective word
is used to describe multiple senses. For this rea-
son, the task requires machine learning in which
the classifier uses other syntactic features to deter-
mine the sense of the relation.

The features we used for training are connec-
tiveString, connectiveHead, connectivePOS, con-
nectivePrev, connectivePosition, connectiveCat-
egory, subjectivityStrengthArgl, subjectivityS-
trengthArg2, verbNetClassArg2 and verbNetClas-
sArg2. Subjectivity Strength and VerbNet class
features are created from the semantic lexicons
provided for the shared task and are described in
the next section.

From the results in Table 3, we note that Naive
Bayes performs better than MaxEnt classifier. We
conjecture the cause for this is that MaxEnt classi-
fier tends to overfit the data. Hence, Naive Bayes
is chosen to perform sense classification.

3 Non-Explicit SDP

There are three types of Non-Explicit relations:
Implicit, EntRel and AltLex. The remaining pair
of sentences which did not contain explicit con-
nectives are fed into this stage of the pipeline. Our
system now treats all the remaining adjacent sen-
tences as Implicit relations. This hard coding cost
us a high performance dip as EntRel relations con-



stitute about a third of the non-explicit data (215
EntRel relations and 522 Implicit relations in de-
velopment data) and not all remaining sentences
contain an implicit relation.

In our implicit argument span detector, we treat
the first sentence in adjacent sentence pair as Argl
and the second sentence as Arg2. Next, we focus
on the Implicit Sense Classification task.

3.1 Implicit Sense Classification

This task is considered as the bottleneck of SDP
systems and is especially challenging due to lack
to connective based features. We create a different
set of baseline features as borrowed from (Lin et
al., 2014). We describe semantic features used for
this task in detail in this section.

3.1.1 Baseline features

Baseline features chosen for this task are syntac-
tic features created from the dependency and con-
stituency parses of the two arguments. First, both
dependency and constituency parses from the en-
tire training corpus were extracted. This created
around 12,489 constituency parses and 89 depen-
dency parses. However, the number of parse fea-
tures was too high and unnecessary to work with.
Hence, we put a frequency cap of 5 on the feature
set which brought the features down to 2,515. We
also used NLTK’s stop-words to filter out depen-
dency parses created by common words as these
parse rules are highly recurring over the distribu-
tion of the entire corpus.

3.1.2 Semantic Features

Sense detection is essentially a semantic task since
we are trying to determine the “meaning” of the re-
lation. For this reason, we have experimented with
semantic tools like MPQA Subjectivity, VerbNet
classes and Word2Vec. Each of these tools and
lexicons have been provided for the closed track
of Shallow Discourse Parsing.

MPQA Subjectivity: The semantic feature cre-
ated using MPQA subjectivity lexicon measures
the negativity and positivity strength of the argu-
ments. For calculating the subjectivity strength
of the arguments, subjectivity annotation for each
word of the argument is taken. If the word has
negative and strong polarity, it is assigned -2, for
negative and weak polarity it is assigned -1, for
strong positive polarity +2 and for weak positive
polarity +1 respectively. The subjectivity strength
of all words in the argument is summed up. If the
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sum is O then it is neutral, otherwise it is positive
or negative.

VerbNet Classes: VerbNet is a verb lexi-
con with mappings to WordNet and FrameNet.
VerbNet is organized into classes (with sub-
classes) on the basis of syntactic and se-

mantic similarity (Kipper et al., 2006). We
have created verbNetClassArgl and
verbNetClassArg2 features, which con-

tain the VerbNet class of the lemmatized forms of
the main verbs of the respective arguments (Zhou,
2015). VerbNet classes are important features and
this was verified by analyzing the most informa-
tive features of this classification task. We find
that many VerbNet classes are more informative
than even baseline features.

Word2Vec: Subjectivity strength and VerbNet
classes only capture information about specific al-
beit important words of a sentence. To capture
the context of the entire argument and interac-
tion between the arguments, we use the Word2Vec
tool. Word2Vec is a deep learning tool that out-
puts vector representation of an input word in a
large-dimensional vector space. We have used
Google’s Word2Vec model trained on a part of
Google News dataset of 100 billion words. This
Word2Vec model contains 300 dimensional vec-
tors for 3 million words and phrases.

Words with similar meaning are expected to
have vectors in close proximity in the vector
space (Mikolov et al., 2013). Inspired from (Yih
et al., 2013), a work on Question-Answering sys-
tem, we represent the entire Argl and Arg?2 as vec-
tors. We take each argument, drop the stopwords
and then take a weighted sum over the vector rep-
resentations of remaining words of the argument.
Even after removing stop words, there is a differ-
ence in importance and relevance of the remaining
words. This is why we choose to take a weighted
sum of the word vectors. We chose TF-IDF
(Term Frequency-Inverse Document Frequency)
scores as weights. The TF-IDF value increases
proportionally with the number of times a word
appears in the document and decreases with the
frequency of the word in the corpus. This balances
the weights of words which occur more frequently
in literature.

We created three features using Word2Vec
tool: ArglCluster, Arg2Cluster and
cosineDistance. We perform PCA
(Principle-Component Analysis) over the Arg



vectors to reduce the vector dimensions from
300 to 3 as the depth of sense classes is also
three or less. By intuition, we only require three
dimensions to represent the three levels of sense
classes. We perform K-Means clustering over Arg
vectors of the training data and assign clusters to
Argl and Arg2 of development, test and blind
dataas ArglCluster and Arg2Cluster. We
used sklearn’s TfldfVectorizer to compute the
TF-IDF scores and sklearn’s PCA and K-Means
to perform clustering over the vectors.

The cosineDistance feature is a dot prod-
uct of Argl and Arg2 vectors. We hope to capture
the similarity or closeness of the two arguments
using this numerical value. Following is the for-
mula used for calculating cosine distance:

*
k

d= ZZ:l ( (ZwieArgl tfidf(wi)*word2vec(wi)>

< ij €Arg2 tfidf(w]-)*word2vec(wj)> )
k
(D

Here, d is the cosineDistance and n is 300, the
dimension of the vector space of GoogleNews-
vectors-negative300.bin, the word2vec model
trained on Google News dataset.

3.1.3 Experimentation

We used a combination of the features described
above to gauge their performance on sense clas-
sification task. VerbNet and Subjectivity features
are known to perform well according to previous
literature. Hence, we test the novel Word2Vec
features on top of baseline features, Subjectivity
strength and VerbNet classes. For this reason, we
call the combination of baseline features, Subjec-
tivity strength and VerbNet classes as baseline in
Table 4.

The results reported the Table 4 are on devel-
opment dataset. As expected, Word2Vec features
improve the F1 score by about 2.3%. Thus, we
use a combination of all the baseline features, Sub-
jectivity features, VerbNet features and Word2Vec
features in the Implicit Sense classification task.
Also, the number of parse features is very high
(2515), making total number of features equal to
2522. Therefore, we use NLTK’s Naive Bayes
Classifier over Maximum Entropy as NLTK’s im-
plementation of Maximum Entropy is not able to
handle the vast number of features.

113

F1 score | Accuracy
baseline 11.17 25.47
baseline+cosineDist | 12.00 24.52
baseline+cosineDist | 13.44 24.52
+argclusters

Table 4: Implicit sense feature experimentation on
development dataset

4 Results

Table 2 contains the results of our updated system
on development, test and blind datasets. In the up-
dated system, we fixed a small bug in argument
index alignment code which doubled our overall
parser F1 score on the development data. Hence,
we report the updated results in the paper. We
also used Word2Vec features in our updated sys-
tem. The Word2Vec features did not improve the
F1 score of Implicit Sense Classification on de-
velopment and test datasets. This is probably be-
cause of error propagation from previous stages.
Surprisingly, the updated Implicit Classifier per-
forms better on blind dataset as compared to de-
velopment and test dataset.

There are several weak links in our pipeline.
For instance, the PS-Explicit and Implicit argu-
ment extractors are naive and hard-coded. This is
one major cause of low F1 scores as compared to
Wang et al. We feel that by fixing these links, we
can improve the result by a significant margin.

5 Conclusion

In this work, we have implemented a discourse
parser trained on PDTB corpus with a special fo-
cus on using semantic lexicons. We have de-
scribed the system architecture and various ex-
perimentation results in the paper. Our con-
tribution to the SDP system is the introduction
of novel features to the bottleneck of SDP sys-
tems, i.e., the Implicit Sense Classification task.
Specifically, we have created ArglCluster,
Arg2Cluster and cosineDistance fea-
tures using Word2 Vec tool for Implicit Sense Clas-
sification task, which improved F1 score of the
task by about 2.3%. The task of Shallow Dis-
course Parsing will give more promising results
by making use of other lexical and semantic tools,
thus encouraging further research to obtain better
results.
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