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Abstract

This paper describes our submission
(CLaC) to the CoNLL-2016 shared task on
shallow discourse parsing. We used two
complementary approaches for the task.
A standard machine learning approach for
the parsing of explicit relations, and a deep
learning approach for non-explicit rela-
tions. Overall, our parser achieves an F1-
score of 0.2106 on the identification of dis-
course relations (0.3110 for explicit rela-
tions and 0.1219 for non-explicit relations)
on the blind CoNLL-2016 test set.

1 Introduction

Shallow discourse parsing is defined as the identi-
fication of two discourse units, or discourse argu-
ments, and labeling their relation. Although the
topic of shallow discourse parsing has received
much interest in the past few years (e.g. (Zhang
et al., 2015; Weiss, 2015; Ji et al., 2015; Ruther-
ford and Xue, 2014; Kong et al., 2014; Feng et
al., 2014)), the performance of the state-of-the-art
discourse parsers is not yet adequate to be used
in other downstream Natural Language Process-
ing applications. For example, the best parser
submitted at CoNLL-2015 (Wang and Lan, 2015)
achieved an F1 score of 0.2400 on the blind test
dataset.

For the CoNLL 2016 task of shallow discourse
parsing, four types of discourse relations have to
be annotated in texts (more details of the task can
be found in (Xue et al., 2016)):

1. Explicit Discourse Relations: explicit dis-
course relations are explicitly signalled
within the text through discourse connectives
such as because, however, since, etc.
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2. Implicit Discourse Relations: implicit dis-
course relations are inferred by the reader
and no discourse connective is used within
the text to convey the relation. As a reader,
implicit discourse relations can be inferred
by inserting a discourse connective (called an
implicit discourse connective) in the text that
best expresses the inferred relation.

3. AltLex Discourse Relations: Similarly to im-
plicit discourse relations, AltLex are not sig-
nalled through the presence of discourse con-
nectives in the text. However, the rela-
tion is alternatively lexicalized by some non-
connective expression, hence inserting an im-
plicit discourse connective to express the in-
ferred relation would lead to a redundancy.

4. EntRel Discourse Relations: EntRel dis-
course relations are defined between two dis-
course arguments where only an entity-based
coherence relation could be perceived.

In this paper, we report on the development
and results of our discourse parser for the CoNLL
2016 shared task. As shown in Figure 1, our
parser, named CLaC Discourse Parser, consists of
two main components: the Explicit Discourse Re-
lation Annotator and the Non-Explicit Discourse
Relation Annotator .

The Explicit Discourse Relation Annotator is
based on the parser that we submitted last year to
CoNLL 2015 (Laali et al., 2015). For this year’s
submission, we improved its components by (1)
adding new features (see Section 2 for more de-
tails), (2) using a sequence classifier instead of
a multiclass classifier in the Discourse Argument
Segmenter, and (3) defining a new component,
the Discourse Argument Trimmer, to identify at-
tributes and prune discourse arguments.
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Figure 1: Pipeline of the CLaC Discourse Parser

Last year’s system did not address the annota-
tion of non-explicit discourse relations (i.e. im-
plicit, AltLex and EntRel discourse relations). For
this year, we therefore built this module from
scratch. The Non-Explicit Discourse Relation An-
notator first uses a binary Convolutional Neural
Network (ConvNet) to detect whether a relation
exists in a text devoid of a discourse connective,
then uses a multiclass ConvNet to label the rela-
tion.

2 Explicit Discourse Relation Annotator

Figure 1 shows the pipeline of the CLaC parser.
The top row in Figure 1 focuses on the Explicit
Discourse Relation Annotator. This pipeline con-
sists of four main components: (1) Discourse
Connective Annotator, (2) Discourse Connective
Sense Labeler, (3) Explicit Relation Argument
Segmenter and (4) Discourse Argument Trimmer.

Modules 1, 2 and 3 are based on last year’s sys-
tem (Laali et al., 2015) while module 4 has been
newly developed to address a weak issue from last
year.

2.1 Discourse Connective Annotator

The Discourse Connective Annotator annotates
discourse connectives within a text. To label dis-
course connectives, the annotator first searches the
input texts for terms that match any of the 100
discourse connectives listed in the Penn Discourse
Treebank (Prasad et al., 2008a). Inspired by (Pitler
et al., 2009), a C4.5 decision tree binary classifier
(Quinlan, 1993) is used to detect if each discourse
connective is used in a discourse usage or not. In
addition to the six features proposed by (Pitler et
al., 2009), this year we also used four of the fea-
tures proposed by (Lin et al., 2014). In total 10

features were used:

1. The discourse connective text in lowercase.

2. The categorization of the case of the connec-
tive: all lowercase or initial uppercase.

3. The highest node (called the SelfCat node)
in the parse tree that covers the connective
words but nothing more.

4–6. The parent, the left sibling and the right sib-
ling of the SelfCat.

7–10. The left and the right word of discourse con-
nective and their parts of speech.

2.2 Discourse Connective Sense Labeler
Once discourse connectives have been classified as
discourse usage or not, the Discourse Connective
Sense Labeler labels the discourse relation sig-
nalled by the annotated discourse connectives with
one of the 14 labels specified by the task. This
component also uses a C4.5 decision tree classifier
(Quinlan, 1993) with the same 10 features used
by the Discourse Connective Annotator (see Sec-
tion 2.1).

2.3 Discourse Argument Segmenter
The goal of the Discourse Argument Segmenter
is to detect the discourse argument boundaries.
This module first assumes that both discourse ar-
guments (i.e. ARG1 and ARG2) are located in the
same sentence that contains the discourse connec-
tive. If ARG1 is not found in the sentence, then the
Discourse Argument Segmenter selects the imme-
diately preceding sentence as ARG1.

We used a similar approach proposed by (Kong
et al., 2014) to identify discourse arguments that
appear in the same sentence. That is to say, we
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first select all the constituents in the parse tree that
are directly connected to one of the nodes in the
path from the discourse connective to the root of
the sentence and classify them into to one of three
categories: part-of-ARG1, part-of-ARG2 or NON

(i.e. not part of any discourse argument). Then,
all constituents which are tagged as part of ARG1
or as part of ARG2 are merged to obtain the actual
boundaries of ARG1 and ARG2.

Instead of using integer programming as pro-
posed by Kong et al. (2014), we used a Con-
ditional Random Field (CRF) in order to lever-
age global information (i.e. information across
all constituent candidates). CRFs have been pre-
viously used for discourse argument identification
(Ghosh et al., 2011) but at the token level. Kong et
al. (2014)’s approach generates a sequence of con-
stituents and therefore, CRFs can be applied at the
constituent level.

We used the following categories of features for
the CRF:

1. Discourse connective features: This category
includes all 10 features used in the Discourse
Connective Annotator (see Section 2.1).

2. Constituent features: Motivated by Kong et
al. (2014)’features, we defined the following
five features:

(a) The constituents in the path from the
current constituent to the SelfCat node
in the parse tree.

(b) The length of the path between the cur-
rent constituent and the SelfCat node.

(c) The context of the current constituent in
the parse tree. The context of a con-
stituent is defined by its label, the label
of its parent and the label of its left and
right siblings in the parse tree.

(d) The position of the current constituent
relative to the SelfCat node (i.e. left or
right).

(e) The syntactic production rule of the cur-
rent constituent.

3. Lexical features: This year, we also used lex-
ical features including the head of the cur-
rent constituent and four tokens that appear
in the constituent boundary (the first token of
the constituent and its previous token and the
last token of the constituent and its following
token).

2.4 Discourse Argument Trimmer
According to the PDTB manual (Prasad et al.,
2008b), annotators should keep the span of two
discourse arguments as small as possible and
should remove any extra information that is not
necessary for the discourse relation. Following
this idea, the Discourse Argument Trimmer is a
classifier that excludes any constituent from the
discourse argument span that is not related to the
discourse relations.

To do so, we developed a binary classifier that
labels all the constituents and tokens in the an-
notated discourse arguments with either part-of-
Argument or Not-part-of-Argument to exclude to-
kens that are not part of the discourse argument.
Once the classifier has labeled all the tokens and
constituents, we remove from the discourse argu-
ments all tokens that are labeled as Not-Part-of-
Argument or part of a constituent with the Not-
Part-of-Argument label.

A C4.5 decision tree binary classifier was devel-
oped using the following features:

1. The head of the constituent or the text of the
token.

2. The label of the constituent in the syntax tree
or the POS of token.

3. The position of the constituent/token (i.e
whether it appears at the beginning, inside or
at the end of the discourse argument).

4. The syntactic production rule of the con-
stituent’s parent and grand parent or “null”
for tokens.

5. The type of the argument (i.e. ARG1 or
ARG2)

6. The node label/POS of the left and right sib-
lings of the constituent/token in the syntactic
tree.

3 Non-Explicit Discourse Relation
Annotator

As mentioned in Section 1, last year, the CLaC
Discourse Parser did not address non-explicit re-
lations. Therefore, for this year’s participation
we developped this module from scratch. Be-
cause Convolutional Neural Networks (ConvNets)
have been successful at several sentence classifi-
cation tasks (e.g. (Zhang and Wallace, 2016; Kim,
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2014)), we wanted to investigate if similar net-
works could be used to address the task of non-
explicit discourse relation recognition.

The Non-Explicit Discourse Relation Annota-
tor begins where the Explicit Discourse Relation
Annotator ends. The Explicit Discourse Relation
Annotator only analyzes texts which contain a dis-
course connective; all other segments are sent to
the Non-Explicit Discourse Relation Annotator.

Because these text segments may or may not
contain a discourse relation, the Non-Explicit Dis-
course Relation Annotator first sends each text
segment to a binary ConvNet to identify which
segments contain a discourse relations and which
do not. The Non-Explicit Discourse Relation An-
notator trims trailing discourse punctuation as per
the shared task requirement. Only discourses with
two consecutive arguments are considered as pos-
sible non-explicit discourses. Non-discourse seg-
ments are removed from the pipeline. Sense la-
belling is then performed on the remaining seg-
ments using a multiclass ConvNet.

3.1 Input

The two ConvNets have an identical setup. The
input to the models are pretrained word embed-
dings from the Google News set, as trained with
Word2Vec1. Words not in the Google News set are
randomly initialized. Word embeddings are non-
static, meaning that they are allowed to change
during training.

Each input to the networks is composed of the
two padded discourse arguments. ARG1 is padded
to the length of the longest ARG1, and ARG2
is similarly padded to the length of the longest
ARG2. Since the training set contains a few un-
usually long arguments, we limited the argument
size to the size of the 99.5th percentile. This re-
duced the length of ARG1 from 1000 to 60 words,
and that of ARG2 from 400 to 61 words. This dra-
matically decreased the model complexity with in-
significant impact on performance. The two argu-
ments are then concatenated to form a single input.
Each word is then replaced with their embedded
vector representation.

Let l be the length of a single input (the number
of words in the discourse plus padding, 121). Let
d be the dimensionality of a word vector (300 for
our pretrained embedding). Then the input to the
networks, the matrix of discourse embedding, can

1https://code.google.com/archive/p/word2vec/

be denoted Q ∈ Rl×d.

3.2 Network
The network configuration is largely based on
(Kim, 2014). We applied a narrow convolution
over Q with height w (i.e. w words) and width
d (the entire word vector) defined as region h ∈
Rd×w. We added a bias b and applied a nonlinear
function f on the convolution to give us features
ci, where i is the ith word in the discourse input.
This is shown in Formula 1.

ci = f(h ·Qi:i+w−1 + b) (1)

The nonlinear function f in our case was the ex-
ponential linear unit (ELU) (Clevert et al., 2016),
indicated in Formula 2.

f(x) =

{
x if x > 0
α(exp(x)− 1) if x ≤ 0

(2)

Since the convolution is narrow, there are l −
w + 1 such features, giving us a feature map
c ∈ Rl−w+1. We applied max-over-time pooling
on c to extract the most “important” feature as in
Formula 3.

y = max(c) (3)

We applied 128 feature maps and pooled each
one of these. We repeated the entire process
3 times for w = 3, 4 and 5, and concatenated
them together. This gave us a final matrix M ∈
R3×128. We reshaped M to a flat vector and ap-
plied dropout as our regularization (Srivastava et
al., 2014), giving us vector u ∈ R384. u is fully
connected to a softmax output layer where loss is
measured with cross-entropy. The network was
trained in mini-batches and optimized with the
Adam algorithm (Kingma and Ba, 2015).

4 Results and Analysis

Table 1 shows the F1 scores of the CLaC Dis-
course Parser and the best parser at CoNLL 2015
(Wang and Lan, 2015) for different datasets. The
overall F1 score of the CLaC parser is 0.2106
with the blind test dataset which is lower than the
F1 score of the best parser at CoNLL 2015 (i.e.
0.2400). For explicit relations, the performance
of our parser (F1=0.3110) is higher than the per-
formance of last year’s best parser (F1=0.3038);
however, for non-explicit relations there is gap be-
tween the performance of our parser (F1=0.1219)
and the performance of last year’s best parser
(F1=0.1887).
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Development Dataset Test Dataset Blind Test Dataset
(PDTB) (PDTB) (Wikinews)

CLaC Best (2015) CLaC Best (2015) CLaC Best (2015)
Full Parsing
Overall 0.3260 0.3851 0.2442 0.2499 0.2106 0.2400
Explicit 0.4457 0.4977 0.3572 0.3447 0.3110 0.3038
Non-Explicit 0.2167 0.2876 0.1395 0.1511 0.1219 0.1887
Identification of Explicit Discourse Connective
Explicit 0.9203 0.9514 0.9100 0.9421 0.9020 0.9186
Argument Identification
Overall 0.4929 0.5704 0.4173 0.4377 0.3912 0.4637
Explicit 0.4867 0.5352 0.4023 0.3882 0.3989 0.4135
Non-Explicit 0.4987 0.6014 0.4311 0.4881 0.3844 0.5041
Sense Labeling (Supplementary task)
Overall 0.6222 - 0.5736 0.6802 0.5000 0.6327
Explicit 0.9074 - 0.8948 0.9079 0.7622 0.7685
Non-Explicit 0.3712 - 0.2813 0.4734 0.2772 0.5176

Table 1: F1-score of the CLaC Discourse Parser and the best parser of 2015 with Different Datasets.

4.1 Explicit Discourse Relation Annotator

Table 1 shows that the argument segmentation
component is the bottleneck of the Explicit Dis-
course Relation Annotator. While the CLaC
Discourse parser achieves competitive results in
the identification of explicit discourse connectives
(F1=0.9020) and labeling the sense signalled by
the discourse connectives (F1=0.7622) with the
blind test dataset, its performance is rather low
(F1=0.3989) for the identification of the discourse
argument boundaries.

Our results show that the CLaC Discourse
Parser has difficulty in detecting ARG1. As
Table 2 shows, the precision and recall for
the identification of ARG1 (i.e. P=0.4928 and
R=0.4749) are significantly lower than for ARG2
(i.e. P=0.7194 and R=0.6932). ARG2 is syntac-
tically bound to discourse connectives and there-
fore, it is easier to detect its boundaries. More-
over, as mentioned in Section 2.3, our approach
does not account for arguments that appear in non-
adjacent sentences. However, according to Prasad
et al. (2008a), 9.02% of ARG1 in the PDTB do not
appear in the sentence adjacent to the discourse
connective.

The exact match of CoNLL is a strict evalua-
tion measure for the argument identification. For
example, in Sentence (1), our parser did not detect
the word ‘it’ (boxed) and therefore, accordingly to
the exact match scoring schema, the boundaries of
the discourse arguments are incorrect.

P R F1
Arg1 0.4928 0.4749 0.4837
Arg2 0.7194 0.6932 0.7061
Arg1 & Arg2 0.4065 0.3917 0.3989

Table 2: Results of the CLaC Discourse parser for
the identification of discourse arguments with the
blind test dataset (exact match).

(1) The law does allow the RTC to borrow
from the Treasury up to $5 billion at any
time. Moreover, it says the RTC’s total
obligations may not exceed $50 billion,
but that figure is derived after includ-
ing notes and other debt, and subtract-
ing from it the market value of the as-
sets the RTC holds.2

Such cases where the CLaC parser misses the
argument boundaries by only a few words (added
or deleted) are frequent. For example, as Ta-
ble 3 shows, if we evaluate the argument bound-
aries with the partial match metric defined in the
CoNLL evaluator, the performance increases sig-
nificantly. The partial match metric accepts the
argument boundaries if 70% of the tokens of the
identified discourse arguments are correct. Using
this metric, the F1 score of the identification of
ARG1 and ARG2 increases by 0.1917 and 0.0777
respectively.

2This example is taken from the CoNLL development
dataset.
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P R F1
Arg1 0.6740 0.6768 0.6754
Arg2 0.7695 0.7986 0.7838
Arg1 & Arg2 0.6386 0.6667 0.6523

Table 3: Results of the CLaC Discourse parser for
the identification of discourse argument with the
blind test dataset (partial match).

We also observed that the Explicit Discourse
Argument Trimmer has a difficulty detecting what
parts of the texts are related to discourse relations
especially if multiple events appear in the text with
a TEMPORAL discourse relation. For example, in
Sentence (2) the parser identified the boxed words
as ARG1 and missed required information. On the
other hand in Sentence (3) the parser included ex-
tra information in ARG1. This type of error ap-
pears more frequently for ARG1 which explains
why the partial match metric improves the identi-
fication of ARG1 more than the identification of
ARG2.

(2) We would have to wait until we have
collected on those assets before we can

move forward.

(3) But the RTC also requires “working”

capital to maintain the bad assets of

thrifts that are sold , until the assets can
be sold separately.

4.2 Non-Explicit Discourse Relation
Annotator

Table 1 shows that for the task of non-explicit
sense labelling the Non-Explicit Discourse Rela-
tion Annotator achieves an F1-score of 0.2813 on
the test dataset and 0.2772 on the blind dataset,
versus 0.3712 on the developement dataset. The
similar performance on the test and blind datasets
and the 10% difference with the development
dataset suggest overfitting of our neural network.

For argument segmentation, just removing
tailing punctuations from consecutive sentences
achieves an F1-score of 0.3884. According to
Prasad et al. (2008a), non-explicit relations are
present between successive pairs of sentences
within paragraphs, but also intra-sententially be-
tween complete clauses separated by a semicolon
or a colon. Our simple argument segmentation
heuristic ignores intra-sentential arguments. We

believe that this accounts for its poor performance
on the identification of discourse arguments.

When looking more closely at the sense la-
belling performance (data not shown), it seems
that our network tends to overweight a few high
prior probability senses, notably EntRel and Ex-
pansion.Conjunction. EntRel is predicted for 46%
of samples, whereas it only represents 29% of the
development dataset. Expansion.Conjunction is
predicted for 24% of samples, whereas it repre-
sents only 17% of the development dataset.

We believe that one of the key issues for the
Non-Explicit Discourse Relation Annotator is the
size of the training set for non-explicit discourse.
17,813 samples is limited for a ConvNet, hence re-
ducing the possible complexity of our model. The
Non-Explicit Discourse Relation Annotator un-
derperformed the best parser from CoNLL-2015
on sense labeling by 24.04% for the blind dataset,
showing the advantage of non-neural network ma-
chine learning techniques when training data is
scarce.

5 Conclusion and Future Work

A major area of concern in our system is the ar-
gument identification, both for explicit and non-
explicit discourse relations. If we compare the re-
sults of the Supplementary task and Full Parsing
task in Table 1, we can see that the Full Parsing
F1-scores are about half of the Supplementary task
F1-scores due to mis-identification of arguments.

It is necessary to consider cases where ARG1
appears in non-adjacent sentences to improve the
identification of discourse arguments for explicit
relations. We believe that by considering co-
references in texts, we can expand our approach
to address non-adjacent discourse arguments. Fur-
thermore, it would be interesting to define new
features by using ARG2 to detect what informa-
tion can be added to or removed from ARG1. Fi-
nally, we believe that new ways to identify dis-
course arguments, such as Recurrent Neural Net-
works (Long Short Term Memory), could enhance
the performance of the argument identification. To
improve the identification of discourse arguments
for non-explicit relations, we plan to expand the
Explicit Discourse Argument Trimmer for non-
explicit relations.

For non-explicit sense labeling, we would like
to experiment with a larger training set possibly
by automatically expanding it.
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