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Abstract

Cross lingual projection of linguistic an-
notation suffers from many sources of bias
and noise, leading to unreliable annota-
tions that cannot be used directly. In this
paper, we introduce a novel approach to
sequence tagging that learns to correct the
errors from cross-lingual projection using
an explicit debiasing layer. This is framed
as joint learning over two corpora, one
tagged with gold standard and the other
with projected tags. We evaluated with
only 1,000 tokens tagged with gold stan-
dard tags, along with more plentiful par-
allel data. Our system equals or exceeds
the state-of-the-art on eight simulated low-
resource settings, as well as two real low-
resource languages, Malagasy and Kin-
yarwanda.

1 Introduction

Part-of-speech (POS) tagging is a critical task
for natural language processing (NLP) applica-
tions, providing lexical syntactic information. Au-
tomatic POS tagging has been extremely suc-
cessful for many rich resource languages through
the use of supervised learning over large train-
ing corpora (McCallum et al., 2000; Lafferty et
al., 2001; Ammar et al., 2016). However, learn-
ing POS taggers for low-resource languages from
small amounts of annotated data is very challeng-
ing (Garrette and Baldridge, 2013; Duong et al.,
2014). For such problems, distant supervision via
heuristic methods can provide cheap but inaccu-
rately labelled data (Mintz et al., 2009; Takamatsu
et al., 2012; Ritter et al., 2013; Plank et al., 2014).
A compromise, considered here, is to use a mix-
ture of both resources: a small collection of clean
annotated data and noisy “distant” data.
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A popular method for distant supervision is to
use parallel data between a low-resource language
and a rich-resource language. Although annotated
data in low-resource languages is difficult to ob-
tain, bilingual resources are more plentiful. For
example parallel translations into English are of-
ten available, in the form of news reports, nov-
els or the Bible. Parallel data allows annotation
from a high-resource language to be projected
across alignments to the low-resource language,
which has been shown to be effective for sev-
eral language processing tasks including POS tag-
ging (Yarowsky and Ngai, 2001; Das and Petrov,
2011), named entity recognition (Wang and Man-
ning, 2014) and dependency parsing (McDonald
et al., 2013).

Although cross-lingual POS projection is popu-
lar it has several problems, including errors from
poor word alignments and cross-lingual syntac-
tic divergence (Tickstrom et al., 2013; Das and
Petrov, 2011). Previous work has proposed heuris-
tics or constraints to clean the projected tag before
or during learning. In contrast, we consider com-
pensating for these problems explicitly, by learn-
ing a bias transformation to encode the mapping
between ‘clean’ tags and the kinds of tags pro-
duced from projection.

We propose a new neural network model for se-
quence tagging in a low-resource language, suit-
able for training with both a tiny gold standard an-
notated corpus, as well as distant supervision us-
ing cross-lingual tag projection. Our model uses
a bidirectional Long Short-Term Memory (BiL-
STM), which produces two types of output: gold
tags generated directly from the hidden states of a
neural network, and uncertain projected tags gen-
erated after applying a further linear transforma-
tion. This transformation, encodes the mapping
between the projected tags from the high-resource
language, and the gold tags in the target low-
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resource language, and learns when and how much
to trust the projected data. For example, for lan-
guages without determiners, the model can learn
to map projected determiner tags to nouns, or if
verbs are often poorly aligned, the model can learn
to effectively ignore the projected verb tag, by as-
sociating all tags with verbs. Our model is trained
jointly on gold and distant projected annotations,
and can be trained end-to-end with backpropaga-
tion.

Our approach captures the relations among to-
kens, noisy projected POS tags and ground truth
POS tags. Our work differs in the use of projec-
tion, in that we explicitly model the transformation
between tagsets as part of a more expressive deep
learning neural network. We make three main con-
tributions. First, we study the noise of projected
data in word alignments and describe it with an
additional transformation layer in the model. Sec-
ond, we integrate the model into a deep neural
network and jointly train the model on both anno-
tated and projected data to make the model learn
from better supervision. Finally, evaluating on
eight simulated and two real-world low-resource
languages, experimental results demonstrate that
our approach uniformly equals or exceeds exist-
ing methods on simulated languages, and achieves
86.7% accuracy for Malagasy and 82.6% on Kin-
yarwanda, exceeding the state-of-the-art results of
Duong et al. (2014).

2 Related Work

For most natural language processing tasks, the
conventional approach to developing a system is
to use supervised learning algorithms trained on
a set of annotated data. However, this approach
is inappropriate for low-resource languages due
to the lack of annotated data. An alternative ap-
proach is to harness different source of informa-
tion aside from annotated text. Knowledge-bases
such as dictionaries are one such source, which
can be used to inform or constrain models, such as
limiting the search space for POS tagging (Banko
and Moore, 2004; Goldberg et al., 2008; Li et al.,
2012).

Parallel bilingual corpora provide another im-
portant source of information. These corpora are
often plentiful even for many low-resource lan-
guages in the form of multilingual government
documents, book translations, multilingual web-
sites, etc. Word alignments can provide a bridge
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to project information from a resource-rich source
language to a resource-poor target language. For
example, parallel data has been used for named en-
tity recognition (Wang and Manning, 2014) based
on the observation that named entities are most of-
ten preserved in translation and also in syntactic
tasks such as POS tagging (Yarowsky and Ngai,
2001; Das and Petrov, 2011) and dependency pars-
ing (McDonald et al., 2013). Clues from related
languages can also compensate for the lack of an-
notated data, as we expect there to be informa-
tion shared between closely related languages in
terms of the lexical items, morphology and syn-
tactic structure. Some successful applications us-
ing language relatedness information are depen-
dency parsing (McDonald et al., 2011) and POS
tagging (Hana et al., 2004). However, these ap-
proaches are limited to closely related languages
such as Czech and Russian, or Telugu and Kan-
nada, and it is unclear whether these techniques
will work well in situations where parallel data
only exists for less-related languages, as is often
the case in practice.

To summarize, for all these mentioned tasks,
lexical resources are valuable sources of knowl-
edge, but are also costly to build. Language
relatedness information is applicable for closely
related languages, but it is often the case that
a given low-resource language does not have a
closely-related, resource-rich language. Parallel
data therefore appears to be the most realistic ad-
ditional source of information for developing NLP
systems for low-resource languages (Yarowsky
and Ngai, 2001; Duong et al., 2014; Guo et al.,
2015), and here we primarily investigate methods
to exploit parallel texts.

Yarowsky and Ngai (2001) pioneered the use
of parallel data for projecting POS tag informa-
tion from a resource-rich language to a resource-
poor language. Duong et al. (2014) proposed
an approach using a maximum entropy classifier
trained on 1000 tagged tokens, and used projected
tags as auxiliary outputs. Das and Petrov (2011)
used parallel data and exploited graph-based la-
bel propagation to expand the coverage of la-
belled tokens. Our work is closest to Duong et
al. (2014), and we share the same evaluation set-
ting, which we believe is well suited to the low-
resource applications. Our approach differs from
theirs in two ways: first we propose a deep learn-
ing model based on a long short-term memory re-



current structure versus their maximum entropy
classifier, and secondly we model the projection
tag explicitly as a biased variant of the classifica-
tion output, while they attempt to capture the cor-
relations between tagsets only implicitly through a
joint feature set over both tags. We believe that our
work is the first to explicitly model the bias affect-
ing cross-lingual projected annotations, thereby
allowing this rich data resource to be better ex-
ploited for learning NLP models in low-resource
languages.

3 Framework

In this work, we consider the POS tagging prob-
lem for a low-resource language using both the
gold annotated and distant projected corpora. For
a low-resource language, we assume two sets of
data. First, there is a small conventional corpus for
the low-resource language, annotated with gold
tags. Second, there is a parallel corpus between
the language and English, where we can reliably
tag the English side and project these annotations
across the word alignments. Then based on the
annotated and the projected data, we learn a deep
neural model for the POS tagging. The goal of
learning here is to improve the POS tagging accu-
racy on the low-resource language.

3.1 POS projection via word alignments

Parallel data is often available for low-resource
languages. For example, for Malagasy we can
obtain bilingual documents with English directly
from the web. This provides ample opportu-
nity for projecting annotations from English into
the low-resource language. Although the POS
tags can be projected, given sentence and word-
alignments, direct projection has several issues
and results in noisy, biased and often unreliable
annotations (Yarowsky and Ngai, 2001; Duong et
al., 2014). One source of error are the word align-
ments. These errors arise from words in the source
language that are not aligned to any words in the
target language, which might be due to them not
being translated well enough, errors in alignments,
or translation phenomena that do not fit the as-
sumptions underlying the word based alignment
models (e.g., many-to-many translations cannot be
captured).

An example of POS projection via word align-
ments between Malagasy and English is shown in
Figure 1. A word in Malagasy is connected to a
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Word alignments:

fanomezan-kevitra taranaka vaovao

ny

(NULL) inspiring a new generation .

noun [

Projection:

taranaka vaovao
NOUN ADJ

fanomezan-kevitra
VERB

ny

5

Figure 1: An example of POS projection via word
alignments. * indicates unknown POS tag, which
we treat as having a tag distribution over all tokens
in the source sentence (in the example, a uniform
mix of VERB, DET, ADJ, NOUN and °.").

word in English or the NULL word. Thus there
exist words in the target language which are not
aligned to a word in the source language, for ex-
ample ny in Figure 1. Previous work has either
used the majority projected POS tag for a token or
used a default value to represent the token (Duong
et al., 2014; Tackstrom et al., 2013). Another
problem are errors in the projected tags: for exam-
ple, in this sentence, fanomezan-kevitra is labelled
as VERB incorrectly, but should be NOUN, a con-
sequence of a non-literal translation.

We now turn to the labelling of the projected
data. For the parallel data, we consider each to-
ken in the low-resource language. Where this to-
ken is aligned to a single token in English, we as-
sign the tag for that English token. For tokens that
are aligned to many English words or none at all
(NULL), we assign a distribution over tags accord-
ing to the tag frequency distribution over the whole
English sentence.

A natural question is whether this projected la-
belling might be suitable for use directly in su-
pervised learning of a POS tagger. To test this,
we compare training a bidirectional Long Short-
Term Memory (BiLSTM) tagger on this data, a
small 1000 token dataset with gold-standard tags,
and the union of the two.! Evaluating the tag-
ging accuracy against gold standard tags, we ob-
serve in Tables 1 and 2 (top section, rows labelled

'See §3.2 for the model details, and §4.1 for a description
of the datasets and evaluation.



BiLSTM) that the use of the gold-standard (An-
notated) data is considerably superior to training
on the directly Projected data, despite the smaller
amount of Annotated data, while using the union
of the two datasets results in mild improvements
in a few languages, but worsens performance for
others.

These sobering results raise the question of how
we might use the bilingual resources in a more ef-
fective manner than direct projection. Clearly pro-
jections contain useful information, as the tagging
accuracy is well above chance. However, they are
riddled with noise and biases, which need to be
accounted for to improve performance.

3.2 BiLSTM with bias layer

To address this problem, we propose a model that
jointly models the clean annotated data and the
projected data. For this we use a bidirectional
LSTM tagger, as illustrated on the left in Fig-
ure 2, although other classifiers could be easily
used in its place. The BiLSTM offers access to
both the left and right lexical contexts around a
given word (Graves et al., 2013), which are likely
be of considerable use in POS tagging where con-
text of central importance.

Let x; indicate a word in a sentence and ¥; indi-
cate its corresponding POS tag, and K denotes the
size of the tagset.” The recurrent layer is designed
to store contextual information, while the values
in the hidden and output layers are computed as
follows:

— —
hy= lstm( h t—1, I‘t)
— —

hy= lstm( h t+1, I‘t)

— —
o = softmax(W_, hy+ W_h+b)
Y ~ Multinomial(oy) .

(D

This supervised model is trained on annotated gold
data in the standard manner using a cross-entropy
objective with stochastic gradient descent through
the use of gradient backpropagation.

The projected data, however, needs to be treated
differently to the annotated data: the tagging is of-
ten uncertain, as tokens may have been aligned to
words with different parts of speech, or multiply
aligned, or left as an unaligned word. These tags
are not to be trusted in the same way as the gold

2We use the universal tagset from Petrov et al. (2011),
enabling easier comparison with related work, although this
is not a requirement of our work.
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annotated data. Our work accounts for bias explic-
itly in the training objective, by modelling the cor-
respondence between the true tags and the error-
ful projected tags. The projected data consists of
pairs, (x¢,7), where 7 denotes the projected POS
tag or tag distribution. In this setting, we assume
that the true label, y;, is latent variable and both ¢
and y are K -dimensional binary random variables:
Ut 1s a vector representation of a projected tag, and
y; is a one-hot representation of a gold tag.

We augment the deep neural network model to
include a bias transformation such that its predic-
tion matches the distribution of the projected tags,
as follows:

p(Y; = jlxt, 0, A) = softmax (Z ai,jOt,z) )

2
where o;; = p(Y; = i|zy,0) is the probabil-
ity of tag ¢ in position ¢ according to (1). This
equation is parameterized by a K x K matrix A.
Each cell a; ; denotes the confusion score between
classes i and j, with negative values quashing the
correspondance, and positive values rewarding a
pairing; in the situations where the projected tags
closely match the supervised tagging, we expect
that A o< 1.

Joint modelling of the gold supervision and pro-
jected data gives rise to a training objective com-
bining two cross-entropy terms,

1
7]

1
]

L(0,A) = Z (¢, log softmax (Aoy))

teTp

Z <yt7 IOg Ot> )

teTt

where TP indexes all the token positions in the
projected dataset, and T does similarly for the an-
notated training set.

We illustrate the combined model in Figure 2,
showing on the left the gold supervised model and
on the right the distant supervised components.
The distant model builds on the base part by feed-
ing the output through a bias layer, which is finally
used in a softmax to produce the biased output
layer. The matrix A parameterizes the final layer,
to adjust the tag probabilities from the supervised
model into a distribution that better matches the
projected POS tags. However, the ultimate goal is

30ur approach also supports mismatching tagsets, in

which case A would be rectangular with dimensions based
on the sizes of the two tag sets.



label, y Conj Det Noun
output, o

BiLSTM, A 8

embedding, e

text, x raha ny marina

projected
labels, y

noised
output, 6

Shared
layers

Projected data

tsara fa misaotra

Figure 2: Illustration of the model architecture, which uses a bidirectional LSTM recurrent network, with
a tag classification output. The left part illustrates the supervised training scenario and test setting, where
each word z is assigned a tag y; the right part shows the projection training setting, with a bias layer,
where the supervision is either a projected label or label distribution (used for NULL aligned words).

to predict the POS tag y;. Consider the training ef-
fect of the projected POS tags: when performing
error backpropagation, the cross-entropy error sig-
nal must pass through the tag transformation link-
ing o with o, which can be seen as a debiasing step,
after which the cleaned error signal can be further
backpropagated to the rest of the model. Provided
there are consistent patterns of errors in the projec-
tion output, this technique can readily model these
sources of variation with a tiny handful of param-
eters, and thus greatly improve the utility of this
form of distant supervision.

Directly training the whole deep neural network
with random initialization is impractical, because
without a good estimate for the A matrix, the er-
rors from the projected tags may misdirect train-
ing result in a poor local optima. For this reason
the training process contains two stages. In the
first stage we use the clean annotated data to pre-
train the network. In the second stage we jointly
use both projected and annotated data to continue
training the model.

4 Experiments

We evaluate our algorithm using two kinds of
experimental setups, simulation experiments and
real-world experiments. For the simulation ex-
periments, we use the following eight European
languages: Danish (da), Dutch (nl), German (de),
Greek (el), Italian (it), Portuguese (pt), Spanish
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(es), Swedish (sv). These languages are obvi-
ously not low-resource languages, however we can
use this data to simulate the low-resource setting
by only using a small 1,000 tokens of the gold
annotations for training. This evaluation tech-
nique is widely used in previous work, and al-
lows us to compare our results with prior state-
of-the-art algorithms. For the real-world experi-
ments, we use the following two low-resource lan-
guages: Malagasy, an Austronesian language spo-
ken in Madagascar, and Kinyarwanda, a Niger-
Congo language spoken in Rwanda.

4.1 Evaluation Corpora

4.1.1 Parallel data

For the simulation experiments, we use the Eu-
roparl v7 corpus, with English as the source lan-
guage and each of languages as the target lan-
guage. There are an average of 1.85 million
parallel sentences for each of the eight language
pairs. For the real-world experiments, the parallel
data is smaller and generally of a lower quality.
For Malagasy, we use a web-sourced collection
of parallel texts.* The parallel data of Malagasy
has 100k sentences and 1,231k tokens. For Kin-
yarwanda, we obtained parallel texts from ARL
MURI project.’, constituting 11k sentences and

*http://www.cs.cmu.edu/~ark/
global-voices
SThe dataset was provided directly by Noah Smith.



da nl de el it pt es sv  Average
BiLSTM Annotated 89.3 87.4 89.5 88.1 859 895 90.6 84.7 88.1
BiLSTM Projected 644 819 &81.3 789 80.1 819 812 749 78.0
BiLSTM Ann+Proj 854 88.9 90.2 842 86.1 882 913 83.6 87.2
MaxEnt Supervised 90.1 84.6 89.6 88.2 814 &87.6 889 854 86.9
Duonget al. (2014) 92.1 91.1 925 9211 899 925 91.6 88.7 91.3
BiLSTM Debias 923 917 925 928 902 929 924 &9.1 91.7

Table 1: The POS tagging accuracy for various models in eight languages: Danish (da), Dutch (nl),
German (de), Greek (el), Italian (it), Portuguese (pt), Spanish (es), Swedish (sv). The top results of the
second part are taken from Duong et al. (2014), evaluated on the same data split.

52k tokens.
4.1.2 POS projection

We use GIZA++ to induce word alignments on
the parallel data (Och and Ney, 2003), using IBM
model 3 (Brown et al., 1993). Following prior
work (Duong et al., 2014), we retain only one-to-
one alignments. Using all alignments (i.e., many-
to-one and one-to-many), would result in many
more POS-tagged tokens, but also bring consid-
erable additional noise. For example, the English
laws (NNS) aligned to French les (DT) lois (NNS)
would end up incorrectly tagging the French de-
terminer les as a noun (NNS). We use the Stan-
ford POS tagger (Toutanova et al., 2003) to tag the
English side of the parallel data and then project
the labels to the target side. As we show in the
following section, and confirmed in many stud-
ies (Tackstrom et al., 2013; Das and Petrov, 2011),
the directly projected labels have many errors and
therefore it is unwise to use the tags directly.
We further filter the corpus using the approach
of Yarowsky and Ngai (2001) which selects sen-
tences with the highest sentence alignment scores
from IBM model 3. For the European languages,
we retain 200k sentences for each language, while
for the low-resource languages, we use all the par-
allel data.

4.1.3 Annotated data

Gold annotated data is expensive and difficult to
obtain, and thus we assume that only a small
annotated dataset is available. For the simula-
tion experiments, annotated data is obtained from
the CoNLL-X shared tasks (Buchholz and Marsi,
2006). To simulate the low-resource setting, we
take the first 1,000 tagged tokens for training and
the remaining data is split equally between devel-
opment and testing sets, following Duong et al.
(2014). For the real-world experiments, we use
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the Malagasy and Kinyarwanda data from Gar-
rette and Baldridge (2013), who showed that a
small annotated dataset could be collected very
cheaply, requiring less than 2 hours of non-expert
time to tag 1,000 tokens. This constitutes a rea-
sonable demand for cheap portability to other low-
resource languages. We use the datasets from
Garrette and Baldridge (2013), constituting anno-
tated datasets of 383 sentences and 5,294 tokens in
Malagasy and 196 sentences and 4,882 tokens for
Kinyarwanda. We use 1,000 tokens as training set
and the rest is used for testing for each language.

4.2 Setup and baselines

We compare our algorithm with several base-
lines, including the state-of-the-art algorithm from
Duong et al. (2014), a two-output maxent model,
their reported baseline method of a supervised
maximum entropy model trained on the annotated
data, and our BiLSTM POS tagger trained directly
from the annotated and/or projected data (denoted
BiLSTM Annotated, Projected and Ann+Proj for
the model trained on the union of the two datasets).
For the real low-resource languages, we also com-
pare our algorithm with Garrette et al. (2013), who
reported good results on the two low-resource lan-
guages. Our implementation is based on the cnn
toolkit.® In all cases, the BILSTM models use
128 dimensional word embeddings and 128 di-
mensional hidden layers. We set the learning rate
to 1.0 and use stochastic gradient descent model to
learn the parameters.

We evaluate all algorithms on the gold testing
sets, evaluating in terms of tagging accuracy. Fol-
lowing standard practice in POS tagging, we re-
port results using per-token accuracy (i.e., the frac-
tion of predicted tags that exactly match the gold
standard tags). Note that for all our experiments,

®https://github.com/clab/cnn
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Figure 3: Bias transformation matrix A between POS tags and projection outputs, shown respectively as

columns and rows for the eight languages.

we work with the universal POS tags and accord-
ingly accuracy is measured against the gold tags
after automatic mapping into the universal tagset.

4.3 Results

First, we present the results for the 8 simulation
languages in Table 1. For most of the languages
our method performs better than that of Duong
et al. (2014) and the three naive BiLSTM base-
lines. Directly training on projected data hurts
the performance, which can be seen by comparing
BiLSTM Projected and BiLSTM Ann+Proj. BilL-
STM Annotated mostly outperforms MaxEnt Su-
pervised, but both methods are worse than Duong
et al. and our BILSTM Debias, which both use the
projected data more effectively. The results show
the debiasing layer makes more effective use of
the projected data, improving the POS tagging ac-
curacy.

We show the learned bias transformation matri-
ces for the different languages in Figure 3. The
blue (dark) cells in the grids denote values that are
most highly weighted. Note the strong diagonal,
showing that the tags are mostly trusted, although
there is also evidence of significant mass in off-
diagonal entries. The worst case is in Greek (el)
with many weak values on the diagonal. In this
case, PRON and X appear to be confused for one
another. The light cells are also important, show-
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Model Accur?cy
Malagasy  Kinyarwanda

BiLSTM Annotated 81.5 76.9
BiLSTM Projected 67.2 61.9
BiLSTM Ann+Proj 78.6 73.2
MaxEnt Supervised 80.0 76.4
Duong et al. (2014) 85.3 78.3
BiLLSTM Debias 86.3 82.5
BiLSTM Debias (Penn) 86.7 82.6
Garrette et al. (2013) 81.2 81.9

Table 2: The POS tagging accuracy for various
models in Malagasy and Kinyarwanda. The top
results of the second part are taken from Duong et
al. (2014), evaluated on the same data split.

* Penn indicates the Penn treebank tagset. The proposed
BiLSTM Debias can use different tagsets for the source
language.

ing tag combinations that the model learns to ig-
nore, such as CONJ vs DET in Spanish (es) and
PRON vs ADP in Swedish (sv). The tokens that
are CONJ in Spanish (es) are seldom projected as
DET. Overall, for most of languages the level of
debiasing is modest, which might not come as a
surprise given the large, clean parallel corpus for
learning word alignments.

Now we present results for the two low-resource
languages, Malagasy and Kinyarwanda, which
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Figure 4: Bias transformation matrix A between POS tags and projected outputs, shown respectively as
columns and rows for the two low-resource languages.

both have much smaller parallel corpora. The re-
sults in Table 2 show that our method works better
than all others in both languages, with a similar
pattern of results as for the European languages.
We also used the original Penn treebank tagset
for both two languages. The results of BiLSTM
Debias (Penn) show a small improvement, presum-
ably due to the information loss in the mapping
to the universal tagset. Note that our method out-
performs the state of the art on both languages
(Duong et al., 2014; Garrette et al., 2013).

To better understand the effect of the bias layer,
we present the learned transformation matrices A
in Figure 4. Note the strong diagonal for Mala-
gasy in Figure 4, showing that each tag is most
likely to map to itself, however there are also many
high magnitude off-diagonal elements. For in-
stance nouns map to not just nouns, but also ad-
jectives and numbers, but never pronouns (which
are presumably well aligned). Comparing results
of Malagasy and Kinyarwanda in Figure 4, we
can see the divergence between the gold and pro-
jected tags is much greater in Kinyarwanda. This
tallies with the performance results, in which we
get stronger results and a greater improvement on
Malagasy from using projection data where we
had more parallel data.

5 Conclusion

In this paper we presented a technique for ex-
ploiting errorful cross-lingual projected annota-
tions alongside a small amount of annotated data
in the context of POS tagging. Projection on its
own is unreliable and simple combination with
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gold is not sufficient to improve accuracy, even
with only a tiny handful of gold annotations. To
utilize both sources of data, we proposed a new
model based on a bidirectional long short-term
memory recurrent neural network, with a layer for
explicitly handling projection labels. Over eight
European and two real low-resource languages,
our methods outperform other algorithms. Our
technique is general, and is likely to prove useful
for exploiting other noisy and biased annotations
such as distant supervision and crowd-sourced an-
notations.
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