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Abstract

Context representations are central to vari-
ous NLP tasks, such as word sense disam-
biguation, named entity recognition, co-
reference resolution, and many more. In
this work we present a neural model for
efficiently learning a generic context em-
bedding function from large corpora, us-
ing bidirectional LSTM. With a very sim-
ple application of our context represen-
tations, we manage to surpass or nearly
reach state-of-the-art results on sentence
completion, lexical substitution and word
sense disambiguation tasks, while sub-
stantially outperforming the popular con-
text representation of averaged word em-
beddings. We release our code and pre-
trained models, suggesting they could be
useful in a wide variety of NLP tasks.

1 Introduction

Generic word embeddings capture semantic and
syntactic information about individual words in a
compact low-dimensional representation. While
they are trained to optimize a generic task-
independent objective function, word embeddings
were found useful in a broad range of NLP tasks,
making an overall huge impact in recent years.
A major advancement in this field was the in-
troduction of highly efficient models, such as
word2vec (Mikolov et al., 2013a) and GloVe (Pen-
nington et al., 2014), for learning generic word
embeddings from very large corpora. Capturing
information from such corpora substantially in-
creased the value of word embeddings to both un-
supervised and semi-supervised NLP tasks.

To make inferences regarding a concrete target
word instance, good representations of both the
target word type and the given context are help-
ful. For example, in the sentence “I can’t find
[April]”, we need to consider both the target word
April and its context “I can’t find [ ]” to infer that
April probably refers to a person. This principle
applies to various tasks, including word sense dis-
ambiguation, co-reference resolution and named
entity recognition (NER).

Like target words, contexts are commonly rep-
resented via word embeddings. In an unsupervised
setting, such representations were found useful
for measuring context-sensitive similarity (Huang
et al., 2012), word sense disambiguation (Chen
et al., 2014), word sense induction (Kågebäck et
al., 2015), lexical substitution (Melamud et al.,
2015b), sentence completion (Liu et al., 2015)
and more. The context representations used in
such tasks are commonly just a simple collection
of the individual embeddings of the neighboring
words in a window around the target word, or
a (sometimes weighted) average of these embed-
dings. We note that such approaches do not in-
clude any mechanism for optimizing the represen-
tation of the entire sentential context as a whole.

In supervised settings, various NLP systems use
labeled data to learn how to consider context word
representations in a more optimized task-specific
way. This was done in tasks, such as chunking,
NER, semantic role labeling, and co-reference res-
olution (Turian et al., 2010; Collobert et al., 2011;
Melamud et al., 2016), mostly by considering the
embeddings of words in a window around the tar-
get of interest. More recently, bidirectional re-
current neural networks, and specifically bidirec-
tional LSTMs, were used in such tasks to learn
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internal representations of wider sentential con-
texts (Zhou and Xu, 2015; Lample et al., 2016).
Since supervised data is usually limited in size,
it has been shown that training such systems, us-
ing word embeddings that were pre-trained on
large corpora, improves performance significantly.
Yet, pre-trained word embeddings carry limited
information regarding the inter-dependencies be-
tween target words and their sentential context as
a whole. To model this (and more), the supervised
systems still need to rely heavily on their albeit
limited supervised data.

In this work we present context2vec, an unsu-
pervised model and toolkit1 for efficiently learning
generic context embedding of wide sentential con-
texts, using bidirectional LSTM. Essentially, we
use large plain text corpora to learn a neural model
that embeds entire sentential contexts and target
words in the same low-dimensional space, which
is optimized to reflect inter-dependencies between
targets and their entire sentential context as a
whole. To demonstrate their high quality, we show
that with a very simple application of our context
representations, we are able to surpass or nearly
reach state-of-the-art results on sentence comple-
tion, lexical substitution and word sense disam-
biguation tasks, while substantially outperforming
the common average-of-word-embeddings repre-
sentation (denoted AWE). We further hypothesize
that both unsupervised and semi-supervised sys-
tems may benefit from using our pre-trained mod-
els, instead or in addition to individual pre-trained
word embeddings.

2 Context2vec’s Neural Model

2.1 Model Overview

The main goal of our model is to learn a
generic task-independent embedding function for
variable-length sentential contexts around target
words. To do this, we propose a neural network
architecture, which is based on word2vec’s CBOW
architecture (Mikolov et al., 2013a), but replaces
its naive context modeling of averaged word em-
beddings in a fixed window, with a much more
powerful neural model, using bidirectional LSTM.
Our proposed architecture is illustrated in Fig-
ure 1, together with the analogical word2vec ar-
chitecture. Both models learn context and target

1Source code and pre-trained models are available
at: http://www.cs.biu.ac.il/nlp/resources/
downloads/context2vec/

(a) word2vec CBOW

(b) context2vec

Figure 1: word2vec and context2vec architectures.

word representations at the same time, by embed-
ding them into the same low-dimensional space,
with the objective of having the context predict the
target word via a log linear model. However, we
utilize a much more powerful parametric model to
capture the essence of sentential context.

The left-hand side of Figure 1b illustrates how
context2vec represents sentential context. We use
a bidirectional LSTM recurrent neural network,
feeding one LSTM network with the sentence
words from left to right, and another from right
to left. The parameters of these two networks are
completely separate, including two separate sets of
left-to-right and right-to-left context word embed-
dings. To represent the context of a target word in
a sentence (e.g. for “John [submitted] a paper”),
we first concatenate the LSTM output vector rep-
resenting its left-to-right context (“John”) with the
one representing its right-to-left context (“a pa-
per”). With this, we aim to capture the relevant
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information in the sentential context, even when
it is remote from the target word. Next, we feed
this concatenated vector into a multi-layer per-
ceptron to be capable of representing non-trivial
dependencies between the two sides of the con-
text. We consider the output of this layer as the
embedding of the entire joint sentential context
around the target word. At the same time, the tar-
get word itself (right-hand side of Figure 1b) is
represented with its own embedding, equal in di-
mensionality to that of the sentential context. We
note that the only (yet crucial) difference between
our model and word2vec’s CBOW (Figure 1a) is
that CBOW represents the context around a target
word as a simple average of the embeddings of the
context words in a window around it, while con-
text2vec utilizes a full-sentence neural representa-
tion of context.

Finally, to learn the parameters of our network,
we use word2vec’s negative sampling objective
function, with a positive pair being a target word
and its entire sentential context, and respective k
negative pairs as random target words, sampled
from a (smoothed) unigram distribution over the
vocabulary, paired with the same context. With
this, we learn both the context embedding network
parameters and the target word embeddings.

In contrast to word2vec and similar word em-
bedding models that use context modeling mostly
internally and consider the target word embed-
dings as their main output, our primary focus is
the context representation. Our model achieves its
objective by assigning similar embeddings to sen-
tential contexts and their associated target words.
Further, similar to the case in word2vec models,
this indirectly results in assigning similar embed-
dings to target words that are associated with sim-
ilar sentential contexts, and conversely to senten-
tial contexts that are associated with similar tar-
get words. We will show in the following sections
how these properties make our model useful.

2.2 Formal Specification and Analysis

We use a bidirectional LSTM recurrent neural net-
work to obtain a sentence-level context represen-
tation. Let lLS be an LSTM reading the words of
a given sentence from left to right, and let rLS be
a reverse one reading the words from right to left.
Given a sentence w1:n, our ‘shallow’ bidirectional
LSTM context representation for the target wi is

defined as the following vector concatenation:

biLS(w1:n, i) = lLS(l1:i−1)⊕ rLS(rn:i+1)

where l/r represent distinct left-to-right/right-to-
left word embeddings of the sentence words.2

This definition is a bit different than standard bidi-
rectional LSTM, as we do not feed the LSTMs
with the target word itself (i.e. the word in po-
sition i). Next, we apply the following non-linear
function on the concatenation of the left and right
context representations:

MLP(x) = L2(ReLU(L1(x)))

where MLP stands for Multi Layer Percep-
tron, ReLU is the Rectified Linear Unit acti-
vation function, and Li(x) = Wix + bi is
a fully connected linear operation. Let c =
(w1, ..., wi−1,−, wi+1, ..., wn) be the sentential
context of the word in position i. We define con-
text2vec’s representation of c as:

~c = MLP(biLS(w1:n, i)).

Next, we denote the embedding of a target word
t as ~t. We use the same embedding dimensionality
for target and sentential context representations.
To learn target word and context representations,
we use the word2vec negative sampling objective
function (Mikolov et al., 2013b):

S =
∑
t,c

(
log σ(~t · ~c) +

k∑
i=1

log σ(−~ti · ~c)
)

(1)

where the summation goes over each word token
t in the training corpus and its corresponding (sin-
gle) sentential context c, and σ is the sigmoid func-
tion. t1, ..., tk are the negative samples, indepen-
dently sampled from a smoothed version of the tar-
get words unigram distribution: pα(t) ∝ (#t)α,
such that 0 ≤ α < 1 is a smoothing factor, which
increases the probability of rare words.

Levy and Goldberg (2014b) proved that when
the objective function in Equation (1) is applied to
single-word contexts, it is optimized when:

~t · ~c = PMIα(t, c)− log(k) (2)

where PMI(t, c) = log p(t,c)
pα(t)p(c) is the pointwise

mutual information between the target word t and
2We pad every input sentence with special BOS and EOS

words in positions 0 and n + 1, respectively.
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Figure 2: A 2D illustration of context2vec’s em-
bedded space and similarity metrics. Triangles and
circles denote sentential context embeddings and
target word embeddings, respectively.

the context word c. The analysis presented in
Levy and Goldberg (2014b) is valid for every co-
occurrence matrix that describes the joint distribu-
tion of two random variables. Specifically, it can
be applied to our case, where the context is not just
a single word but an entire sentential context of a
target word. Accordingly, we can view the target-
context embedding obtained by our algorithm as a
factorization of the PMI matrix between all possi-
ble target words and all possible different senten-
tial contexts. Unlike the case of single-word con-
texts, it is not feasible to explicitly compute here
this PMI matrix due to the exponential number of
possible sentential contexts. However, the objec-
tive function that we optimize still aims to best ap-
proximate it. Based on the above analysis, we can
expect the inner-product of our target and context
embeddings to approximate PMIα(c, t). We note
that accordingly, with larger values of α, there will
be more bias towards placing rare words closer to
their associated contexts in this space.

2.3 Model Illustration

To demonstrate the qualities of the embedded
space learned by context2vec, we illustrate three
types of similarity metrics in that space: target-to-
context (t2c), context-to-context (c2c) and target-
to-target (t2t). All these are measured by the vec-
tor cosine value between the respective embedding
representations. Only the latter target-to-target
metric is the one typically used when illustrating

and evaluating word embedding models, such as
word2vec. Figure 2 provides a 2D illustration of
such a space and respective metrics.

In Table 1 we show sentential contexts and
the target words that are closest to them, using
the target-to-context similarity metric with con-
text2vec embeddings. As can be seen, the bidi-
rectional LSTM modeling of context2vec is indeed
capable in this case to capture long range depen-
dencies, as well as to take both sides of the con-
text into account. In Table 2 we show the clos-
est target words to given contexts, using different
context2vec models, each learned with a different
negative sampling smoothing parameter α. This
illustrates the bias that high α values introduce to-
wards rare words, as predicted with the analysis in
section 2.2.

Next, to illustrate the context-to-context sim-
ilarity metric, we took the set of contexts for
the target lemma add from the training set of
Senseval-3 (Mihalcea et al., 2004). In Table 3
we show an example for a ‘query’ context from
that set and the other two most similar contexts
to it, based on context2vec and AWE (average of
Skip-gram word embeddings) context representa-
tions. Melamud et al. (2015a) argues that since
contexts induce meanings (or senses) for target
words, a good context similarity measure should
assign high similarity values to contexts that in-
duce similar senses for the same target word. As
can be seen in this example, AWE’s similarity mea-
sure seems to be influenced by the presence of
the location names in the contexts, even though
they have little effect on the perceived meaning
of add in the sentences. Indeed, the sense of add
in the closest contexts retrieved by AWE is differ-
ent than that in the ‘query’ context. In this case,
context2vec’s similarity measure was robust to this
problem.

Finally, in Table 4, we show the closest tar-
get words to a few given target words, based on
the target-to-target similarity metric. We compare
context2vec’s target word embeddings to Skip-
gram word2vec embeddings, trained with 2-word
and 10-word windows. As can be seen, our
model seems to better preserve the function of the
given target words including part-of-speech and
even tense, in comparison to the 2-word window
model, and even more so compared to the 10-word
window one. The intuition for this behavior is
that Skip-gram literally skips words in the context
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Sentential Context Closest target words
This [ ] is due item, fact-sheet, offer, pack, card
This [ ] is due not just to mere luck offer, suggestion, announcement, item, prize
This [ ] is due not just to mere luck, award, prize, turnabout, offer, gift
but to outstanding work and dedication
[ ] is due not just to mere luck, it, success, this, victory, prize-money
but to outstanding work and dedication

Table 1: Closest target words to various sentential contexts, illustrating context2vec’s sensitivity to long
range dependencies, and both sides of the target word.

α John was [ ] last year
0.25 born, late, married, out, back
0.50 born, back, married, released, elected
0.75 born, interviewed, re-elected
1.00 starstruck, goal-less, unwed

Table 2: Closest target words to a given sentential
context using different α values in context2vec.

around the target word and therefore may find, for
instance, the contexts of san and francisco to be
very similar. In contrast, our model considers only
entire sentential contexts, taking context word or-
der and position into consideration. Melamud et
al. (2016) showed that target word embeddings,
learned from context representations that are gen-
erated using n-gram language models, also exhibit
function-preserving similarities, which is consis-
tent with our observations.

2.4 Relation to Language Models

Our model is closely related to language models,
as can be seen in section 2.2 and tables 1 and 2.
In particular, it has a lot in common with LSTM-
based language models, as both train LSTM neu-
ral networks with the objective to predict target
words based on their (short and long range) con-
text, and both use techniques, such as negative
sampling, to address large vocabulary computa-
tional challenges during training (Jozefowicz et
al., 2016). The main difference is that LSTM lan-
guage models are mainly concerned with optimiz-
ing predictions of conditional probabilities for tar-
get words given their history, while our model is
focused on deriving generally useful representa-
tions to whole history-and-future contexts of target
words. We follow word2vec’s learning framework
as it is known to produce high-quality representa-
tions for single words. It does so by having ~t · ~c
approximate PMI(t, c) rather than log p(t|c).

3 Evaluation Settings

We intend context2vec’s generic context embed-
ding function to be integrated into various more
optimized task-specific systems. However, to
demonstrate its qualities independently, we ad-
dress three different types of tasks by the sim-
ple means of measuring cosine distances between
its embedded representations. Yet, we compare
our performance against the state-of-the-art results
of highly competitive task-optimized systems on
each task. In addition we use AWE as a base-
line representing a commonly used generic con-
text representation, which like ours, can represent
variable-length contexts with a fixed-size vector.
Our evaluation includes the following tasks: sen-
tence completion, lexical substitution and super-
vised word sense disambiguation (WSD).

3.1 Learning corpus

With the exception of the sentence completion task
(MSCC), which comes with its own learning cor-
pus, we used the two billion word ukWaC (Fer-
raresi et al., 2008) as our learning corpus. To
speed-up the training of context2vec, we discarded
all sentences that are longer than 64 words, reduc-
ing the size of the corpus by ∼10%. However, we
train the embeddings used in the AWE baseline on
the full corpus to not penalize it on account of our
model. We lower-cased all text and considered any
token with fewer than 100 occurrences as an un-
known word. This yielded a vocabulary of a lit-
tle over 180K words for the full corpus, and 160K
words for the trimmed version.

3.2 Compared Methods

context2vec We implemented our model using
the Chainer toolkit (Tokui et al., 2015), and Adam
(Kingma and Ba, 2014) for optimization. To
speed-up the learning time we used mini-batch
training, where only sentences of equal length are
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Query Furthermore our work in Uganda and Romania [ adds ] a wider perspective.
... themes in art have a fascination , since they [ add ] a subject interest

context2vec to a viewer’s enjoyment of artistic qualities.
closest Richard is joining us every month to pass on tips , ideas and news

from the world of horticulture , and [ add ] a touch of humour too
... the foreign ministers said political and economic reforms in Poland and Hungary

AWE had made considerable progress but [ added ] : the process remains fragile ...
closest ... Germany had announced the solution as a humanitarian act by the government,

[ adding ] that it hoped Bonn in future would run its embassies in normal manner...

Table 3: An example for a given ‘query’ context and the two closest contexts to it, as ‘retrieved’ by
context2vec similarity and AWE similarity.

context2vec word2vec-w2 word2vec-w10 context2vec word2vec-w2 word2vec-w10
flying syntactically

gliding flew flew semantically grammatically semantically
sailing fly fly lexically phonologically grammatically
diving aerobatics aeroplane grammatically semantically syntax
flown low-flying flown phonologically ungrammatical syntactic
travelling flown bi-plane topologically lexically lexically

san prize
agios francisco francisco prizes prizes prizes
aghios diego diego award prize-winner winner
los fransisco fransisco trophy prizewinner winners
tanjung los bernardino medal prize prizewinner
puerto obispo los prizewinner prizewinners prize.

Table 4: Top-5 closest target words to a few given target words.

assigned to the same batch. We discuss the hyper-
parameters tuning of our model in section 4.1.

AWE We learned word embeddings with the
popular word2vec Skip-gram model using stan-
dard hyperparameters: 600 dimensions, 10 nega-
tive samples, window-size 10 and 3/5 iterations for
the ukWaC/MSCC learning corpora, respectively.
Then we used a simple average of these embed-
dings as our AWE context representation.3 In ad-
dition, we experimented with the following vari-
ations: (1) ignoring stopwords (2) performing a
weighted average of the words in the context using
tf-idf weights (3) considering just the 5-word win-
dow around the target word instead of the whole
sentence. Specifically, in the WSD experiment the
context provided for the target words is a full para-
graph. Though it could be extended, context2vec
is currently not designed to take advantage of such
large context and therefore ignores all context out-

3We made some preliminary experiments using word em-
beddings learned with word2vec’s CBOW model, instead of
Skip-gram, but this yielded worse results.

side of the sentence of the target word. However,
for AWE we also experimented with the option of
generating the context representation based on the
entire paragraph. In all cases, the size (dimension-
ality) of the AWE context representation was equal
to that of context2vec, and the context-to-target
and context-to-context similarities were computed
using vector cosine between the respective embed-
ding representations, as with context2vec.

3.3 Sentence Completion Challenge

The Microsoft Sentence Completion Challenge
(MSCC) (Zweig and Burges, 2011) includes 1,040
items. Each item is a sentence with one word re-
placed by a gap, and the challenge is to identify the
word, out of five choices, that is most meaningful
and coherent as the gap-filler. While there is no
official dev/test split for this dataset, we followed
previous work (Mirowski and Vlachos, 2015) and
used the first 520 sentences for parameter tuning
and the rest as the test set.4

4Mikolov et al. (2013a) did not specify their dev/test split
and all other works reported results only on the entire dataset.
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The MSCC includes a learning corpus of 50
million words. To use this corpus for training
our models, we first discarded all sentences longer
than 128 words, which resulted in a negligible re-
duction of ∼ 1% in the size of the corpus. Then,
we converted all text to lowercase and considered
all words with frequency less than 3 as unknown,
yielding a vocabulary of about 100K word types.

Finally, as the gap-filler, we simply choose the
word whose target word embedding is the most
similar to the embedding of the given context us-
ing the target-to-context similarity metric. We re-
port the accuracy achieved in this task.

3.4 Lexical Substitution Task

The lexical substitution task requires finding a
substitute word for a given target word in sen-
tential context. The difference between this and
the sentence completion task is that the substi-
tute word needs not only to be coherent with the
sentential context, but also preserve the meaning
of the original word in that context. Most re-
cent works evaluated their performance on a rank-
ing variant of the lexical substitution task, which
uses predefined candidate lists provided with the
gold standard, and requires to rank them consid-
ering the sentential context. Performance in this
task is reported with generalized average precision
(GAP).5 As in MSCC, in this evaluation we rank
lexical substitutes according to the measured sim-
ilarity between their target word embeddings and
the embedding of the given sentential context.

We used two lexical substitution datasets in our
experiments. The first is the dataset introduced in
the lexical substitution task of SemEval 2007 (Mc-
Carthy and Navigli, 2007), denoted LST-07, split
into 300 dev sentences and 1,710 test sentences.
The second is a more recent ‘all-words ’ dataset
(Kremer et al., 2014), denoted LST-14, with over
15K target word instances. It comes with a prede-
fined 35%/65% split. We used the smaller set as
the dev set for parameter tuning and the larger one
as our test set.

3.5 Supervised WSD

In supervised WSD tasks, the goal is to determine
the correct sense of words in context, based on a
manually tagged training set. To classify a test
word instance in context, we consider all of the

5See Melamud et al. (2015a) for more of their setting de-
tails, which we followed here.

context word units 300
LSTM hidden/output units 600
MLP input units 1200
MLP hidden units 1200
sentential context units 600
target word units 600
negative samples 10

Table 5: context2vec hyperparameters

tagged instances of the same word lemma in the
training set, and find the instance whose context
embedding is the most similar to the context em-
bedding of the test instance using the context-to-
context similarity metric. Then, we use the tagged
senses6 of that instance. We note that this is es-
sentially the simplest form of a k-nearest-neighbor
algorithm, with k = 1.

As our supervised WSD dataset we used the
Senseval-3 lexical sample dataset (Mihalcea et al.,
2004), denoted SE-3, which includes 7,860 train
and 3,944 test instances. We used the training set
for parameter tuning and report accuracy results
on the test set.

4 Results

4.1 Development Experiments

The hyperparameters used in our reported exper-
iments with context2vec are summarized in Ta-
ble 5. In preliminary development experiments,
we used only 200 units for representing sentential
contexts, and then saw significant improvement in
results, when moving to 600 units. Increasing the
representation size to 1,000 units did not seem to
further improve results.

With mini-batches of 1,000 sentences at a time,
we started by training our models with a single
iteration over the 2-billion-word ukWaC corpus.
This took ∼30 hours, using a single Tesla K80
GPU. For the smaller 50-million-word MSCC
learning corpus, a full iteration with a batch size
of 100 took only about 3 hours. For this corpus,
we started with 5 training iterations.

To explore the rare-word bias effect of the vo-
cabulary smoothing factor α, we varied its value
in our development experiments. The results ap-
pear in Table 6 on the left hand side. Since we
preferred to keep our model as simple as possi-
ble, based on these results, we chose the single

6There’s one or more senses assigned to a each instance.
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context2vec AWE
neg sampling parameter α iters+ best best worst worst
0.25 0.50 0.75 1.00 0.75 config result config result

MSCC-dev 52.5 56.5 60.0 52.7 66.2 sent+stop 51.0 W5 36.5
LST-07-dev 50.1 52.9 53.6 54.3 55.4 W5+stop 45.8 sent 40.0
LST-14-dev 48.2 48.9 48.0 46.1 48.3 sent+stop 40.4 sent 39.2
SE-3-dev 72.1 72.4 71.6 72.5 72.6 W5+tf-idf 62.4 sent 57.3

Table 6: Development set results. iters+ denotes the best model found when running more training
iterations with α = 0.75. AWE config: W5/sent denotes using a 5-word-window/full-sentence, and
stop/tf-idf denotes ignoring stop words or using tf-idf weights, respectively.

value α = 0.75 for all of our test sets experiments.
With this choice, we also tried training our mod-
els with more iterations and found that with 3 it-
erations over the ukWaC corpus and 10 iterations
over the MSCC corpus we can obtain some further
improvement in results, see iters+ in Table 6.

The results of our experiments with all of the
AWE variants, described in section 3.2, appear
on the right hand side of Table 6. For brevity,
we report only the best and worst configuration
for each benchmark. As can be seen, in two
out of four benchmarks, a window of 5 words
yields better performance than a full sentential
context, suggesting that the AWE representation is
not very successful in leveraging effectively long
range information. Removing stop words or us-
ing tf-idf weights improves performance signifi-
cantly. However, the results are still much lower
than the ones achieved with context2vec. To raise
the bar, in each test-set experiment we used the
best AWE configuration found for the correspond-
ing development-set experiment.

4.2 Test Sets Results

The test set results are summarized in Table 7.
First, we see that context2vec substantially out-
performs AWE across all benchmarks. This sug-
gests that our context representations are much
better optimized for capturing sentential context
information than AWE, at least for these tasks.
Further, we see that with context2vec we either
surpass or almost reach the state-of-the-art on all
benchmarks. This is quite impressive, consider-
ing that all we did was measure cosine distances
between context2vec’s representations to compete
with more complex and task-optimized systems.

More specifically, in the sentence completion
task (MSCC) the prior state-of-the-art result is due
to Mikolov et al. (2013a) and was achieved by a

c2v c2v AWE S-1 S-2
iters+

MCSS
test 64.0 62.7 48.4 - -
all 65.1 61.3 49.7 58.9 56.2

LST-07
test 56.1 54.8 41.9 55.2 -
all 56.0 54.6 42.5 55.1 53.6

LST-14
test 47.7 47.3 38.1 50.0 -
all 47.9 47.5 38.9 50.2 48.3

SE-3
test 72.8 71.2 61.4 74.1 73.6

Table 7: Results on test sets. c2v is context2vec
and iters+ denotes the model that was trained with
more iterations. S-1/S-2 stand for the best/second-
best prior result reported for the benchmark.

weighted combination of scores from two differ-
ent models: a recurrent neural network language
model, and a Skip-gram model. The second-best
result is due to Liu et al. (2015) and is based
on word embeddings that are learned based on
both corpora and structured knowledge resources,
such as WordNet. context2vec outperforms both
of them. In the lexical substitution tasks, the best
prior results are due to Melamud et al. (2015a).7

They employ an exemplar-based approach that re-
quires keeping thousands of exemplar contexts for
every target word type. The second-best is due to
Melamud et al. (2015b). They propose a simple
approach, but it requires dependency-parsed text
as input. context2vec achieves comparable results
with these works, using the same learning corpus.
In the Senseval-3 supervised WSD task, the best
result is due to Ando (2006) and the second-best to

7Szarvas et al. (2013) achieved almost the same result, but
with a supervised model, not directly compared to ours.
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Rothe and Schütze (2015). context2vec is almost
on par with these results, which were achieved
with dedicated feature engineering and supervised
machine learning models.

5 Related Work

Substitute vectors (Yuret, 2012) represent contexts
as a probabilistic distribution over the potential
gap-filler words for the target slot, pruned to its
top-k most probable words. While using this rep-
resentation showed interesting potential (Yatbaz
et al., 2012; Melamud et al., 2015a), it can cur-
rently be generated efficiently only with n-gram
language models and hence is limited to fixed-size
context windows. It is also high dimensional and
sparse, in contrast to our proposed representations.

Syntactic dependency context embeddings have
been proposed recently (Levy and Goldberg,
2014a; Bansal et al., 2014). They depend on the
availability of a high-quality dependency parser,
and can be viewed as a ‘bag-of-dependencies’
rather than a single representation for the entire
sentential context. However, we believe that in-
corporating such dependency-based information
in our model is an interesting future direction.

A couple of recent works extended word2vec’s
CBOW by replacing its internal context represen-
tation. Ling et al. (2015b) proposed a continu-
ous window, which is a simple linear projection of
the context window embeddings into a low dimen-
sional vector. Ling et al. (2015a) proposed ‘CBOW
with attention’, which is used for finding the rel-
evant features in a context window. In contrast to
our model, both approaches confine the context to
a fixed-size window. Furthermore, they limit their
scope to using these context representations only
internally to improve the learning of target words
embeddings, rather than evaluate the benefit of us-
ing them directly in NLP tasks, as we do.

Kawakami and Dyer (2016) represent words in
context using bidirectional LSTMs and multilin-
gual supervision. In contrast, our model is fo-
cused on representing the context alone. Yet, as
shown in our lexical substitution and word sense
disambiguation evaluations, it can easily be used
for modeling the meaning of words in context as
well.

Finally, there is considerable work on using
recurrent neural networks to represent word se-
quences, such as phrases or sentences (Socher et
al., 2011; Kiros et al., 2015). We note that the

techniques used for learning sentence representa-
tions have much in common with those we use for
sentential context representations. Yet, sentential
context representations aim to reflect the informa-
tion in the sentence only inasmuch as it is relevant
to the target slot. Specifically, different target po-
sitions in the same sentence can yield completely
different context representations. In contrast, sen-
tence representations aim to reflect the entire con-
tents of the sentence.

6 Conclusions and Future Potential

We presented context2vec, a neural model that
learns a generic embedding function for variable-
length contexts of target words. We demonstrated
that it can be trained in a reasonable time over
billions of words and generate high quality con-
text representations, which substantially outper-
form the traditional average-of-word-embeddings
approach on three different tasks. As such, we hy-
pothesize that it could contribute to various NLP
systems that model context. Specifically, semi-
supervised systems may benefit from using our
model, as it may carry more useful information
learned from large corpora, than individual pre-
trained word embeddings do.
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