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Abstract

This paper describes the discourse parsing
system developed at Dublin City Univer-
sity for participation in the CoNLL 2015
shared task. We participated in two tasks:
a connective and argument identification
task and a sense classification task. This
paper focuses on the latter task and espe-
cially the sense classification for implicit
connectives.

1 Introduction

This paper describes the discourse parsing system
developed at Dublin City University for participa-
tion in the CoNLL 2015 shared task (Xue et al.,
2015). We participated in two tasks: a connec-
tive and argument identification task and a sense
classification task. This paper focuses on the latter
task.

We divide the whole process into two stages:
the first stage concerns an identification of triples
(Arg1, Conn, Arg2) and pairs (Arg1, Arg2)
while the second stage concerns a sense classifica-
tion of the identified individual triples and pairs.
The first phase of the identification of connec-
tive and arguments are described in (Wang et al.,
2015), which bases on the framework of (Lin et al.,
2009) and is also presented in this shared task as
a different paper. Hence, we omit the detailed de-
scription of the first stage (See (Wang et al., 2015)
for identification of connectives and arguments).
This paper focuses on the second stage which con-
cerns sense classification.

2 Sense Classification

We use off-the-shelf classifiers with four kinds of
features: relational phrase embedding, production,
word-pair and heuristic features. Among them,
we test the method which incorporates relational
phrase embedding features for Arg1 and Arg2 for

Rel Prod Word Heuristic
phrase pair feat
(2.1) (2.2) (2.3) (2.4)

Implicit yes yes/no1 yes/no2 no
Explicit yes no no yes

Table 1: Overview of features used for im-
plicit/explicit classification.

discourse parsing. Production features are pro-
posed in (Lin et al., 2014) and word-pair features
are reported in (Lin et al., 2014; Rutherford and
Xue, 2015). Heuristic features, which is specific
for explicit sense classification, are described in
(Lin et al., 2014).

We consider the embedding models which lead
to two different types of intermediate represen-
tations. The relational phrase embedding model
considers the dependency within words uniformly
without considering the second-order effect. The
word-pair embedding model considers the second-
order effect of specific combinations within the
word-pairs in Arg1 and Arg2. If we plug in a
paragraph vector model for the relational phrase
embedding model, the model considers the effect
of uni-gram within a sentence as a sequence. If
we plug in a RNN-LSTM model (Le and Zuidema,
2015), the model considers the effect of uni-gram
within a sentence as a tree.

2.1 Relational Phrase Embedding Features

Phrase embeddings (or sentence embeddings) are
distributed representation in a higher level than a
word level. We used a paragraph vector model to
obtain these phrase embeddings (Le and Mikolov,
2014). Upon obtained the phrase embeddings for

2For the official score, we did not use production features
due to the timing constraint. We write the result for the de-
velopment set.

3For the official score, we did not use the word-pair fea-
ture due to the timing constraint. We write the result for the
development set.
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Arg1, Arg2 (and Connectives), we used the re-
lational phrase embedding from these triples (or
pairs) based on their phrase embeddings (Bordes
et al., 2013).

The first type of embedding we used in this
paper is a combination of paragraph vector (Le
and Mikolov, 2014) and translational embeddings
(Bordes et al., 2013). First, the abstraction of each
variable Arg1 and Arg2 was built independently
in a vertical way, and then the relation among
these (Arg1,Conn,Arg2) and (Arg1,Arg2) are
examined in a collective way. This is shown in
Figure 3. This model has two intermediate em-
beddings: paragraph vector embeddings of Arg1,
Arg2, and Conn, and translational embedding of
(Arg1,Conn,Arg2) and (Arg1,Arg2).
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Figure 1: Figure shows relational paragraph em-
beddings.

We use a paragraph vector model to obtain
the feature for Arg1 and Arg2 (Le and Mikolov,
2014). The paragraph vector model is an idea to
obtain a real-valued vector in the similar construc-
tion with the word vector model (or word2vec)
(Mikolov et al., 2013b) where the detailed expla-
nation can be obtained.

In implicit/explicit sense classification, the par-
ticipated items related to this classification are
two for implicit relations of a pair (Arg1, Arg2)
and three for explicit relations of a triple
(Arg1, Conn, Arg2). This is by nature a
multiple-instance learning setting (Dietterich et
al., 1997), which receives a set of instances which

6www.psych.ualberta.ca/ westburylab.
7www.statmt.org/wmt14.

Figure 2: Figure shows a scalability of implicit
classification performance based on the size of ad-
ditional training data. We used dev set and used re-
sources from WestBurry version of wikipedia cor-
pus6and WMT147.

are labeled collectively instead of individually la-
beled where each contains many instances. All the
more, linguistic characteristics of discourse rela-
tions support this: meaning/sense is attached not
to a single argument Arg1 or Arg2 but to a pair
(Arg1, Arg2) or a triple (Arg1, Conn, Arg2).

Followed by Bordes et al. (Bordes et al., 2011;
Bordes et al., 2013), we minimized a margin-
based ranking criterion over the pair of embed-
dings:

L =
∑

(Arg1,Arg2)∈S

∑
(Arg1,Arg2)∈S′

[γ +

d(Arg1′, Arg2)− d(Arg1, Arg2′)]+

where [x]+ denotes the positive part of x, γ > 0
is a margin hyperparameter. S′ denotes a set of
corrupted pair where Arg1 or Arg2 is replaced by
a random entity (but not both at the same time).
Readers should see the detailed explanation in
(Bordes et al., 2013).

It is noted that we tried indicator function (al-
ternatively called discrete-valued vector, bucket
function (Bansal et al., 2014), binarization of
embeddings (Guo et al., 2014)) for embeddings
which are converted from real-valued vector. Al-
though we have not tested sufficiently due to the
timing constraint, we did not include this method
in our experiments since we could not have any
gain.

2.2 Production Features for Constituent
Parsing

(Lin et al., 2014) describes the method using the
production features based on the parsing results.
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Subtree extract extracted not extracted
Exact match 16582 0.347 31265 0.653
+-1 position 39096 0.817 8751 0.183
Combi 2 elem 43031 0.899 4816 0.101
Combi 3 elem 45102 0.943 2745 0.057
Combi 4 elem 45872 0.959 1975 0.041

Table 2: Extraction of production features for con-
stituent parsing results.

In this paper, we further process and treat these as
the phrase embeddings. The algorithm is as fol-
lows. First, the subset of (constituent) parsing re-
sults which correspond to Arg1 and Arg2 are ex-
tracted. Then, all the production rules for these
subtrees are derived. Third, we apply these pro-
duction rules into the relational phrase embedding
model that we described in 2.1. We replace all the
words in 2.1 with production rules.

2.3 Word-Pair Features

Word-pair features in discourse parsing indicate
the Cartesian products of all the combinations of
words in Arg1 and Arg2. This feature is used
in (Lin et al., 2014; Rutherford and Xue, 2015).
(Rutherford and Xue, 2015) further developed this
method combined with Brown clustering (Brown
et al., 1992). We use this by word-pair embedding.

The second type of embedding we used in this
paper is an abstraction of word-pair embedding in
Arg1, Arg2 (and Conn) in a horizontal way. This
is shown in Figure 4. The word grows their bi-
gram in terms of Cartesian product of elements in
different Arg1 and Arg2 which has a order from
Arg1 to Arg2 where this bi-gram is embedded
in the word embedding. Followed by Pitler et al.
(Pitler et al., 2008) we use the 100 frequent word-
pairs in training set for each category of relation.
We did not delete function words/stop-words.

2.4 Heuristic Features for Explicit
Connectives

Heuristic features in this paper indicate the spe-
cific features used in the explicit sense classifica-
tion: (1) connective, (2) POS of connective, and
(3) connective + previous word (Lin et al., 2014).
These three features are employed in order to re-
solve the ambiguity in discourse connectives, and
practically work fairly efficiently.

Figure 3: Figure shows the variation of the thresh-
old in top X of word-pairs in each category. Most
of the frequent word-pairs are functional word
pairs, such as the-the, but we did not remove them.
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Figure 4: Figure show word-pair embeddings.

3 Experimental Settings

For the dataset, we used the CoNLL 2015 Shared
task data set, i.e. LDC2015E21 (Xue et al., 2015)
and Skip-gram neural word embeddings (Mikolov
et al., 2013a)8). For the unofficial run, we used
westbury version of English wikipedia dump (such
as Figure 2) and WMT14 data set.9

We choose python as the language to develop
our discourse parser. We use external tools such
as libSVM (Chang and Lin, 2011), liblinear (Fan
et al., 2008), wapiti (Lavergne et al., 2010), and
maximum entropy model10 for a classification task
described as Section 2. Among these off-the-shelf
classifiers, we used libSVM for the official re-

8https://code.google.com/p/word2vec
9www.statmt.org/wmt14.

10http://homepages.inf.ed.ac.uk/lzhang10/maxent.html
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Overall Task Sense Classification
dev test blind dev test
f1 pr rec f1 pr rec f1 pr rec f1 pr rec f1 pr rec

Overall
Arg12 .291 .250 .348 .246 .210 .297 .215 .188 .252 1 1 1 1 1 1
Arg1 .392 .336 .469 .357 .304 .431 .317 .276 .371 1 1 1 1 1 1
Arg2 .422 .362 .505 .398 .339 .480 .382 .333 .448 1 1 1 1 1 1
conn .863 .904 .827 .881 .903 .859 .794 .849 .746 1 1 1 1 1 1
parser .154 .132 .184 .123 .105 .149 .107 .093 .125 .492 .812 .474 .466 .804 .458
sense .081 .270 .099 .083 .207 .112 .041 .047 .065 .546 .546 .546 .531 .531 .531

Explicit Only
Arg12 .186 .195 .178 .147 .150 .143 .111 .119 .104 1 1 1 1 1 1
Arg1 .263 .275 .252 .211 .216 .206 .167 .178 .157 1 1 1 1 1 1
Arg2 .373 .391 .357 .382 .392 .373 .281 .301 .264 1 1 1 1 1 1
conn .863 .904 .827 .881 .903 .859 .794 .849 .746 1 1 1 1 1 1
parser .158 .166 .152 .132 .136 .129 .079 .084 .074 .707 .882 .694 .727 .726 .838
sense .138 .263 .142 .108 .175 .110 .077 .077 .084 .838 .838 .838 .873 .873 .873

Implicit Only
Arg12 .355 .275 .501 .307 .237 .436 .276 .217 .378 1 1 1 1 1 1
Arg1 .453 .351 .640 .430 .332 .610 .392 .309 .538 1 1 1 1 1 1
Arg2 .451 .349 .638 .407 .314 .578 .441 .347 .603 1 1 1 1 1 1
conn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
parser .151 .117 .213 .117 .091 .166 .123 .097 .169 .283 .283 .283 .221 .221 .221
sense .019 .699 .052 .025 .667 .061 .016 .598 .046 .105 .803 .136 .112 .891 .149

Table 3: Official results for task of identification of connectives and arguments. Table shows the results
for dev set, test set and blind test set.

sults. Additionally we use word2vec (Mikolov et
al., 2013b) and Theano (Bastien et al., 2012)11 in
the pipeline.

One bottleneck of our system was in a training
procedure. Since a paragraph vector is currently
not incrementally trainable, we were not able to
separate training and test phases. Hence, we need
to run it all on TIRA,12 whose computing resource
is powerless which took a considerable time such
as 15 to 30 minutes where most of other partici-
pants only finish their run in 30 seconds or so.

4 Experimental Results

Table 3 shows our results. There are fifteen
columns where the nine columns in the left show
the overall task while the six columns in the right
shows the supplementary task.13

In terms of the evaluation for explicit connec-
tives, we obtained F score of 0.138, 0.108, and

11http://deeplearning.net/tutorial/rnnslu.html
12http://www.tira.io
13Due to the unforeseen errors occurred on TIRA, we

could not obtain the results for blind test set.

0.077 for dev/test/blind sets for overall task (the
lowest low in the second group) while we ob-
tained F score of 0.707 for sense classification
task. For the connectives, F score was 0.863
while Arg 1-2 was 0.186 which was fairly low.
This may be result in the policy of the evalu-
ation script which checks the correct classifica-
tion results together with the correct identification
of triples (Arg1, Conn, Arg2). Hence, even if
the classification results were correct if the triples
(Arg1, Conn, Arg2) were not correctly identi-
fied, the results were not correct. Thus, this ex-
plains why there is a big difference between the
overall task (left nine columns) and the sense clas-
sification task (right three columns), as well as the
low scores of 0.138, 0.108 and 0.077.

For the implicit only evaluation, on contrast, we
obtained F score of 0.019, 0.025, and 0.016 (the
lowest row in the third group) for overall task and
0.105 for sense classification task. Here, precision
was high (precision of these which were 0.699,
0.667, and 0.598) for overall task and 0.803 and
0.891 for sense classification task; while recall
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dev set (official results) dev set (unofficial results)
Explicit Implicit Implicit(30m) Implicit (prod) Implicit (wp)
pr rec f1 pr rec f1 pr rec f1 pr rec f1 pr rec f1

1 Comp 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
2 Comp.Conc .13 .17 .14 1 0 0 1 0 1 0 0 0 0 0 0
3 Comp.Cont .79 .84 .82 1 0 0 1 0 0 .05 .02 .03 .16 .2 .18
4 Cont.Cau.Rea .96 .58 .72 1 0 0 1 0 0 .09 .10 .03 .24 .10 .14
5 Cont.Cau.Res 1 .84 .91 1 0 0 1 0 0 .08 .08 .08 .15 .08 .10
6 EntRel – – – .28 .95 .44 .29 .98 .45 .24 .91 .43 .36 .69 .47
7 Exp – – – 1 0 0 1 0 0 1 0 0 1 0 0
8 Cont.Cond 1 .89 .94 – – – – – – – – – – – –
9 Exp.Alt .86 1 .92 1 0 0 1 0 0 1 0 0 1 0 0
10 Exp.Alt.C alt 1 .83 .91 1 0 0 1 0 0 0 0 0 1 0 0
11 Exp.Conj .96 .96 .96 .26 .04 .07 .54 .11 .18 .17 .15 .16 .35 .26 .30
12 Exp.Inst .90 1 .95 0 0 0 .75 .06 .12 .09 .23 .13 .43 .06 .11
13 Exp.Rest 1 .33 .50 .50 .04 .07 .33 .01 .02 .14 .16 .15 .11 .06 .08
14 Temp.As.Pr .94 .96 .95 1 0 0 1 0 0 .13 .04 .06 0 0 0
15 Temp.As.Su .95 .73 .82 1 0 0 1 0 0 0 0 0 1 0 0
16 Temp.Syn .62 .97 .76 1 0 0 1 0 0 .08 .10 .09 0 0 0
17 Average .88 .69 .71 .80 .14 .11 .86 .14 .11 .21 .14 .07 .39 .16 .09
18 Overall .84 .84 .84 .28 .28 .28 .30 .30 .30 .16 .16 .16 .29 .29 .29

Table 4: Results for devset (Official and unofficial results). Implicit only includes Implicit, EntRel, and
AltLex. This experiment uses the development set. The right most column Implicit only(30m) shows the
results with additional data of 30M sentence pairs using the same setting of Figure 2.

was very low.

Table 5 shows the detailed results for sense
classification under the setting that identification
of connectives and arguments are correct. The
first group (the left three columns) show the re-
sults for explicit classification. On contrast to
implicit classification all the figures are consid-
erably good except Comp.Conc whose F score
was 0.14. The second group to the fifth group
(the rightmost three columns) show four config-
urations of implicit classification. The third group
shows the 30 million additional sentence pairs for
training, the fourth group uses production fea-
ture, and the fifth group uses word-pair feature.
These three groups exposed each characteristics
quite clearly. Relational phrase embeddings (Im-
plicit and Implicit(30m)) works for Expansion
group (Exp.Conj, Exp.Inst, Exp.Rest), the produc-
tion feature (marked as Implicit(prod)) worked for
Temporal group (Temp.As.Pr and TempSyn), and
the word-pair feature (marked as Implicit(wp))
worked for Comparison/Contingency groups. The
effect of additional data was shown in the third
group (marked as Implicit(30m)). This group was
given additional data of 30M sentence pairs which

improved the performance on Exp.Conj (from F
score 0.07 to 0.18), and Exp.Inst (from F score
0.00 to 0.12) while Exp.Rest was down from fi
score 0.07 to 0.02. The effect was limited to these
categories.

It is easily observed that if the surface form of
connective does not share multiple senses, such
as if (67%) in Cont.Cond and instead (87%) in
Exp.Alt.C, the results of sense classification per-
formed good where Cont.Cond was F score of 0.94
and Exp.Alt.C was F score of 0.91. If the surface
form of connective share multiple senses, they
tend to be classified unbalancedly and one sense
tends to be collected many votes. (For example,
But has multiple senses, including Comp.Conc,
Comp, and Comp.Cont. Comp.Cont collected
many votes. As a result, the classification results
for Comp.Cont was good but for others they were
bad).

5 Discussion

A paragraph vector is proven useful for the senti-
ment analysis-typed task (Le and Mikolov, 2014).
The word embedding is propagated towards the
parent node and averaged. Our intension was that
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test set
Explicit Implicit
pr rec f1 pr rec f1

1 1 0 0 – – –
2 .41 .59 .48 1 0 0
3 .91 .83 .87 1 0 0
4 1 .75 .86 1 0 0
5 1 .97 .99 1 0 0
6 – – – .22 .96 .35
7 – – – 1 0 0
8 1 .81 .89 – – –
9 .83 1 .91 – – –
10 1 1 1 1 0 0
11 .98 .98 .98 .25 .09 .13
12 1 1 1 1 .04 .08
13 1 .29 .44 1 0 0
14 .92 1 .96 1 0 0
15 .94 .69 .79 1 0 0
16 .58 .98 .73 1 0 0
17 .84 .73 .73 .89 .15 .11
18 .87 .87 .87 .22 .22 .22

Table 5: Official results for explicit/implicit sense
classification for test set.

the averaged embedding in a sentence will per-
form meaning establishment in the intermediate
representation which capture the characteristics of
Arg1, Arg2, and Conn. First, Comp.Cont or
Comp.Conc may include sentence polarity with
some additional condition that these polarities
may be reversed. Against our expectation only a
handful of examples were classified in these cat-
egories. However, if they are classified in these
categories they were correct, i.e. precision 1.
Second, if Arg1 and Arg2 are required to ex-
pose the causal relation such as Cont.Cau.Rea
and Cont.Cau.Res this may be beyond the frame-
work of a paragraph vector. Third, our im-
plicit classification tried to classify Exp.Conj and
Exp.Rest. Both of these categories of relation
can be found some similarities with sentiment
analysis/polarities, which can be reasonable that
it worked for these categories. Four, interest-
ingly, the word-pair feature works for Compari-
son/Contingency sense group while the production
feature works (only slightly though) for Temporal
sense group.

We used a margin-based ranking criteria to ob-
tain relations over a paragraph vectors. First,
(Mikolov et al., 2013b) observed a linear relation

on two word embeddings. However, it might be
too heavy expectation for two paragraph embed-
dings which can capture the similar phenomenon.
Even if Arg1 consists of many words, a paragraph
vector will average their word embeddings. In this
sense this approach may have a crucial limit to-
gether with the fact that this is unsupervised learn-
ing. Second, we do not know yet but some small
trick may improve the relation of Comp.Cont or
Comp.Conc since these relations are quite simi-
lar relations with Exp.Conj, Exp.Instantiation, and
Exp.Rest except that these relations are the polari-
ties reversed.

6 Conclusion

This paper describes the discourse parsing system
developed at Dublin City University for participa-
tion in the CoNLL 2015 shared task. We take an
approach based on a paragraph vector. One short-
coming was that our classifier was effective only
Exp.Conj, Exp.Inst and Exp.Rest despite our ex-
pectation that this model will work for Comp.Cont
and Comp.Conc as well. The relation of the latter
is in an opposite direction. We provided the word-
pair model which works for these categories but in
a different perspective.

Further work includes the mechanism how to
make it work for Comp.Cont and Comp.Conc.
Although a paragraph vector did not work effi-
ciently, our model has a tentative model which
does not have interaction between relational, para-
graph, and word embeddings such as in (Denil
et al., 2015), which is one immediate challenge.
Then, other challenge includes replacement of a
paragraph vector model with a convolutional sen-
tence vector model (Kalchbrenner et al., 2014) and
RNN-LSTM model (Le and Zuidema, 2015). The
former approach is related to the supervised learn-
ing instead of unsupervised learning. The latter
approach is to employ the structure of tree instead
of a sequence.
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