
Proceedings of the Nineteenth Conference on Computational Natural Language Learning: Shared Task, pages 56–60,
Beijing, China, July 26-31, 2015. c©2014 Association for Computational Linguistics

The CLaC Discourse Parser at CoNLL-2015

Majid Laali Elnaz Davoodi Leila Kosseim
Department of Computer Science and Software Engineering,

Concordia University, Montreal, Quebec, Canada
{m laali, e davoo, kosseim}@encs.concordia.ca

Abstract

This paper describes our submission (kos-
seim15) to the CoNLL-2015 shared task
on shallow discourse parsing. We used the
UIMA framework to develop our parser
and used ClearTK to add machine learn-
ing functionality to the UIMA framework.
Overall, our parser achieves a result of
17.3 F1 on the identification of discourse
relations on the blind CoNLL-2015 test
set, ranking in sixth place.

1 Introduction

Today, discourse parsers typically consist of sev-
eral independent components that address the fol-
lowing problems:

1. Discourse Connective Classification: The
concern of this problem is the identification
of discourse usage of discourse connectives
within a text.

2. Argument Labeling: This problem focuses on
labeling the text spans of the two discourse
arguments, namely ARG1 and ARG2.

3. Explicit Sense Classification: This problem
can be reduced to the sense disambiguation
of the discourse connective in an explicit dis-
course relation.

4. Non-Explicit Sense Classification: The target
of this problem is the identification of im-
plicit discourse relations between two con-
secutive sentences.

To illustrate these tasks, consider Example (1):

(1) We would stop index arbitrage when the
market is under stress.1

1The example is taken from the CoNLL 2015 trial dataset.

The task of Discourse Connective Classification
is to determine if the marker “when” is used to
mark a discourse relation or not. Argument La-
beling should segment the two arguments ARG1
and ARG2 (in this example, ARG1 is italicized
while ARG2 is bolded). Finally, Explicit Sense
Classification should identify which discourse re-
lation is signaled by “when” - in this case CON-
TINGENCY.CONDITION.

In this paper, we report on the development
and results of our discourse parser for the CoNLL
2015 shared task. Our parser, named CLaC Dis-
course Parser, was built from scratch and took
about 3 person-month to code. The focus of the
CLaC Discourse Parser is the treatment of explicit
discourse relations (i.e. problem 1 to 3 above).

2 Architecture of the CLaC Discourse
Parser

We developed our parser based on the UIMA
framework (Ferrucci and Lally, 2004) and we used
ClearTK (Bethard et al., 2014) to add machine
learning functionality to the UIMA framework.
The parser was written in Java and its source code
is distributed under the BSD license2.

Figure 1 shows the architecture of the CLaC
Discourse Parser. Motivated by Lin et al. (2014),
the architecture of the CLaC Discourse Parser is a
pipeline that consists in five components: CoNLL
Syntax Reader, Discourse Connective Annotator,
Argument Labeler, Discourse Sense Annotator
and CoNLL JSON Exporter. Due to lack of time,
we did not implement a Non-Explicit Classifica-
tion in our pipeline and only focused on explicit
discourse relations.

The CoNLL Syntax Reader and the CoNLL
JSON Exporter were added to the CLaC Dis-
course Parser in order for the input and the output
of the parser to be compatible with the CoNLL

2All the source codes can be downloaded from
https://github.com/mjlaali/CLaCDiscourseParser.git

56



Figure 1: Components of the CLaC Discourse Parser

2015 Shared Task specifications. The CoNLL
Syntax Reader parses syntactic information (i.e.
POS tags, constituent parse trees and dependency
parses). CoNLL organisers and adds this syntac-
tic information to the documents in the UIMA
framework. To create a stand-alone parser, the
CoNLL Syntax Reader can be easily replaced with
the cleartk-berkeleyparser component
in the CLaC discourse Parser pipeline. This com-
ponent is a wrapper around the Berkeley syntac-
tic parser (Petrov and Klein, 2007) and distributed
with ClearTK. The Berkeley syntactic parser was
actually used in the CoNLL shared task to parse
texts and generate the syntactic information.

The CoNLL JSON Exporter reads the output
discourse relations annotated in the UIMA doc-
uments and generates a JSON file in the format
required for the CoNLL shared task. We will dis-
cuss the other components in details in the next
sections.

2.1 Discourse Connective Annotator

To annotate discourse connectives, the Discourse
Connective Annotator first searches the input texts
for terms that match a pre-defined list of discourse
connectives. This list of discourse connectives was
built solely from the CoNLL training dataset of
around 30K explicit discourse relations and con-
tains 100 discourse connectives. Each match of
discourse connective is then checked to see if it
occurs in discourse usage or not.

Inspired by (Pitler et al., 2009), we built a bi-
nary classifier with six local syntactic and lexical-
ized features of discourse connectives to classify
discourse connectives as discourse usage or non-
discourse usage. These features are listed in Ta-
ble 1 in the row labeled Connective Features.

2.2 Argument Labeler

When ARG1 and ARG2 appear in the same sen-
tence, we can exploit the syntactic tree to label
boundaries of the discourse arguments. Motivated
by (Lin et al., 2014), we first classify each con-
stituent in the parse tree into to three categories:
part of ARG1, part of ARG2 or NON (i.e. is not

part of any discourse argument). Then, all con-
stituents which were tagged as part of ARG1 or
as part of ARG2 are merged to obtain the actual
boundaries of ARG1 and ARG2.

Previous studies have shown that learning an ar-
gument labeler classifier when all syntactic con-
stituents are considered suffers from many in-
stances being labeled as NON (Kong et al., 2014).
In order to avoid this, we used the approach pro-
posed by Kong et al. (2014) to prune constituents
with a NON label. This approach uses only the
nodes in the path from the discourse connective
(or SelfCat see Table 1) to the root of the sentence
(Connective-Root path nodes) to limit the number
of the candidate constituents. More formally, only
constituents that are directly connected to one of
the Connective-Root path nodes are considered for
the classification.

For example, consider the parse tree of Exam-
ple (1) shown in Figure 2. The path from the dis-
course connective “when” to the root of the sen-
tence contains these nodes: {WRB, WHADVP,
SBAR, VP2, VP1, S1}. Therefore, we only con-
sider {S2, NP2, VB, MD, NP1} for obtaining dis-
course arguments.

If the classifier does not classify any constituent
as a part of ARG1, we assume that the ARG1 is
not in the same sentence as ARG2. In such a sce-
nario, we consider the whole text of the previous
sentence as ARG1.

In the current implementation, we made the
assumption that discourse connectives cannot be
multiword expressions. Therefore, the Argument
Labeler cannot identify the arguments of paral-
lel discourse connectives (e.g. either..or, on one
hand..on the other hand, etc.)

We used a sub-set of 9 features proposed by
Kong et al. (2014) for the Argument Labeler clas-
sifier. The complete list of features is listed in Ta-
ble 1.

2.3 Discourse Sense Annotator

Although some discourse connectives can signal
different discourse relations, the naı̈ve approach
that labels each discourse connective with its most

57



S1

NP1

PRP

We

VP1

MD

would

VP2

VB

stop

NP2

NN1

index

NN2

arbitrage

SBAR

WHADVP

WRB

when

S2

NP3

DT

the

NN3

market

VP3

VBZ

is

PP

IN

under

NP4

NN4

stress

Figure 2: The Parse Tree Provided by CoNLL 2015 for Example (1)

Category Description Example

Connective
Features

1. The discourse connective text in lowercase. when
2. The categorization of the case of the connective:
all lowercase, all uppercase and initial uppercase

all lowercase

3. The highest node in the parse tree that covers the
connective words but nothing more

WRB

4. The parent of SelfCat WHADVP
5. The left sibling of SelfCat null
6. The right sibling of SelfCat S

Syntactic
Node
Features

7. The path from the node to the SelfCat node in the
parser tree

S ↑ SBAR ↓
WHADV P

8. The context of the node in the parse tree. The
context of a node is defined by its label the label of
its parent, the label of left and right sibling in the
parse tree.

S-SBAR-
WHADVP-null

9. The position of the node relative to the SelfCat
node: left or right

left

Table 1: Features Used in the CLaC Discourse Parser

frequent relation performs rather well. Accord-
ing to Pitler et al. (2009), such an approach can
achieve an accuracy of 85.86%. Due to lack of
time, we implemented this naı̈ve approach for the
Discourse Sense Annotator, using the 100 con-
nectives mined from the dataset (see Section 2.1)
and their most frequent relation as mined from the
CoNLL training dataset.

3 Experiments and Results

As explained in Section 2, the CLaC Discourse
Parser contains two main classifiers, one for the
Discourse Connective Annotator and one for the
Argument Labeler. We used the off-the-shelf im-
plementation of the C4.5 decision tree classifier
(Quinlan, 1993) available in WEKA (Hall et al.,
2009) for the two classifiers and trained them us-

58



Discourse
Connective
Classifier

Argument
Labeler

Discourse Parsing
(explicit only)

Discourse Parsing
(explicit and
implicit)

Best Result 91.86% 41.35% 30.58% 24.00%
CLaC Parser 90.19% 36.60% 27.32% 17.38%
Average 74.20% 23.89% 18.28% 13.25%
Standard deviation 23.24% 13.01% 9.93% 6.41%

Table 2: Summary of the Results of the CLaC Discourse Parser in the CoNLL 2015 Shared Task.

ing the CoNLL training dataset.
Although the CLaC discourse parser only con-

siders explicit discourse relations (which only ac-
counts for about half of the relations), the parser
ranked 6th among the 17 submitted discourse
parsers. The overall F1 score of the parser and
the individual performance of the Discourse Con-
nective Classifier and the Argument Labeler in the
blind CoNLL test data are shown in Table 2. As
Table 2 shows, the performance of the parser is
consistently above the average. In addition, the
performance of the Discourse Connective Classi-
fier is very close to the best result.

Note that all numbers presented in Table 2
were obtained when errors propagate through the
pipeline. That is to say, if a discourse connective is
not correctly identified by the Discourse Connec-
tive Classifier for example, the arguments of this
discourse connective will not be identified. Thus,
the recall of the Argument Labeler will be affected.

The CoNLL 2015 results of the submitted
parsers show that the identification of ARG1 is
more difficult than ARG2. In line with this,
the CLaC Discourse Parser performed better on
the identification of ARG2 (with the F1 score
of 69.18%) than ARG1 (with the F1 score of
45.18%). Table 3 provides a summary of the re-
sults for the identification of Arg1 and Arg2. An
important source of errors in the identification of
ARG1 is that attribute spans are contained within
ARG1. For example in (2), the CLaC Discourse
Parser incorrectly includes the text “But the RTC
also requires “working” capital” within ARG1.

Arg1 Arg2
Best Result 49.68% 74.29%
CLaC Parser 45.18% 69.18%
Average 30.77% 50.91%
Std. deviation 15.31% 20.58%

Table 3: Results of the Identification of ARG1 and
ARG2.

(2) But the RTC also requires “working” capi-
tal to maintain the bad assets of thrifts that
are sold until the assets can be sold sepa-
rately.3

With regards to the identification of ARG2, we ob-
served that subordinate and coordinate clauses are
an important source of errors. For example in (3),
the subordinate clause “before we can move for-
ward” is erroneously included in the ARG2 span
when the CLaC Discourse Parser parses the text.
The cause of such errors are usually rooted in
an incorrect syntax parse tree that was fed to the
parser. For instance in (3), the text “we have col-
lected on those assets before we can move for-
ward” was incorrectly parsed as a single clause
covered by an S node with the subordinate “before
we can move forward” as a child of this S node.
However, in the correct parse tree the subordinate
clause should be a sibling of the S node.

(3) We would have to wait until we have col-
lected on those assets before we can move
forward.3

4 Conclusion

In this paper, we described the CLaC Discourse
Parser which was developed from scratch for the
CoNLL 2015 shared task. This 3 person-month
effort focused on the task of the Discourse Con-
nective Classification and Argument Labeler. We
used a naı̈ve approach for sense labelling and
consider only explicit relations. Yet, the parser
achieves an overall F1 measure of 17.38%, rank-
ing in 6th place out of the 17 parsers submitted to
the CoNLL 2015 shared task.

5 Acknowledgement

The authors would like to thank the CoNLL 2015
organisers and the anonymous reviewers. This

3The example is taken from the CoNLL 2015 develop-
ment dataset.

59



work was financially supported by NSERC.

References
[Bethard et al.2014] Steven Bethard, Philip Ogren, and

Lee Becker. 2014. ClearTK 2.0: Design patterns for
machine learning in UIMA. LREC.

[Ferrucci and Lally2004] David Ferrucci and Adam
Lally. 2004. UIMA: An architectural approach to
unstructured information processing in the corporate
research environment. Natural Language Engineer-
ing, 10(3-4):327–348.

[Hall et al.2009] Mark Hall, Eibe Frank, Geoffrey
Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. 2009. The WEKA data mining
software: An update. ACM SIGKDD explorations
newsletter, 11(1):10–18.

[Kong et al.2014] Fang Kong, Hwee Tou Ng, and
Guodong Zhou. 2014. A Constituent-Based Ap-
proach to Argument Labeling with Joint Inference in
Discourse Parsing. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 68–77, Doha, Qatar,
October.

[Lin et al.2014] Ziheng Lin, Hwee Tou Ng, and Min-
Yen Kan. 2014. A PDTB-styled end-to-end
discourse parser. Natural Language Engineering,
20(02):151–184.

[Petrov and Klein2007] Slav Petrov and Dan Klein.
2007. Improved Inference for Unlexicalized Pars-
ing. In Proceedings of NAACL HLT 2007, page
404–411, Rochester, NY, April.

[Pitler et al.2009] Emily Pitler, Annie Louis, and Ani
Nenkova. 2009. Automatic sense prediction for im-
plicit discourse relations in text. In Proceedings of
the 47th Annual Meeting of the ACL and the 4th IJC-
NLP of the AFNLP, page 683–691, Suntec, Singa-
pore, August.

[Quinlan1993] J. Ross Quinlan. 1993. C4.5: Programs
for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA.

60


