
Squibs and Discussions
Decoding Complexity in Word-Replacement
Translation Models

K e v i n Knight*
University of Southern California

Statistical machine translation is a relatively new approach to the long-standing problem of trans-
lating human languages by computer. Current statistical techniques uncover translation rules
from bilingual training texts and use those rules to translate new texts. The general architecture
is the source-channel model: an English string is statistically generated (source), then statistically
transformed into French (channel). In order to translate (or "decode") a French string, we look
for the most likely English source. We show that for the simplest form of statistical models, this
problem is NP-complete, i.e., probably exponential in the length of the observed sentence. We
trace this complexity to factors not present in other decoding problems.

1. I n t r o d u c t i o n

Statistical models are widely used in attacking natural language problems. The source -
c h a n n e l framework is especially popular, finding applications in part-of-speech tag-
ging, accent restoration, transliteration, speech recognition, and many other areas. In
this framework, we build an underspecified model of how certain structures (such as
strings) are generated and transformed. We then instantiate the model through training
on a database of sample structures and transformations.

Recently, Brown et al. (1993) built a source-channel model of translation between
English and French. They assumed that English strings are produced according to some
stochastic process (source model) and transformed stochastically into French strings
(channel model). To translate French to English, it is necessary to find an English
source string that is likely according to the models. With a nod to its cryptographic
antecedents, this kind of translation is called decoding. This paper looks at decoding
complexity.

2. P a r t - o f - S p e e c h Tagg ing

The prototype source-channel application in natural language is part-of-speech tagging
(Church 1988). We review it here for purposes of comparison with machine translation.

Source strings comprise sequences of part-of-speech tags like noun, verb, etc. A
simple source model assigns a probability to a tag sequence tl .. •tm based on the prob-
abilities of the tag pairs inside it. Target strings are English sentences, e.g., wl .. . win.
The channel model assumes each tag is probabilistically replaced by a word (e.g., noun
by dog) without considering context. More concretely, we have:

• v total tags

• A bigram source model with v 2 parameters of the form b(t]t), where
P(t l . . . tin) "" b(tllboundary) • b(t2]tl) b(tn]tm-1) " b(boundary]tm)

• Information Sciences Institute, Marina del Rey, CA 90292

@ 1999 Association for Computational Linguistics

Computational Linguistics Volume 25, Number 4

• A substitution channel model with parameters of the form s(w]t), where
P(wl . . . Wmlh... tm) ~ S(Wllh)" S(W21t2)" . . ." S(Wraltm)

• an m-word text annotated with correct tags

• an m-word unannotated text

We can assign parts-of-speech to a previously unseen word sequence wl . . . Wm
by finding the sequence t l . . . tm that maximizes P (h . . . tmlWl... Wm). By Bayes' rule,
we can equivalently maximize P(h . . . tm)'P(wl.., wmlh. . , tin), which we can calculate
directly from the b and s tables above.

Three interesting complexity problems in the source-channel framework are:

• Can parameter values be induced from annotated text efficiently?

• Can optimal decodings be produced efficiently?

• Can parameter values be induced from unannotated text efficiently?

The first problem is solved in O(m) time for part-of-speech tagging--we simply
count tag pairs and word/ tag pairs, then normalize. The second problem seems to
require enumerating all O(v m) potential source sequences to find the best, but can
actually be solved in O(mv 2) time with dynamic programming. We turn to the third
problem in the context of another application: cryptanalysis.

3. S u b s t i t u t i o n C i p h e r s

In a substitution cipher, a plaintext message like HELLO WORLD is transformed into
a ciphertext message like EOPPX YXAPF via a fixed letter-substitution table. As with
tagging, we can assume an alphabet of v source tokens, a bigram source model, a
substitution channel model, and an m-token coded text.

If the coded text is annotated with corresponding English, then building source
and channel models is trivially O(m). Comparing the situation to part-of-speech tag-
ging:

• (Bad news.) Cryptanalysts rarely get such coded/decoded text pairs and
must employ "ciphertext-only" attacks using unannotated training data.

• (Good news.) It is easy to train a source model separately, on raw
unannotated English text that is unconnected to the ciphertext.

Then the problem becomes one of acquiring a channel model, i.e., a table s(fle) with
an entry for each code-letter/plaintext-letter pair. Starting with an initially uniform
table, we can use the estimation-maximization (EM) algorithm to iteratively revise
s(fle) so as to increase the probability of the observed corpus P(f). Figure 1 shows a
naive EM implementation that runs in O(mv m) time. There is an efficient O(mv 2) EM
implementation based on dynamic programming that accomplishes the same thing.
Once the s(fle) table has been learned, there is a similar O(mv 2) algorithm for optimal
decoding. Such methods can break English letter-substitution ciphers of moderate
size.

608

Knight Decoding Complexity

Given coded text f of length m, a plaintext vocabulary of v tokens, and a source model b:

1. set the s0Cle) table initially to be uniform

2. for several iterations do:

a ,

b.
C.

d.

set up a count table c0CI e) with zero entries
P(f) = 0
for all possible source texts e l . . . em (el drawn from vocabulary)

compute P(e) = b(ell boundary), b(boundary lem). [Ii~=2 b(eilei_l)
m compute P(fle) = I~j=l s(fjleJ)

P(f) += P(e). P(fle)
for all source texts e of length m

compute P(elf) = P(e)'P(fle)
P(f)

for j = 1 to m
c0~lej) += P(e~)

normalize c0Ci e) table to create a revised s0CI e)

Figure 1
A naive application of the EM algorithm to break a substitution cipher. It runs in O(mv m) time.

4. Machine Translation

In our discussion of substitution ciphers, we were on relatively sure ground the
channel model we assumed in decoding is actually the same one used by the cipher
writer for encoding. That is, we know that plaintext is converted to ciphertext, letter by
letter, according to some table. We have no such clear conception about h o w English
gets converted to French, a l though many theories exist. Brown et al. (1993) recently cast
some simple theories into a source-channel framework, using the bilingual Canadian
parl iament proceedings as training data. We may assume:

• v total English words.

• A bigram source model with V 2 parameters.

• Various subs t i tu t ion/permuta t ion channel models.

• A collection of bilingual sentence pairs (sentence lengths < m).

• A collection of monolingual French sentences (sentence lengths < m).

Bilingual texts seem to exhibit English words getting substi tuted with French ones,
though not one-for-one and not wi thout changing their order. These are impor tant
departures from the two applications discussed earlier.

In the main channel model of Brown et al. (1993), each English word token ei
in a source sentence is assigned a "fertility" @, which dictates how m an y French
words it will produce. These assignments are made stochastically according to a table
n(~le). Then actual French words are produced according to s(fie) and pe rmuted into
new positions according to a distortion table d(jli, m, 1). Here, j and i are absolute tar-
ge t / source word positions within a sentence, and m and I are ta rge t / source sentence
lengths.

Inducing n, s, and d parameter estimates is easy if we are given annotations in the
form of word alignments. An alignment is a set of connections be tween English and
French words in a sentence pair. In Brown et al. (1993), aligrtrnents are a symmet r i c - -
each French word is connected to exactly one English word.

609

Computational Linguistics Volume 25, Number 4

Given a collection of sentence pairs:

1. collect estimates for the ~(m]l) table directly from the data

2. set the s0e]e) table initially to be uniform

3. for several iterations do:

a .

b.

C.

set up a count table c(f]e) with zero entries
for each given sentence pair e, f with respective lengths I, m:

f o r a l = l t o l
f o r a2 = 1 to 1 /* select connections for a word alignment */

for am = 1 to l

compute P(al]e, f) - p(f' al]e)
P(f]e)

for j = 1 to m
c0~l%) += P(al . . . amle, f)

normalize c0~]ei) table to create new s(fi]ei)

m
1-Ij=, s~l%)

G'o ; = , ' m " • ~ , , - = , I - [j = , s~le,;)

Figure 2
Naive EM training for the Model 1 channel model.

Word-aligned data is usually not available, but large sets of unal igned bilin-
gual sentence pairs do sometimes exist. A single sentence pair will have [m possible
a l ignments- - for each French word position 1 . . . m, there is a choice of I English po-
sitions to connect to. A naive EM implementat ion will collect n, s, and d counts by
considering each alignment, but this is expensive. (By contrast, part-of-speech tagging
involves a single alignment, leading to O(m) training). Lacking a polynomial refor-
mulation, Brown et al. (1993) decided to collect counts only over a subset of likely
alignments. To bootstrap, they required some initial idea of what al ignments are rea-
sonable, so they began with several iterations of a simpler channel model (called
Model 1) that has nicer computat ional properties.

In the following description of Model 1, we represent an al igmnent formally as a
vector al am, with values aj ranging over English word positions 1 . . . I.

Model 1 Channel
Parameters: c(mll) and s(f[e).
Given a source sentence e of length I:

1. choose a target sentence length m according to ¢(mll)
2. for j = 1 to m, choose an English word posit ion aj according to the

uni form distribution over 1 . . . l
3. for j = 1 to m, choose a French word j~ according to s~]%)
4. read off f l ...fro as the target sentence

Because the same e may produce the same f by means of m an y different align-
ments, we must sum over all of them to obtain P(fle):

1 l 1 l m
P(fl e) = c(mll) T~ Y~al=l ~a2=l """ Y~am=l I]j=l s(fjleai)

Figure 2 illustrates naive EM training for Model 1. If we compute P(fle) once per
iteration, outside the "for a" loops, then the complexi ty is O(ml m) per sentence pair,
per iteration.

610

Knight Decoding Complexity

More efficient O(lm) training was devised by Brown et al. (1993). Instead of pro-
cessing each al ignment separately, they modified the algori thm in Figure 2 as follows:

b. for each given sentence pair e, f of respective lengths l, m:
for j = 1 to m

sum = 0
for i = 1 to I

sum += s(fjlei)
for i = 1 to I

c(fjlei) += s(fjlei) / sum

This works because of the algebraic trick that the port ion of P(fle) we originally wrote
1 1 m e m as ~a l= , " "" Y~am=l 1-Ij=l S(J~[aj) can be rewrit ten as YIj=I Y~I=I s(fjlei)"

We next consider decoding. We seek a string e that maximizes P(elf), or equiva-
lently maximizes P(e) • P(fle). A naive algori thm would evaluate all possible source
strings, whose lengths are potentially unbounded . If we limit our search to strings
at most twice the length m of our observed French, then we have a naive O(m2v 2m)
method:

Given a string f of length m
1. for all source strings e of length I _ 2m:

a. compute P(e) = b(el I boundary) - b (boundary Iet) " I - l l i=2 b(eilei-1)
m

b. compute P(fle) = c(mll) ~ l-[j=1 ~1i=1 s(fjlei)
c. compute P(elf) ,-~ P(e) • P(fle)
d. if P(elf) is the best so far, remember it

2. print best e

We may now hope to find a way of reorganizing this computat ion, using tricks like
the ones above. Unfortunately, we are unlikely to succeed, as we now show. For
proof purposes, we define our optimization problem with an associated yes-no decision
problem:

Definition: M1-OPTIMIZE
Given a string f of length m and a set of parameter tables (b, e, s), return a string e of
length I < 2m that maximizes P(elf), or equivalently maximizes

1
P(e) - P(fle) = b(el I boundary) -b (bounda ry I el) • 1 - [i = 2 b(eilei-1)

• c (m l l) ± v i m x-,! l m l l j = l / ' i = 1 s (f j l e i)

Definition: M1-DECIDE
Given a string f of length m, a set of parameter tables (b, e, s), and a real number k,
does there exist a string e of length l < 2m such that P(e) • P(fle) > k?

We will leave the relationship between these two problems somewhat open and
intuitive, not ing only that M1-DECIDE's intractability does not bode well for M1-
OPTIMIZE.

611

Computational Linguistics Volume 25, Number 4

Theorem
M1-DECIDE is NP-complete.

To show inclusion in NP, we need only nondeterministically choose e for any
problem instance and verify that it has the requisite P(e) • P(fle) in O(m 2) time. Next
we give separate polynomial-time reductions from two NP-complete problems. Each
reduction highlights a different source of complexity.

4.1 Reduction 1 (from Hamilton Circuit Problem)
The Hamil ton Circuit Problem asks: given a directed graph G with vertices labeled
0 , . . . , n , does G have a path that visits each vertex exactly once and returns to its
starting point? We transform any Hamil ton Circuit instance into an M1-DECIDE in-
stance as follows. First, we create a French vocabulary fl fn, associating word fi
with vertex i in the graph. We create a slightly larger English vocabulary e0 en,
with e0 serving as the "boundary" word for source model scoring. Ultimately, we will
ask M1-DECIDE to decode the string f l . . . f n .

We create channel model tables as follows:

s~.lei) = {10 i f i = j
otherwise

¢(mll) = {10 i f l = m
otherwise

These tables ensure that any decoding e off1 . . . fn will contain the n words el , en
(in some order). We now create a source model. For every pair (i,j) such that 0 G i ,j G n:

= ~ l / n if graph G contains an edge from vertex i to vertex j
b(ej[ei)

to otherwise

Finally, we set k to zero. To solve a Hamil ton Circuit Problem, we transform it as
above (in quadratic time), then invoke M1-DECIDE with inputs b, c, s, k, and f l . . . fm .

If M1-DECIDE returns yes, then there must be some string e wi th both P(e) and
P(fle) nonzero. The channel model lets us conclude that if P(f[e) is nonzero, then e
contains the n words e l , . . . , en in some order. If P(e) is nonzero, then every bigram in
e (including the two boundary bigrams involving e0) has nonzero probability. Because
each English word in e corresponds to a unique vertex, we can use the order of words
in e to produce an ordering of vertices in G. We append vertex 0 to the beginning
and end of this list to produce a Hamil ton Circuit. The source model construction
guarantees an edge between each vertex and the next.

If M1-DECIDE returns no, then we know that every string e includes at least one
zero value in the computat ion of either P(e) or P(fle). From any proposed Hamil ton
Circuit--i.e., some ordering of vertices in G - - w e can construct a string e using the
same ordering. This e will have P(f]e) = 1 according to the channel model. Therefore,
P(e) = 0. By the source model, this can only happen if the proposed "circuit" is actually
broken somewhere. So no Hamil ton Circuit exists.

Figure 3 illustrates the intuitive correspondence between selecting a good word
order and finding a Hamil ton Circuit. We note that Brew (1992) discusses the NP-
completeness of a related problem, that of finding some permutat ion of a string that
is acceptable to a given context-free grammar. Both of these results deal with decision
problems. Returning to optimization, we recall another circuit task called the Traveling

612

Knight Decoding Complexity

my

b°uid~N ~ r ~ ' / ~ ~

falls Thursday
Figure 3
Selecting a good source word order is like solving the Hamilton Circuit Problem. If we assume
that the channel model offers deterministic, word-for-word translations, then the bigram
source model takes responsibility for ordering them. Some word pairs in the source language
may be illegal. In that case, finding a legal word ordering is like finding a complete circuit in a
graph. (In the graph shown above, a sample circuit is boundary --, this ---* year ~ comma ~ m y
--* bir thday --~ fal ls --~ on ---* a --+ Thursday ~ boundary). If word pairs have probabilities attached
to them, then word ordering resembles the finding the least-cost circuit, also known as the
Traveling Salesman Problem.

Salesman Problem. It introduces edge costs dq and seeks a minimum-cost circuit. By
viewing edge costs as log probabilities, we can cast the Traveling Salesman Problem
as one of optimizing P(e), that is, of finding the best source word order in Model 1
decoding.

4.2 Reduction 2 (from Minimum Set Cover Problem)
The Min imum Set Cover Problem asks: given a collection C of subsets of finite set S,
and integer n, does C contain a cover for S of size ~ n, i.e., a subcollection whose
union is S? We now transform any instance of Min imum Set Cover into an instance
of M1-DECIDE, using polynomial time. This time, we assume a rather neutral source
model in which all strings of a given length are equally likely, but we construct a more
complex channel.

We first create a source word ei for each subset in C, and let gi be the size of
that subset. We create a table b(e i le j) with values set uni formly to the reciprocal of the
source vocabulary size (i.e., the number of subsets in C).

Assuming S has m elements, we next create target words fl fm corresponding
to each of those elements, and set up channel model tables as follows:

if the element in S corresponding to j~ is also in the subset
corresponding to ei

otherwise

¢(mll) = {10 i f l ~ n
otherwise

f l i f l > n ~(m
otherwise

Finally, we set k to zero. This completes the reduction. To solve an instance of
Min imum Set Cover in polynomial time, we t ransform it as above, then call M1-
DECIDE with inputs b, c, s, k, and the words fl fm in any order.

613

Computational Linguistics Volume 25, Number 4

obtained

m~

however

)
ted

J ~d left left the meal
Figure 4
Selecting a concise set of source words is like solving the Minimum Set Cover Problem. A
channel model with overlapping, one-to-many dictionary entries will typically license many
decodings. The source model may prefer short decodings over long ones. Searching for a
decoding of length _< n is difficult, resembling the problem of covering a finite set with a small
collection of subsets. In the example shown above, the smallest acceptable set of source words
is {and, cooked, however, left, comma, period}.

If M1-DECIDE returns yes, then some decoding e wi th P(e) • P(f]e) > 0 m u s t exist.
We k n o w that e mus t contain n or fewer w o r d s - - o t h e r w i s e P(f[e) = 0 by the c table.
Fur thermore , the s table tells us that every w o r d fj is covered by at least one English
word in e. Through the one-to-one correspondence be tween e lements of e and C, we
p roduce a set cover of size G n for S.

Likewise, if M1-DECIDE returns no, then all decodings have P(e) • P(f[e) = 0.
Because there are no zeroes in the source table b, every e has P(f[e) = 0. Therefore
either (1) the length of e exceeds n, or (2) s o m e f j is left tmcovered by the words in e.
Because source words cover target words in exactly the same fashion as e lements of C
cover S, we conclude that there is no set cover of size < n for S. Figure 4 illustrates the
intuitive correspondence be tween source word selection and m i n i m u m set covering.

5. D i s c u s s i o n

The two proofs point up separate factors in MT decoding complexity. One is word-
order selection. But even if any word order will do, there is still the p rob lem of picking
a concise decoding in the face of over lapp ing bi l ingual dict ionary entries. The former
is more closely tied to the source model , and the latter to the channel model , t hough
the complexi ty arises f rom the interaction of the two.

We should note that Model 1 is an intentionally s imple translation model , one
whose p r ima ry pu rpose in machine translat ion has been to al low boo ts t rapp ing into
more complex translation models (e.g., IBM Models 2-5). It is easy to show that the
intractability results also app ly to s tronger " fer t i l i ty /d is tor t ion" models ; we assign
zero probabi l i ty to fertilities other than 1, and we set up un i fo rm distort ion tables.
Simple translation models like Model 1 find more direct use in other appl icat ions
(e.g., lexicon construction, id iom detection, psychological norms, and cross- language
informat ion retrieval), so their computa t iona l proper t ies are of wider interest.

614

Knight Decoding Complexity

The proofs we presented are based on a worst-case analysis. Real s, e, and b ta-
bles may have properties that permit faster optimal decoding than the artificial tables
constructed above. It is also possible to devise approximation algorithms like those de-
vised for other NP-complete problems. To the extent that word ordering is like solving
the Traveling Salesman Problem, it is encouraging substantial progress continues to be
made on Traveling Salesman algorithms. For example, it is often possible to get within
two percent of the optimal tour in practice, and some researchers have demonstrated
an optimal tour of over 13,000 U.S. cities. (The latter experiment relied on things like
distance symmetry and the triangle inequality constraint, however, which do not hold
in word ordering.) So far, statistical translation research has either opted for heuristic
beam-search algorithms or different channel models. For example, some researchers
avoid bag generation by preprocessing bilingual texts to remove word-order differ-
ences, while others adopt channels that eliminate syntactically unlikely alignments.

Finally, expensive decoding also suggests expensive training from unannotated
(monolingual) texts, which presents a challenging bottleneck for extending statistical
machine translation to language pairs and domains where large bilingual corpora do
not exist.

References
Brew, Chris. 1992. Letting the cat out of the

bag: Generation for shake-and-bake MT.
In Proceedings of the 14th International
Conference on Computational Linguistics
(COLING), pages 610-616, Nantes, France,
August.

Brown, Peter, Stephen Della-Pietra, Vincent
Della-Pietra, and Robert Mercer. 1993. The

mathematics of statistical machine
translation: Parameter estimation.
Computational Linguistics, 19(2):263-311.

Church, Kenneth. 1988. A stochastic parts
program and noun phrase parser for
unrestricted text. In Proceedings of the 2nd
Conference on Applied Natural Language
Processing, pages 136-143, Austin, TX,
June.

615

