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Statistical machine translation is a relatively new approach to the long-standing problem of trans- 
lating human languages by computer. Current statistical techniques uncover translation rules 
from bilingual training texts and use those rules to translate new texts. The general architecture 
is the source-channel model: an English string is statistically generated (source), then statistically 
transformed into French (channel). In order to translate (or "decode") a French string, we look 
for the most likely English source. We show that for the simplest form of statistical models, this 
problem is NP-complete, i.e., probably exponential in the length of the observed sentence. We 
trace this complexity to factors not present in other decoding problems. 

1. I n t r o d u c t i o n  

Statistical models are widely used in attacking natural language problems. The source -  
c h a n n e l  framework is especially popular, finding applications in part-of-speech tag- 
ging, accent restoration, transliteration, speech recognition, and many other areas. In 
this framework, we build an underspecified model of how certain structures (such as 
strings) are generated and transformed. We then instantiate the model through training 
on a database of sample structures and transformations. 

Recently, Brown et al. (1993) built a source-channel model of translation between 
English and French. They assumed that English strings are produced according to some 
stochastic process (source model) and transformed stochastically into French strings 
(channel model). To translate French to English, it is necessary to find an English 
source string that is likely according to the models. With a nod to its cryptographic 
antecedents, this kind of translation is called decoding. This paper looks at decoding 
complexity. 

2. P a r t - o f - S p e e c h  Tagg ing  

The prototype source-channel application in natural language is part-of-speech tagging 
(Church 1988). We review it here for purposes of comparison with machine translation. 

Source strings comprise sequences of part-of-speech tags like noun, verb, etc. A 
simple source model assigns a probability to a tag sequence tl .. •tm based on the prob- 
abilities of the tag pairs inside it. Target strings are English sentences, e.g., wl .. .  win. 
The channel model assumes each tag is probabilistically replaced by a word (e.g., noun 
by dog) without considering context. More concretely, we have: 

• v total tags 

• A bigram source model with v 2 parameters of the form b(t]t), where 
P( t l . . .  tin) "" b(tllboundary) • b(t2]tl) . . . . .  b(tn]tm-1) " b(boundary]tm) 
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• A substitution channel model with parameters of the form s(w]t), where 
P(wl . . .  Wmlh... tm) ~ S(Wllh)" S(W21t2)" . . ." S(Wraltm) 

• an m-word text annotated with correct tags 

• an m-word unannotated text 

We can assign parts-of-speech to a previously unseen word sequence wl . . .  Wm 
by finding the sequence t l . . .  tm that maximizes P (h . . .  tmlWl... Wm). By Bayes' rule, 
we can equivalently maximize P(h . . .  tm)'P(wl.., wmlh. . ,  tin), which we can calculate 
directly from the b and s tables above. 

Three interesting complexity problems in the source-channel framework are: 

• Can parameter values be induced from annotated text efficiently? 

• Can optimal decodings be produced efficiently? 

• Can parameter values be induced from unannotated text efficiently? 

The first problem is solved in O(m) time for part-of-speech tagging--we simply 
count tag pairs and word/ tag  pairs, then normalize. The second problem seems to 
require enumerating all O(v m) potential source sequences to find the best, but can 
actually be solved in O(mv 2) time with dynamic programming. We turn to the third 
problem in the context of another application: cryptanalysis. 

3. S u b s t i t u t i o n  C i p h e r s  

In a substitution cipher, a plaintext message like HELLO WORLD is transformed into 
a ciphertext message like EOPPX YXAPF via a fixed letter-substitution table. As with 
tagging, we can assume an alphabet of v source tokens, a bigram source model, a 
substitution channel model, and an m-token coded text. 

If the coded text is annotated with corresponding English, then building source 
and channel models is trivially O(m). Comparing the situation to part-of-speech tag- 
ging: 

• (Bad news.) Cryptanalysts rarely get such coded/decoded text pairs and 
must employ "ciphertext-only" attacks using unannotated training data. 

• (Good news.) It is easy to train a source model separately, on raw 
unannotated English text that is unconnected to the ciphertext. 

Then the problem becomes one of acquiring a channel model, i.e., a table s(fle ) with 
an entry for each code-letter/plaintext-letter pair. Starting with an initially uniform 
table, we can use the estimation-maximization (EM) algorithm to iteratively revise 
s(fle ) so as to increase the probability of the observed corpus P(f). Figure 1 shows a 
naive EM implementation that runs in O(mv m) time. There is an efficient O(mv 2) EM 
implementation based on dynamic programming that accomplishes the same thing. 
Once the s(fle ) table has been learned, there is a similar O(mv 2) algorithm for optimal 
decoding. Such methods can break English letter-substitution ciphers of moderate 
size. 
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Given coded text f of length m, a plaintext vocabulary of v tokens, and a source model b: 

1. set the s0Cle) table initially to be uniform 

2. for several iterations do: 

a ,  

b. 
C. 

d. 

set up a count table c0CI e) with zero entries 
P(f) = 0 
for all possible source texts e l . . .  em (el drawn from vocabulary) 

compute P(e) = b(ell boundary), b(boundary lem). [Ii~=2 b(eilei_l) 
m compute P(fle) = I~j=l s(fjleJ) 

P(f) += P(e). P(fle) 
for all source texts e of length m 

compute P(elf ) = P(e)'P(fle) 
P(f) 

for j = 1 to m 
c0~lej) += P(e~) 

normalize c0Ci e) table to create a revised s0CI e) 

Figure 1 
A naive application of the EM algorithm to break a substitution cipher. It runs in O(mv m) time. 

4. Machine Translation 

In our  discussion of substitution ciphers, we were on relatively sure ground the 
channel model  we assumed in decoding is actually the same one used by  the cipher 
writer  for encoding. That is, we know that plaintext is converted to ciphertext, letter by  
letter, according to some table. We have no such clear conception about  h o w  English 
gets converted to French, a l though many  theories exist. Brown et al. (1993) recently cast 
some simple theories into a source-channel framework,  using the bilingual Canadian 
parl iament  proceedings as training data. We may  assume: 

• v total English words.  

• A bigram source model  with V 2 parameters.  

• Various subs t i tu t ion/permuta t ion  channel models.  

• A collection of bilingual sentence pairs (sentence lengths < m). 

• A collection of monolingual  French sentences (sentence lengths < m). 

Bilingual texts seem to exhibit English words  getting substi tuted with French ones, 
though not  one-for-one and not  wi thout  changing their order. These are impor tant  
departures  from the two applications discussed earlier. 

In the main channel model  of Brown et al. (1993), each English word  token ei 
in a source sentence is assigned a "fertility" @, which dictates how m an y  French 
words  it will produce.  These assignments are made  stochastically according to a table 
n(~le ). Then actual French words  are produced  according to s(fie ) and pe rmuted  into 
new positions according to a distortion table d(jli, m, 1). Here, j and i are absolute tar- 
ge t / source  word  positions within a sentence, and m and I are ta rge t / source  sentence 
lengths. 

Inducing n, s, and d parameter  estimates is easy if we are given annotations in the 
form of word  alignments. An alignment is a set of connections be tween English and 
French words  in a sentence pair. In Brown et al. (1993), aligrtrnents are a symmet r i c - -  
each French word  is connected to exactly one English word.  
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Given a collection of sentence pairs: 

1. collect estimates for the ~(m]l) table directly from the data 

2. set the s0e]e) table initially to be uniform 

3. for several iterations do: 

a .  

b. 

C. 

set up a count table c(f]e) with zero entries 
for each given sentence pair e, f with respective lengths I, m: 

f o r a l = l t o l  
f o r  a2 = 1 to 1 /* select connections for a word alignment */ 

for am = 1 to l 

compute P(al ...... ]e, f) - p(f' al ...... ]e) 
P(f]e) 

for j = 1 to m 
c0~l%) += P(al . . .  amle, f) 

normalize c0~]ei ) table to create new s(fi]ei) 

m 
1-Ij=, s~l%) 

G'o ;  = ,  ' m " • ~ , , - = ,  I - [ j = ,  s~le,;) 

Figure 2 
Naive EM training for the Model 1 channel model. 

Word-aligned data is usually not  available, but  large sets of unal igned bilin- 
gual sentence pairs do sometimes exist. A single sentence pair will have [m possible 
a l ignments- - for  each French word  position 1 . . .  m, there is a choice of I English po- 
sitions to connect to. A naive EM implementat ion will collect n, s, and d counts by  
considering each alignment,  but  this is expensive. (By contrast, part-of-speech tagging 
involves a single alignment,  leading to O(m) training). Lacking a polynomial  refor- 
mulation, Brown et al. (1993) decided to collect counts only over  a subset of likely 
alignments. To bootstrap, they required some initial idea of what  al ignments are rea- 
sonable, so they began with several iterations of a simpler channel model  (called 
Model  1) that has nicer computat ional  properties.  

In the following description of Model  1, we represent  an al igmnent  formally as a 
vector al . . . . .  am, with values aj ranging over  English word  positions 1 . . .  I. 

Model  1 Channel  
Parameters:  c(mll ) and s(f[e). 
Given a source sentence e of length I: 

1. choose a target sentence length m according to ¢(mll ) 
2. for j = 1 to m, choose an English word  posit ion aj according to the 

uni form distribution over  1 . . .  l 
3. for j = 1 to m, choose a French word  j~ according to s~]%) 
4. read off f l  ...fro as the target sentence 

Because the same e may  produce  the same f by  means  of m an y  different align- 
ments,  we must  sum over all of them to obtain P(fle): 

1 l 1 l m 
P(fl e) = c(mll) T~ Y~al=l ~a2=l """ Y~am=l I]j=l s(fjleai) 

Figure 2 illustrates naive EM training for Model  1. If we compute  P(fle) once per  
iteration, outside the "for a" loops, then the complexi ty is O(ml m) per sentence pair, 
per  iteration. 
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More efficient O(lm) training was devised by  Brown et al. (1993). Instead of pro- 
cessing each al ignment separately, they modified the algori thm in Figure 2 as follows: 

b. for each given sentence pair e, f of respective lengths l, m: 
for j = 1 to m 

sum = 0 
for i = 1 to I 

sum += s(fjlei) 
for i = 1 to I 

c(fjlei ) += s(fjlei ) / sum 

This works because of the algebraic trick that the port ion of P(fle) we originally wrote 
1 1 m e m as ~a l= , "  "" Y~am=l 1-Ij=l S(J~[ aj) can be rewrit ten as YIj=I Y~I=I s(fjlei)" 

We next consider decoding. We seek a string e that maximizes P(elf), or equiva- 
lently maximizes P(e) • P(fle). A naive algori thm would  evaluate all possible source 
strings, whose lengths are potentially unbounded .  If we limit our  search to strings 
at most  twice the length m of our  observed French, then we have a naive O(m2v 2m) 
method: 

Given a string f of length m 
1. for all source strings e of length I _ 2m: 

a. compute  P(e) = b(el I boundary)  - b (boundary  Iet) " I - l l i=2 b(eilei-1) 
m 

b. compute  P(fle) = c(mll ) ~ l-[j=1 ~1i=1 s(fjlei) 
c. compute  P(elf) ,-~ P(e) • P(fle) 
d. if P(elf ) is the best so far, remember  it 

2. print  best e 

We may  now hope to find a way  of reorganizing this computat ion,  using tricks like 
the ones above. Unfortunately, we are unlikely to succeed, as we now show. For 
proof  purposes,  we define our  optimization problem with an associated yes-no decision 
problem: 

Definition: M1-OPTIMIZE 
Given a string f of length m and a set of parameter  tables (b, e, s), return a string e of 
length I < 2m that maximizes P(elf), or equivalently maximizes 

1 
P(e) - P(fle) = b(el I boundary)  -b (bounda ry  I el ) • 1 - [ i = 2  b(eilei-1) 

• c ( m l l  ) ± v i  m x-,! l m l l j = l  / ' i = 1  s ( f j l e i )  

Definition: M1-DECIDE 
Given a string f of length m, a set of parameter  tables (b, e, s), and a real number  k, 
does there exist a string e of length l < 2m such that P(e) • P(fle) > k? 

We will leave the relationship between these two problems somewhat  open and 
intuitive, not ing only that M1-DECIDE's intractability does not  bode well for M1- 
OPTIMIZE. 
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Theorem 
M1-DECIDE is NP-complete. 

To show inclusion in NP, we need only nondeterministically choose e for any 
problem instance and verify that it has the requisite P(e) • P(fle) in O(m 2) time. Next 
we give separate polynomial-time reductions from two NP-complete problems. Each 
reduction highlights a different source of complexity. 

4.1 Reduction 1 (from Hamilton Circuit Problem) 
The Hamil ton Circuit Problem asks: given a directed graph G with vertices labeled 
0 , . . . , n ,  does G have a path that visits each vertex exactly once and returns to its 
starting point? We transform any Hamil ton Circuit instance into an M1-DECIDE in- 
stance as follows. First, we create a French vocabulary fl  . . . . .  fn, associating word  fi 
with vertex i in the graph. We create a slightly larger English vocabulary e0 . . . . .  en, 
with e0 serving as the "boundary"  word for source model  scoring. Ultimately, we will 
ask M1-DECIDE to decode the string f l . . . f n .  

We create channel model  tables as follows: 

s~.lei) = {10 i f i = j  
otherwise 

¢(mll) = {10 i f l = m  
otherwise 

These tables ensure that any decoding e off1 . . . fn will contain the n words el . . . .  , en 
(in some order). We now create a source model. For every pair (i,j) such that 0 G i ,j  G n: 

= ~ l / n  if graph G contains an edge from vertex i to vertex j 
b(ej[ei) 

to otherwise 

Finally, we set k to zero. To solve a Hamil ton Circuit Problem, we transform it as 
above (in quadratic time), then invoke M1-DECIDE with inputs b, c, s, k, and f l . . . fm .  

If M1-DECIDE returns yes, then there must  be some string e wi th  both P(e) and 
P(fle) nonzero. The channel model  lets us conclude that if P(f[e) is nonzero, then e 
contains the n words e l , . . . ,  en in some order. If P(e) is nonzero, then every bigram in 
e (including the two boundary  bigrams involving e0) has nonzero probability. Because 
each English word in e corresponds to a unique vertex, we can use the order of words 
in e to produce an ordering of vertices in G. We append vertex 0 to the beginning 
and end of this list to produce a Hamil ton Circuit. The source model construction 
guarantees an edge between each vertex and the next. 

If M1-DECIDE returns no, then we know that every string e includes at least one 
zero value in the computat ion of either P(e) or P(fle). From any proposed Hamil ton 
Circuit--i.e., some ordering of vertices in G - - w e  can construct a string e using the 
same ordering. This e will have P(f]e) = 1 according to the channel model. Therefore, 
P(e) = 0. By the source model, this can only happen if the proposed "circuit" is actually 
broken somewhere. So no Hamil ton Circuit exists. 

Figure 3 illustrates the intuitive correspondence between selecting a good word  
order and finding a Hamil ton Circuit. We note that Brew (1992) discusses the NP- 
completeness of a related problem, that of finding some permutat ion of a string that 
is acceptable to a given context-free grammar. Both of these results deal with decision 
problems. Returning to optimization, we recall another circuit task called the Traveling 
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my 

b°uid~N ~ r ~ ' / ~ ~  

falls Thursday 
Figure 3 
Selecting a good source word order is like solving the Hamilton Circuit Problem. If we assume 
that the channel model offers deterministic, word-for-word translations, then the bigram 
source model takes responsibility for ordering them. Some word pairs in the source language 
may be illegal. In that case, finding a legal word ordering is like finding a complete circuit in a 
graph. (In the graph shown above, a sample circuit is boundary  --, this ---* year ~ comma ~ m y  
--* bir thday --~ fal ls  --~ on ---* a --+ Thursday  ~ boundary).  If word pairs have probabilities attached 
to them, then word ordering resembles the finding the least-cost circuit, also known as the 
Traveling Salesman Problem. 

Salesman Problem. It introduces edge costs dq and seeks a minimum-cost  circuit. By 
viewing edge costs as log probabilities, we can cast the Traveling Salesman Problem 
as one of optimizing P(e), that is, of finding the best source word  order  in Model  1 
decoding. 

4.2 Reduction 2 (from Minimum Set Cover Problem) 
The Min imum Set Cover Problem asks: given a collection C of subsets of finite set S, 
and integer n, does C contain a cover for S of size ~ n, i.e., a subcollection whose  
union is S? We now transform any instance of Min imum Set Cover into an instance 
of M1-DECIDE, using polynomial  time. This time, we assume a rather neutral  source 
model  in which all strings of a given length are equally likely, but  we construct a more  
complex channel. 

We first create a source word  ei for each subset in C, and let gi  be the size of 
that subset. We create a table b(e i le j )  with values set uni formly to the reciprocal of the 
source vocabulary size (i.e., the number  of subsets in C). 

Assuming S has m elements, we next  create target words  fl  . . . . .  fm  corresponding 
to each of those elements, and set up  channel model  tables as follows: 

if the element  in S corresponding to j~ is also in the subset 
corresponding to ei 

otherwise 

¢(mll) = {10 i f l ~ n  
otherwise 

f l  i f  l > n  ~(m 
otherwise 

Finally, we set k to zero. This completes the reduction. To solve an instance of 
Min imum Set Cover  in polynomial  time, we t ransform it as above, then call M1- 
DECIDE with inputs b, c, s, k, and the words  fl  . . . . .  fm in any order. 
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obtained 

m~ 

however 

) 
ted 

J . . . . .  ~d left left the meal 
Figure 4 
Selecting a concise set of source words is like solving the Minimum Set Cover Problem. A 
channel model with overlapping, one-to-many dictionary entries will typically license many 
decodings. The source model may prefer short decodings over long ones. Searching for a 
decoding of length _< n is difficult, resembling the problem of covering a finite set with a small 
collection of subsets. In the example shown above, the smallest acceptable set of source words 
is {and, cooked, however, left, comma, period}. 

If M1-DECIDE returns yes, then some decoding e wi th  P(e) • P(f]e) > 0 m u s t  exist. 
We k n o w  that  e mus t  contain n or fewer  w o r d s - - o t h e r w i s e  P(f[e) = 0 by  the c table. 
Fur thermore ,  the s table tells us that  every  w o r d  fj is covered by  at least one English 
word  in e. Through  the one-to-one correspondence  be tween  e lements  of e and  C, we  
p roduce  a set cover  of size G n for S. 

Likewise, if M1-DECIDE returns no, then all decodings  have  P(e) • P(f[e) = 0. 
Because there are no zeroes in the source table b, every  e has P(f[e) = 0. Therefore 
either (1) the length of e exceeds n, or (2) s o m e f j  is left tmcovered  by  the words  in e. 
Because source words  cover  target  words  in exactly the same fashion as e lements  of C 
cover  S, we  conclude that there is no set cover  of size < n for S. Figure 4 illustrates the 
intuitive correspondence  be tween  source word  selection and  m i n i m u m  set covering. 

5. D i s c u s s i o n  

The two proofs  point  up  separate  factors in MT decoding complexity. One is word-  
order  selection. But even  if any  word  order  will do, there is still the p rob lem of picking 
a concise decoding in the face of over lapp ing  bi l ingual  dict ionary entries. The former  
is more  closely tied to the source model ,  and  the latter to the channel  model ,  t hough  
the complexi ty  arises f rom the interaction of the two. 

We should note that  Model  1 is an intentionally s imple  translation model ,  one 
whose  p r ima ry  pu rpose  in machine  translat ion has  been  to al low boo ts t rapp ing  into 
more  complex translation models  (e.g., IBM Models  2-5). It is easy to show that  the 
intractability results also app ly  to s tronger  " fer t i l i ty /d is tor t ion"  models ;  we  assign 
zero probabi l i ty  to fertilities other than  1, and  we set up  un i fo rm distort ion tables. 
Simple translation models  like Model  1 find more  direct use in other appl icat ions 
(e.g., lexicon construction, id iom detection, psychological  norms,  and  cross- language 
informat ion retrieval), so their computa t iona l  proper t ies  are of wider  interest. 
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The proofs we presented are based on a worst-case analysis. Real s, e, and b ta- 
bles may have properties that permit faster optimal decoding than the artificial tables 
constructed above. It is also possible to devise approximation algorithms like those de- 
vised for other NP-complete problems. To the extent that word ordering is like solving 
the Traveling Salesman Problem, it is encouraging substantial progress continues to be 
made on Traveling Salesman algorithms. For example, it is often possible to get within 
two percent of the optimal tour in practice, and some researchers have demonstrated 
an optimal tour of over 13,000 U.S. cities. (The latter experiment relied on things like 
distance symmetry and the triangle inequality constraint, however, which do not hold 
in word ordering.) So far, statistical translation research has either opted for heuristic 
beam-search algorithms or different channel models. For example, some researchers 
avoid bag generation by preprocessing bilingual texts to remove word-order differ- 
ences, while others adopt channels that eliminate syntactically unlikely alignments. 

Finally, expensive decoding also suggests expensive training from unannotated 
(monolingual) texts, which presents a challenging bottleneck for extending statistical 
machine translation to language pairs and domains where large bilingual corpora do 
not exist. 
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