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We synthesize work on parsing algorithms, deductive parsing, and the theory of algebra applied 
to formal languages into a general system for describing parsers. Each parser performs abstract 
computations using the operations of a semiring. The system allows a single, simple representation 
to be used for describing parsers that compute recognition, derivation forests, Viterbi, n-best, 
inside values, and other values, simply by substituting the operations of different semirings. We 
also show how to use the same representation, interpreted differently, to compute outside values. 
The system can be used to describe a wide variety of parsers, including Earley's algorithm, tree 
adjoining grammar parsing, Graham Harrison Ruzzo parsing, and prefix value computation. 

1. Introduct ion  

For a given grammar and string, there are many interesting quantities we can compute. 
We can determine whether the string is generated by the grammar; we can enumerate 
all of the derivations of the string; if the grammar is probabilistic, we can compute the 
inside and outside probabilities of components of the string. Traditionally, a different 
parser description has been needed to compute each of these values. For some parsers, 
such as CKY parsers, all of these algorithms (except for the outside parser) strongly 
resemble each other. For other parsers, such as Earley parsers, the algorithms for 
computing each value are somewhat different, and a fair amount of work can be 
required to construct each one. We present a formalism for describing parsers such 
that a single simple description can be used to generate parsers that compute all of 
these quantities and others. This will be especially useful for finding parsers for outside 
values, and for parsers that can handle general grammars, like Earley-style parsers. 

Although our description format is not limited to context-free grammars (CFGs), 
we will begin by considering parsers for this common formalism. The input string will 
be denoted wlw2.. .  Wn. We will refer to the complete string as the sentence. A CFG G 
is a 4-tuple (N, ~, R, S) where N is the set of nonterminals including the start symbol 
S, ~ is the set of terminal symbols, and R is the set of rules, each of the form A --* a 
for A c N and a E (N U ~)*. We will use the symbol ~ for immediate derivation and 

for its reflexive, transitive closure. 
We will illustrate the similarity of parsers for computing different values using 

the CKY algorithm as an example. We can write this algorithm in its iterative form 
as shown in Figure 1. Here, we explicitly construct a Boolean chart, chart[1..n, 1..IN I, 
1..n + 1]. Element chart[i,A,j] contains TRUE if and only if A G wi . . .  wj-1. The algo- 
rithm consists of a first set of loops to handle the singleton productions, a second set of 
loops to handle the binary productions, and a return of the start symbol's chart entry. 

Next, we consider probabilistic grammars, in which we associate a probability 
with every rule, P(A --* a). These probabilities can be used to associate a probability 
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boolean chart[1..n, 1..IN I, 1..n+1] := FALSE; 
for s := 1 to n/*  start position */ 

for each rule A -+ ws c R 
chart[s, A, s+ l ]  := TRUE; 

for l := 2 to n /*  length, shortest to longest */ 
for s := 1 to n- l+1/*s tar tpos i t ion  */ 

for t := 1 to / - 1/* split length */ 
for each rule A -+ B C  ¢ R 

/* extra TRUE for expository purposes */ 
chart[s, A, s.l.l] := chart[s, A, s+l] V 

(chart[s, B, s + t] A chart[s ÷ t, C, s + l] A TRUE); 
re turn  chart[l, S, n+ 1]; 
Figure 1 
CKY recognition algorithm. 

float chart[1..n, 1..IN[, 1..n÷1] := 0; 
for s := I to n/*  start position */ 

for each rule A --+ ws E R 
chart[s, A, s+ l ]  := P (A  --+ ws); 

for / := 2 to n /*  length, shortest to longest */ 
for s := I to n - l +  l /* start position */ 

for t := 1 to 1 - 1/* split length */ 
for each rule A -+ B C  c R 

chart[s, A, s+l] := chart[s, A, s+l] + 
(chart[s, B, s+t] x chart[s+t, C, s+l] x P ( A  -+ BC));  

return chart[l, S, n+ 1]; 

Figure 2 
CKY inside algorithm. 

with a particular derivation, equal to the produc t  of the rule probabilities used in the 

derivation, or to associate a probabil i ty with a set of derivations, A ~ wi. • • wj-1 equal 
to the sum of the probabilities of the individual  derivations. We call this latter prob- 
ability the inside probabil i ty of i ,A,j .  We can rewrite the CKY algori thm to compute  
the inside probabilities, as shown in Figure 2 (Baker 1979; Lari and Young 1990). 

Notice how similar the inside algori thm is to the recognition algorithm: essentially, 
all that has been done is to substitute + for V, x for A, and P(A ~ ws) and P(A ~ BC) 
for TRUE. For many  parsing algorithms, this, or a similarly simple modification, is all 
that is needed  to create a probabilistic version of the algorithm. On the other hand,  a 
simple substi tution is not  always sufficient. To give a trivial example,  if in the CKY 
recognition algori thm we had wri t ten 

chart[s,A,s÷l] := chart[s,A,s÷l] V chart[s,B,s÷t] A chart[s+t,C,s÷l]; 

instead of the less natural  

chart[s, A, s÷l] := chart[s,A, s,l,l] V chart[s, B, s+t] A chart[s+t, C, s-t-l] A TRUE; 

larger changes would  be necessary to create the inside algorithm. 
Besides recognition, four other quantities are commonly  computed  by  parsing 

algorithms: derivat ion forests, Viterbi scores, number  of parses, and outside proba-  
bilities. The first quantity, a derivat ion forest, is a data structure that allows one to 
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efficiently compute the set of legal derivations of the input string. The derivation for- 
est is typically found by modifying the recognition algorithm to keep track of "back 
pointers" for each cell of how it was produced. The second quantity often computed 
is the Viterbi score, the probability of the most probable derivation of the sentence. 
This can typically be computed by substituting x for A and max for V. Less commonly 
computed is the total number of parses of the sentence, which, like the inside values, 
can be computed using multiplication and addition; unlike for the inside values, the 
probabilities of the rules are not multiplied into the scores. There is one last commonly 
computed quantity, the outside probabilities, which we will describe later, in Section 4. 

One of the key points of this paper is that all five of these commonly com- 
puted quantities can be described as elements of complete semirings (Kuich 1997). 
The relationship between grammars and semirings was discovered by Chomsky and 
Schiitzenberger (1963), and for parsing with the CKY algorithm, dates back to Teit- 
elbaum (1973). A complete semiring is a set of values over which a multiplicative 
operator and a commutative additive operator have been defined, and for which infi- 
nite summations are defined. For parsing algorithms satisfying certain conditions, the 
multiplicative and additive operations of any complete semiring can be used in place 
of A and V, and correct values will be returned. We will give a simple normal form 
for describing parsers, then precisely define complete semirings, and the conditions 
for correctness. 

We now describe our normal form for parsers, which is very similar to that used 
by Shieber, Schabes, and Pereira (1995) and by Sikkel (1993). This work can be thought 
of as a generalization from their work in the Boolean semiring to semirings in general. 
In most parsers, there is at least one chart of some form. In our normal form, we 
will use a corresponding, equivalent concept, items. Rather than, for instance, a chart 
element chart[i,A,j], we will use an item [i,A,j]. Furthermore, rather than use explicit, 
procedural descriptions, such as 

chart[s,A,s+l] := chart[s,A,s+l] V chart[s,B,s+t] A chart[s+t,C,s+l] A TRUE 

we will use inference rules such as 

R(A ~ BC) [i,B,k] [k,C,j] 
[i,A,j] 

The meaning of an inference rule is that if the top line is all true, then we can conclude 
the bottom line. For instance, this example inference rule can be read as saying that if 

A ~ BC and B G w i . . .  Wk-1 and C ~ wk . . .  wj-1, then A G w l . . .  Wj_l. 
The general form for an inference rule will be 

A1 " .  Ak 
B 

where if the conditions A1 . . .  Ak are all true, then we infer that B is also true. The Ai 
can be either items, or (in an extension of the usual convention for inference rules) 
rules, such as R(A ~ BC). We write R(A ---* BC) rather than A --~ BC to indicate that 
we could be interested in a value associated with the rule, such as the probability of 
the rule if we were computing inside probabilities. If a n  Ai is in the form R(...), we 
call it a rule. All of the Ai must be rules or items; when we wish to refer to both rules 
and items, we use the word terms. 

We now give an example of an item-based description, and its semantics. Figure 3 
gives a description of a CKY-style parser. For this example, we will use the inside 
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Item form: 
[i, A, j] 

Goal: 
[1, S, n + 1] 

Rules: 

R(A -+ wi) 
{i ,A,i+l] 

R(A  --+ BC) [i, B, k] [k, C, j] 
[i, A, j] 

Figure 3 
Item-based description of a CKY parser. 

Unary 

Binary 

semiring, whose additive operator is addit ion and whose multiplicative operator is 
multiplication. We use the input string xxx to the following grammar: 

S ~ X X  1.0 
X --* X X  0.2 
X --* x 0.8 

(1) 

Our first step is to use the unary  rule, 

R(A wi) 
[i,A,i+l] 

The effect of the unary  rule will exactly parallel the first set of loops in the CKY inside 
algorithm. We will instantiate the free variables of the unary  rule in every possible 
way. For instance, we instantiate the free variable i with the value 1, and the free 
variable A with the nonterminal  X. Since wl = x, the instantiated rule is then 

R(x x) 
[1,X,2] 

Because the value of the top line of the instantiated unary  rule, R(X ---, x), has value 
0.8, we deduce that the bot tom line, [1,X, 2], has value 0.8. We instantiate the rule in 
two other ways,  and compute the following chart values: 

[1,X,2] = 0.8 

[2,X,3] = 0.8 

[3,X,4] = 0.8 

Next, we will use the binary rule, 

R(A --* BC) [i, B, k] [k, C,j] 
[i,A,j] 

The effect of the binary rule will parallel the second set of loops for the CKY inside 
algorithm. Consider the instantiation i = 1, k -- 2, j = 3, A -- X, B = X, C -- X, 

R(X ~ XX) [1, X, 2] [2, X, 3] 
[1,X,3] 
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We use the multiplicative operator  of the semiring of interest to mult iply together the 
values of the top line, deducing that [1, X, 3] = 0.2 x 0.8 x 0.8 = 0.128. Similarly, 

[1,X,3] = 0.128 

[2,X,4] = 0.128 

[1,S,3] -- 0.64 

[2,S,4] = 0.64 

There are two more ways to instantiate the conditions of the binary rule: 

R(S --~ X X )  [1, X, 2] [2, X,4] 
[1, S, 4] 

R(S --+ X X )  [1,X,3] [3, X,4] 
[1, S, 4] 

The first has the value 1 x 0.8 x 0.128 = 0.1024, and the second also has the value 
0.1024. When there is more  than one way  to derive a value for an item, we use the 
addit ive operator  of the semiring to sum them up. Thus, [1, S, 4] -- 0.2048. Since [1, S, 4] 
is the goal item for the CKY parser, we know that the inside value for xxx is 0.2048. 
The goal item exactly parallels the return statement of the CKY inside algorithm. 

1.1 Earley Parsing 
Many parsers are much  more complicated than the CKY parser, and we will need to 
expand our  notat ion a bit to describe them. Earley's algori thm (Earley 1970) exhibits 
most  of the complexities we wish to discuss. Earley's algori thm is often described as 
a bot tom-up parser  with top-down filtering. In a probabilistic framework,  the bot tom- 
up  sections compute  probabilities, while the top-down filtering nonprobabilistically 
removes items that cannot be derived. To capture these differences, we expand our  
notation for deduct ion rules, to the following: 

a l " " a k  C 1 . . . C j  
B 

C1 " "  Cj are side conditions, interpreted nonprobabilistically, while A1 .-- Ak are main  
conditions with values in whichever  semiring we are using. 1 While the values of all 
main conditions are mult iplied together to yield the value for the i tem under  the line, 
the side conditions are interpreted in a Boolean manner:  if all of them are nonzero,  
the rule can be used, but  if any of them are zero, it cannot  be. Other than for checking 
whether  they are zero or nonzero,  their values are ignored. 

Figure 4 gives an item-based description of Earley's parser. We assume the addit ion 
of a dist inguished nonterminal  S' with a single rule S' --+ S. An item of the form 

[i,A --, c~ ,J fl, j] asserts that A ~ aft  G w i . . .  wj- l f l .  

1 The side condi t ions  m a y  depend  on any  pure ly  local i n fo rma t ion - - t he  va lues  of A 1 . . .  Ak, B, or 
C1 ... Cj, as well as cons tant  global functions,  such  as R(X) ~6 sin(Y) ( a s suming  here  X and  Y are 
variables in the A, B, C). The side condi t ions  usua l ly  cannot  d e p e n d  on  any  contextual  informat ion,  
such  as the  grandfa ther  of A1, wh i ch  wou l d  not  be well defined,  s ince there m i g h t  be m a n y  der ivat ions  
of A1. Of course,  one could encode the  grandfa ther  of A1 as a variable in the  i tem A1, and  then  have  a 
dependency  on that  variable. This w o u l d  guaran tee  that  the  context  was  un ique  and  well defined.  
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Item form: 
[ i , A - ~  a .  fl, j] 

Goal: 
[1,s' ~ S. , n+ l ]  

Rules: 

[1, S' -~ • S, 1] 

[i, A -~ a • w j f l ,  j] 
[ i ,A  -~ a w j  • fl, j + l ]  

R ( B  --+ "7) [i, A ~ a • Bfl ,  j] 
[j ,B ~ - '7,j] 

[i, A --+ a • B f l ,  k l [k, B ~ "7 • ,  j] 
[i, A -+ a B  • fl, j] 

Figure 4 
Item-based description of Earley parser. 

Initialization 

Scanning 

Prediction 

Completion 

The prediction rule includes a side condition, making it a good example. The 
rule is: 

R ( B ~ ' 7 )  [ i , A ~ a .  Bfl, j] ~,--~ 7_~ . ~,j] 

Through the prediction rule, Earley's algorithm guarantees that an item of the form 
~', B -+ • '7,j] can only be produced if S ~ Wl . . .  w j _ l B 6  for some 6; this top-down 
filtering leads to significantly more efficient parsing for some grammars than the CKY 
algorithm. The prediction rule combines side and main conditions. The side condi- 
tion, [i ,A --+ ce • Bfl , j],  provides the top-down filtering, ensuring that only items that 
might be used later by the completion rule can be predicted, while the main con- 
dition, R ( B  --+ "7), provides the probability of the relevant rule. The side condition 
is interpreted in a Boolean fashion, while the main condition's actual probability is 
used. 

Unlike the CKY algorithm, Earley's algorithm can handle grammars with ep- 
silon (e), unary, and n-ary branching rules. In some cases, this can significantly com- 
plicate parsing. For instance, given unary rules A --+ B and B --+ A, a cycle ex- 
ists. This kind of cycle may allow an infinite number of different derivations, re- 
quiring an infinite summation to compute the inside probabilities. The ability of 
item-based parsers to handle these infinite loops with relative ease is a major 
attraction. 

1.2 O v e r v i e w  
This paper will simplify the development of new parsers in three important ways. 
First, it will simplify specification of parsers: the item-based description is simpler 
than a procedural description. Second, it will make it easier to generalize parsers 
across tasks: a single item-based description can be used to compute values for a 
variety of applications, simply by changing semirings. This will be especially ad- 
vantageous for parsers that can handle loops resulting from rules like A --+ A and 
computations resulting from ¢ productions, both of which typically lead to infinite 
stuns. In these cases, the procedure for computing an infinite sum differs from semi- 
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ring to semiring, and the fact that we can specify that a parser computes  an in- 
finite sum separately from its method  of comput ing that sum will be very  help- 
ful. The third use of these techniques is for comput ing  outside probabilities, val- 
ues related to the inside probabilities that we will define later. Unlike the other 
quantities we wish to compute,  outside probabilities cannot be computed  by  sim- 
ply substituting a different semiring into either an iterative or i tem-based descrip- 
tion. Instead, we will show how to compute  the outside probabilities using a mod- 
ified interpreter of the same item-based description used for comput ing  the other 
values. 

In the next section, we describe the basics of semiring parsing. In Section 3, we 
derive formulas for comput ing  most  of the values in semiring parsers, except out- 
side values, and then in Section 4, show how to compute  outside values as well. In 
Section 5, we give an algori thm for interpreting an item-based description, followed 
in Section 6 by  examples of using semiring parsers to solve a variety of problems. 
Section 7 discusses previous work,  and Section 8 concludes the paper. 

2. Semiring Parsing 

In this section we first describe the inputs to a semiring parser: a semiring, an item- 
based description, and a grammar. Next, we give the conditions under  which a semi- 
ring parser gives correct results. At the end of this section we discuss three especially 
complicated and interesting semirings. 

2.1 Semiring 
In this subsection, we define and discuss semirings (see Kuich [1997] for an intro- 
duction). A semiring has two operations, • and ®, that intuitively have most  (but 
not necessarily all) of the propert ies of the conventional  + and x operations on the 
positive integers. In particular, we require the following properties: ® is associative 
and commutative;  ® is associative and distributes over G. If @ is commutat ive,  we 
will say that the semiring is commutative.  We assume an addit ive identi ty element,  
which we write as 0, and a multiplicative identi ty element,  which we write as 1. Both 
addit ion and multiplication can be defined over finite sets of elements; if the set is 
empty, then the value is the respective identity element,  0 or 1. We also assume that 
x @ 0 = 0 ® x = 0 for all x. In other words,  a semiring is just like a ring, except that the 
additive operator  need not  have an inverse. We will write /A, ®, ®, 0,1 / to indicate a 
semiring over the set A with addit ive operator  ®, multiplicative operator  @, addit ive 
identi ty 0, and multiplicative identi ty 1. 

For parsers with loops, i.e., those in which an i tem can be used to derive itself, 
we will also require that sums of an infinite number  of elements be well defined. In 
particular, we will require that the semirings be complete  (Kuich 1997, 611). This means 
that sums of an infinite number  of elements should be associative and commutat ive,  
just like finite sums, and that multiplication should distribute over infinite sums, just 
as it does over finite ones. All of the semirings we will deal with in this paper  are 
complete. 2 

All of the semirings we discuss here are also w-continuous.  Intuitively, this means  
that if any partial sum of an infinite sequence is less than or equal to some value, 

2 Completeness is a somewhat stronger condition than we really need; we could, instead, require that 
limits be appropriately defined for those infinite sums that occur while parsing, but this weaker 
condition is more complicated to describe precisely. 
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boolean 
inside 
Viterbi 
counting 
derivation forest 
Viterbi-derivation 

Viterbi-n-best 

Figure 5 

({TRUE, FALSE }, V, A, FALSE, TRUE) 
+, x,  o, 1> 
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{0}> 
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Vii Vit 

({topn(X)IX E 2~ x~}, max, x ,  0, 
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{0,{<>}>}> 

Semirings used: {A, @, ®, 0,1/. 

recognition 
string probability 
prob. of best derivation 
number of derivations 
set of derivations 
best derivation 

best n derivations 

then the infinite sum is also less than or equal to that value. 3 This important property 
makes it easy to compute, or at least approximate, infinite sums. 

There will be several especially useful semirings in this paper, which are defined 
in Figure 5. We will write P~ to indicate the set of real numbers from a to b inclusive, 
with similar notation for the natural numbers, N. We will write E to indicate the 
set of all derivations in some canonical form, and 2 n to indicate the set of all sets 
of derivations in canonical form. There are three derivation semirings: the derivation 
forest semiring, the Viterbi-derivation semiring, and the Viterbi-n-best semiring. The 
operators used in the derivation semirings (., max, x, max, and x ) will be described 

Vit Vit Vit-n Vit-n 
later, in Section 2.5. 

The inside semiring includes all nonnegative real numbers, to be closed under 
addition, and includes infinity to be closed under infinite sums, while the Viterbi 
semiring contains only numbers up to 1, since under max this still leads to closure. 

The three derivation forest semirings can be used to find especially important val- 
ues: the derivation forest semiring computes all derivations of a sentence; the Viterbi- 
derivation semiring computes the most probable derivation; and the Viterbi-n-best 
semiring computes the n most probable derivations. A derivation is simply a list 
of rules from the grammar. From a derivation, a parse tree can be derived, so the 
derivation forest semiring is analogous to conventional parse forests. Unlike the other 
semirings, all three of these semirings are noncommutative. The additive operation 
of these semirings is essentially union or maximum, while the multiplicative oper- 
ation is essentially concatenation. These semirings are described in more detail in 
Section 2.5. 

2.2 Item-based Description 
A semiring parser requires an item-based description of the parsing algorithm, in the 
form given earlier. So far, we have skipped one important detail of semiring parsing. In 
a simple recognition system, as used in deduction systems, all that matters is whether 
an item can be deduced or not. Thus, in these simple systems, the order of processing 
items is relatively unimportant, as long as some simple constraints are met. On the 
other hand, for a semiring such as the inside semiring, there are important ordering 
constraints: we cannot compute the inside value of an item until the inside values of 

3 To be more precise, all semirings we discuss here are naturally ordered, meaning that we can define a 
partial ordering, _U, such that x _U y if and only if there exists z such that x @ z ---- y. We call a naturally 
ordered complete semiring w-continuous (Kuich 1997, 612) if for any sequence Xl, x2 . . . .  and for any 
constant y, if for all n, (~o<_i<_n xi U_ y, then ( ~ i  xi U_ y. 
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all of its children have been computed.  
Thus, we need to impose an ordering on the items, in such a way  that no i tem 

precedes any item on which it depends.  We will assign each i tem x to a "bucket"  
B, writ ing bucket(x) = B and saying that i tem x is associated with B. We order  the 
buckets in such a way  that if i tem y depends  on i tem x, then bucket(x) <_ bucket(y). For 
some pairs of items, it may  be that both  depend,  directly or indirectly, on each other; 
we associate these items with special " looping" buckets, whose  values may  require 
infinite sums to compute.  We will also call a bucket  looping if an i tem associated with 
it depends  on itself. 

One way  to achieve a bucket ing with the required ordering constraints (suggested 
by  Fernando Pereira) is to create a graph of the dependencies,  with a node for each 
item, and an edge from each i tem x to each i tem b that depends  on it. We then 
separate the graph into its strongly connected components  (maximal sets of nodes  all 
reachable from each other), and per form a topological sort. Items forming singleton 
strongly connected components  are associated with their own  buckets; items forming 
nonsingleton strongly connected components  are associated with the same looping 
bucket. See also Section 5. 

Later, when  we discuss algorithms for interpreting an i tem-based description, we 
will need another  concept. Of all the items associated with a bucket  B, we will be 
able to find derivations for only a subset. If we can derive an i tem x associated with 
bucket  B, we write x E B, and say that i tem x is in bucket B. For example,  the goal 
item of a parser will almost always be associated with the last bucket; if the sentence 
is grammatical,  the goal i tem will be in the last bucket, and if it is not  grammatical,  it 
will not  be. 

It will be useful to assume that there is a single, variable-free goal item, and that 
this goal i tem does not occur as a condition for any rules. We could always add a 

[old-goal] 
new goal i tem ~oal] and a rule ~oal] where  [old-goal] is the goal in the original 

description. 

2.3 The Grammar 
A semiring parser also requires a g rammar  as input. We will need a list of rules in the 
grammar,  and a function, R(rule), that gives the value for each rule in the grammar.  
This latter function will be semiring-specific. For instance, for comput ing  the inside 
and Viterbi probabilities, the value of a g rammar  rule is just the conditional probabili ty 
of that rule, or 0 if it is not in the grammar. For the Boolean semiring, the value is 
TRUE if the rule is in the grammar,  FALSE otherwise. R(rule) replaces the set of rules 
R of a conventional  g rammar  description; a rule is in the grammar  if R(rule) ~ O. 

2.4 Conditions for Correct Processing 
We will say that a semiring parser works correctly if, for any grammar,  input,  and 
semiring, the value of the input  according to the grammar  equals the value of the input  
using the parser. In this subsection, we will define the value of an input  according 
to the grammar,  define the value of an input  using the parser, and give a sufficient 
condition for a semiring parser to work  correctly. From this point  onwards,  unless we 
specifically ment ion otherwise, we will assume that some fixed semiring, i tem-based 
description, and grammar  have been given, wi thout  specifically ment ioning which 
ones. 

2.4.1 Value According to Grammar. Consider a derivation E, consisting of grammar  
rules el, e2 . . . . .  era. We define the value of the derivat ion according to the grammar  to 
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be simply the product  (in the semiring) of the values of the rules used in E: 

m 

VG(E) : @ R(ei) 
i:1 

Then we can define the value of a sentence that can be der ived using grammar  deriva- 
tions E 1, E 2 . . . . .  E k to be: 

k 

v~ = (D v~(EJ) 
j=1 

where  k is potential ly infinite. In other words,  the value of the sentence according to 
the grammar  is the sum of the values of all derivations. We will assume that in each 
grammar  formalism there is some way  to define derivations uniquely; for instance, in 
CFGs, one way  would  be using left-most derivations. For simplicity, we will s imply 
refer to derivations, rather than, for example,  left-most derivations, since we are never  
interested in nonunique  derivations. 

A short example will help clarify. We consider the following grammar:  

s ~ AA a(S-+AA) 
A --+ AA a ( A - + A A )  
A --+ a R ( A - + a )  

(2) 

and the input  string aaa. There are two grammar  derivations, the first of which 
~ S - - + A A  , , A - - + A A  , , --A---+a . .A---+a --A---+a is ~ => A m  ~ A A A  ~ aA A  ~ aaA ~ aaa, which has value R(S --+ A A )  ® R ( A  --+ 

A A )  ® R ( A  --+ a) ® R ( A  --+ a) ® R ( A  --+ a). Notice that the rules in the value are 
the same rules in the same order  as in the derivation. The other g rammar  deriva- 

~ S - - * A A - -  ~ A - - * a  ~ A - - + A A  __ ~ A - - * a  __A--*a  
tion is ~ ~ .4.4 ~ aA => aA A  ~ aaA => aaa, which has value R(S  --+ A A )  ® R ( A  --+ 
a) ® R ( A  -+ A A )  ® R ( A  --+ a) ® R ( A  ---* a). The value of the sentence is the sum of the 
values of the two derivations, 

[R(s --+ AA) ® R(A -+ AA) 0 a (A --+ a) ® R(A --+ ~) ® R(A --+ a)] • 

[a(S --+ AA) O R(A --+ a) ® R(A --+ AA) ® R(A -* a) ® R(A --+ ~)] 

2.4.2 I tem Der ivat ions .  Next, we define i tem derivations, i.e., derivations using the 
i tem-based description of the parser. We define i tem derivat ion in such a way  that 
for a correct parser description, there is exactly one i tem derivat ion for each g rammar  
derivation. The value of a sentence using the parser is the sum of the value of all 
i tem derivations of the goal item. Just as with g rammar  derivations, individual  i tem 
derivations are finite, but  there may  be infinitely m an y  i tem or g rammar  derivations 
of a sentence. 

We say that ~ Cl . . .  cj is an instantiat ion of deduct ion  rule A1 .B. Ak C 1 . . .  Cj 

whenever  the first expression is a variable-free instance of the second; that is, the first 
expression is the result of consistently substituting constant terms for each variable in 
the second. Now, we can define an i t em der ivat ion tree. Intuitively, an item derivat ion 
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sS--•AA----A-•AA------A-.-•a - - - -A . -+a  --A.--~a 
=:~ A A  :=~ A A A  ::~ a A A  =~ a a A  =:~ a a a  

G r a m m a r  Derivation 

R(S --+ AA) 

R(A ~ ~ - ~  a) 

a) 

G r a m m a r  Derivation Tree 

[1, S, 4] 

R( S ,4] 

- - + ~ A ~  R ( A --~ a) 
R(A ,3] 

I I 
_ R(A--+a) _ R ( A ~ a )  
I t em Derivation ] t ee  

R(S -~ AA) ® R(A ~ AA) ® R(A --+ a) ® R(A ~ a) ® R(A -+ a) 
Derivation Value 

Figure 6 
Grammar derivation, grammar derivation tree, item derivation tree, and derivation value. 

tree for x just gives a w a y  of deducing  x f rom the g r a m m a r  rules. We define an 
i tem der ivat ion tree recursively. The base case is rules of the g rammar :  (r / is an  i tem 
der ivat ion tree, where  r is a rule of the grammar .  Also, if Dal . . . . .  Da k, Dcl . . . . .  Dcj are 

der ivat ion trees headed  by  al...  ak, Cl... Cj respectively, and if ~ c l . . .  cj is the 

instantiat ion of a deduct ion  rule, then (b: D~ 1 . . . . .  D~k/ is also a der ivat ion tree. Notice 
that the De1 • •. Dq do not  occur in this tree: they are side conditions, and  a l though their 
existence is required to p rove  that cl • .. cj could be derived,  they do not  contribute to 

the value of the tree. We will wri te  a l . . .  ak b to indicate that  there is an i tem deri- 

va t ion  tree of the fo rm (b: Da, . . . . .  Dakl. As ment ioned  in Section 2.2, we  will wri te 
x E B if bucket(x) = B and there is an i tem der ivat ion tree for x. 

We can continue the example  of pars ing aaa, n o w  using the i tem-based CKY parser  
of Figure 3. There are two i tem derivat ion trees for the goal item; in Figure 6, we  give 
the first as an example,  d isplaying it as a tree, rather  than  wi th  angle bracket  notation,  
for simplicity. 

Notice that  an i tem der ivat ion is a tree, not  a directed graph.  Thus,  an i tem sub- 
der ivat ion could occur mul t ip le  t imes in a given i tem derivation.  This means  that 
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we  can have  a one-to-one correspondence  be tween  i tem derivat ions and  g r a m m a r  
derivations;  loops in the g r a m m a r  lead to an infinite n u m b e r  of g r a m m a r  derivations,  
and  an infinite n u m b e r  of cor responding  i tem derivations.  

A g r a m m a r  including rules such as 

S --, AAA 

A --+ B 

A ~ a 

B --* A 

B --, 

wou ld  al low der ivat ions such as S ~ A A A  ~ BAA ~ A A  ~ BA ~ A ~ B ~ e. 
We wou ld  include the exact same i tem der ivat ion showing  A ~ B ~ ~ three times. 
Similarly, for a der ivat ion such as A ~ B ~ A ~ B ~ A =~ a, we  wou ld  have  a 
cor responding  i tem der ivat ion tree that  included mul t ip le  uses of the A --* B and  
B --* A rules. 

2.4.3 Value of I t em Der iva t ion .  The value of an i tem der ivat ion D, V(D), is the p roduc t  
of the value of its rules, R(r), in the same order  that  they appea r  in the i tem der ivat ion 
tree. Since rules occur only in the leaves of i tem der ivat ion trees, the order  is precisely 
determined.  For an i tem der ivat ion tree D wi th  rule values  dl ,  d2 . . . . .  dj as its leaves, 

J 
V(D) = @ R(di) 

i=1 

(3) 

Alternatively, we  can write this equat ion recursively as 

[R(D) if D is a rule 
V(D) = I@~--1 V(Di) if D = (b: D1 , . . . ,  Dk} (4) 

Cont inuing our  example ,  the value of the i tem der ivat ion tree of Figure 6 is 

R(s AA) ® R(A a) ® R(A AA) ® R(A a) ® R(A a) 

the same as the value of the first g r a m m a r  derivation.  
Let inner(x) represent  the set of all i tem der ivat ion trees headed  b y  an i tem x. Then 

the value of x is the s u m  of all the values  of all i tem der ivat ion trees headed  b y  x. 
Formally, 

V(x)= V(D) 
DEinner(x) 

The value of a sentence is just the value of the goal item, V(goal). 

2.4.4 I s o - v a l u e d  D e r i v a t i o n s .  In certain cases, a part icular  g r a m m a r  der ivat ion and  a 
part icular  i tem der ivat ion will have  the same value for any  semir ing and  any  rule value 
function R. In this case, we  say that  the two der ivat ions are iso-valued.  In particular,  if 
and  only if the same rules occur in the same order  in bo th  derivations,  then  their values  
will a lways  be the same, and  they are iso-valued.  In Figure 6, the g r a m m a r  der ivat ion 
and  i tem der ivat ion mee t  this condition. In some cases, a g r a m m a r  der ivat ion and  an 
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item derivation will have the same value for any commutative semiring and any rule 
value function. In this case, we say that the derivations are commutatively iso-valued. 

Finishing our example, the value of the goal item given our example sentence is 
just the sum of the values of the two item-based derivations, 

[R(S ---* AA) @ R(A --~ AA) @ R(A --~ a) @ R(A ~ a) @ R(A ---* a)] @ 
[R(S ~ AA) ® R(A ~ a) ® R(A - .  AA) ® R(A ~ a) ® R(A ~ a) l 

This value is the same as the value of the sentence according to the grammar. 

2.4.5 Conditions for Correctness. We can now specify the conditions for an item-based 
description to be correct. 

Theorem 1 
Given an item-based description I, if for every grammar G, there exists a one-to-one 
correspondence between the item derivations using I and the grammar derivations, 
and the corresponding derivations are iso-valued, then for every complete semiring, 
the value of a given input wl . . .  wn is the same according to the grammar as the value 
of the goal item. (If the semiring is commutative, then the corresponding derivations 
need only be commutatively iso-valued.) 

Proof 
The proof is very simple; essentially, each term in each sum occurs in the other. By 
hypothesis, for a given input, there are grammar derivations E1 . . .  Ek (for 0 < k < o0) 
and corresponding item derivation trees D1 .. • Dk of the goal item. Since corresponding 
items are iso-valued, for all i, V(Ei) ~- V(Di).  (If the semiring is commutative, then 
since the items are commutatively iso-valued, it is still the case that for all i, V(Ei) -- 
V(Di).)  Now, since the value of the string according to the grammar is just (~i V(Ei) = 
(~i  V(Di) ,  and the value of the goal item is E)i V(Di) ,  the value of the string according 
to the grammar equals the value of the goal item. [] 

There is one additional condition for an item-based description to be usable in 
practice, which is that there be only a finite number of derivable items for a given 
input sentence; there may, however, be an infinite number of derivations of any item. 

2.5 The Derivation Semirings 
All of the semirings we use should be familiar, except for the derivation semirings, 
which we now describe. These semirings, unlike the other semirings described in 
Figure 5, are not commutative under their multiplicative operator, concatenation. 

In many parsers, it is conventional to compute parse forests: compact represen- 
tations of the set of trees consistent with the input. We will use a related concept, 
derivation forests, a compact representation of the set of derivations consistent with 
the input, which corresponds to the parse forest for CFGs, but is easily extended to 
other formalisms. 

Often, we will not be interested in the set of all derivations, but only in the most 
probable derivation. The Viterbi-derivation semiring computes this value. Alterna- 
tively, we might want the n best derivations, which would be useful if the output of 
the parser were passed to another stage, such as semantic disambiguation; this value 
is computed by the Viterbi-n-best derivation semiring. 

Notice that each of the derivation semirings can also be used to create trans- 
ducers. That is, we simply associate strings rather than grammar rules with each 
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rule value. Instead of g rammar  rule concatenation, we per form string concatena- 
tion. The derivat ion semiring then corresponds to nondeterminist ic  transductions; 
the Viterbi semiring corresponds to a weighted or probabilistic transducer; and the 
Viterbi-n-best semiring could be used to get n-best lists from probabilistic transduc- 
ers. 

2.5.1 Der iva t ion  Forest. The derivat ion forest semiring consists of sets of derivations,  
where  a derivat ion is a list of rules of the grammar.  4 Sets containing one rule, such as 
{ (X --* YZ)} for a CFG, constitute the primitive elements of the semiring. The addit ive 
operator  kJ produces  a union of derivations, and the multiplicative operator-  produces  
the concatenation, one derivat ion concatenated with the next. The concatenation op- 
eration (.) is defined on both  derivations and sets of derivations; when  applied to a 
set of derivations, it produces  the set of pairwise concatenations. The addit ive identi ty 
is s imply the empty  set, 0: union with the empty  set is an identi ty operation. The 
multiplicative identi ty is the set containing the empty  derivation, {0}: concatenat ion 
with the empty  derivat ion is an identi ty operation. Derivations need not  be complete.  
For instance, for CFGs, {(X --* YZ, Y ~ y)} is a valid element,  as is {(Y --* y, X ~ x)}. 
In fact, {(X ~ A, B --* b)} is a valid element,  a l though it could not  occur in a valid 
g rammar  derivation, or in a correctly functioning parser. An example of concatenation 
of sets is {(A ~ a),(B ~ b)}. {(C ~ c),(D ~ d)} = {(A ~ a,C -+ c),(A --* a,D 
a), (B b, C c), (B b, D - .  a)}. 

Potentially, derivat ion forests are sets of infinitely m an y  items. However ,  it is still 
possible to store them using finite-sized representations. Elsewhere (Goodman 1998), 
we show how to implement  derivat ion forests efficiently, using pointers,  in a manner  
analogous to the typical implementat ion of parse forests, and also similar to the work  
of Billot and Lang (1989). Using these techniques, both  union and concatenation can 
be implemented  in constant time, and even infinite unions will be reasonably efficient. 

2.5.2 Viterbi-derivation Semiring. The Viterbi-derivation semiring computes  the most  
probable derivat ion of the sentence, given a probabilistic grammar.  Elements of this 
semiring are a pair, a real number  v and a derivat ion forest E, i.e., the set of derivations 
with score v. We define max, the addit ive operator, as 

Vit 

(v,E) if v > w 
m a x ( ( v , E ) , ( w , D ) ) =  (w,D) i f v < w  

Vit ( V , E kJ D) if v = w 

In typical practical Viterbi parsers, when  two derivations have the same value, one of 
the derivations is arbitrarily chosen. In practice, this is usually a fine solution, and one 
that could be used in a real-world implementat ion of the ideas in this paper, but  f rom 
a theoretical viewpoint ,  the arbitrary choice destroys the associative proper ty  of the 
addit ive operator, max. To preserve associativity, we keep derivat ion forests of all ele- 

ments  that tie for beret. 
The definition for max is only defined for two elements. Since the operator  is 

Vit 
associative, it is clear how to define max for any finite number  of elements, but  we also 

Vit 
need infinite summations  to be defined. We use the supremum,  sup: the su p rem u m  
of a set is the smallest value at least as large as all elements of the set; that is, it is a 

4 This semiring is equivalent to one well known to mathematicians, the polynomials over 
noncommuting variables. 
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max imum that is defined in the infinite case. We can now define max for the case of 
vit 

infinite sums. Let 

W ~- s u p  V 

(v,E>6X 

D = {EI<w,E> E X} 

Then max X = (w, D/. D is potential ly empty, but  this causes us no problems in 
vit 

theory, and will not  occur in practice. We define x as 
vit 

(v, E I vXit(w, D> = (v x w, E. D> 

where  E • D represents the concatenation of the two derivation forests. 

2.5.3 Viterbi-n-best Semiring. The last kind of derivation semiring is the Viterbi-n- 
best semiring, which is used for constructing n-best lists. Intuitively, the value of a 
string using this semiring will be the n most  likely derivations of that string (unless 
there are fewer than n total derivations.) In practice, this is actually how a Viterbi-n-best 
semiring would  typically be implemented.  From a theoretical viewpoint ,  however,  this 
implementat ion is inadequate,  since we must  also define infinite stuns and be sure that 
the distributive proper ty  holds. Elsewhere (Goodman 1998), we give a mathematical ly 
precise definition of the semiring that handles these cases. 

3. Efficient Computation of Item Values 

Recall that the value of an i tem x is just V(x) = (~Deinner(x)V(D) ,  the sum of the 
values of all derivation trees headed  by  x. This definition m ay  require summing over  
exponentially ma ny  or even infinitely many  terms. In this section, we give relatively 
efficient formulas for comput ing  the values of items. There are three cases that must  
be handled.  First is the base case, when  x is a rule. In this case, inner(x) is trivially 
{(x/}, the set containing the single derivat ion tree x. Thus, V(x) = (~Dcinner(x) V(D) = 

(~DC{<x)} V(D) = V((x>) = R(x) 

The second and third cases occur when  x is an item. Recall that each i tem is asso- 
ciated with a bucket, and that the buckets are ordered. Each item x is either associated 
with a nonlooping bucket, in which case its value depends  only on the values of i tems 
in earlier buckets; or with a looping bucket, in which case its value depends  poten- 
tially on the values of other items in the same bucket. In the case when  the i tem is 
associated with a nonlooping bucket, if we compute  items in the same order  as their 
buckets, we can assume that the values of items al . . .  ak contributing to the value of 
i tem b are known. We give a formula for comput ing  the value of i tem b that depends  
only on the values of items in earlier buckets. 

For the final case, in which x is associated with a looping bucket, infinite loops 
may  occur, when  the value of two items in the same bucket  are mutual ly  dependent ,  
or an i tem depends  on its own  value. These infinite loops m ay  require computat ion 
of infinite sums. Still, we can express these infinite sums in a relatively simple form, 
allowing them to be efficiently computed  or approximated.  
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3.1 Item Value Formula 
Theorem 2 
If an item x is not in a looping bucket, then 

k 

V(x) ---- (~ (~ V(ai) 
i :1  

al.. .  ak s.t. al.x. al~ 

(5) 

Proof 

Let us expand our notion of inner to include deduction rules: i n n e r ( ~ )  is the set 

of all derivation trees of the form (b: ( a l . . . / ( a2 . . . / - . .  (ak...11" For any item derivation 

tree that is not a simple rule, there is some al. . .ak, b such that D E i n n e r ( ~ ) .  

Thus, for any item x, 

v(x) = ( ~  v(D) 
DE inner( x ) 

= (~ (~ V(D) (6) 

al...al¢ s.t. al'~c, ak DEinner(aI"x" ak) 

Consider item derivation trees Dal ... Dak headed by items al . . .  ak such that ~ g ~ .  

Recall that (x: Da, . . . .  , Dakl is the item derivation tree formed by combining each of 

these trees into a full tree, and notice that U (x: Dal,. . . ,  Dakl = i n n e r ( ~ ) .  
Da I ff inner( al ) ..... 

Da k ff inner (ak ) 

(9  v(o) = (9  
D6inner(al "~c" ak) Da I 6 inner (aJ  ..... 

Da k 6inner(ak) 

Therefore 

= G 
Da 16inner(al  ) ..... 

Da k ff inner( ak ) 

k 

i=1  Dai Cinner(ai) 

k 

: (9 V(, , i )  
i=1 

Substituting this back into Equation 6, we get 

k 

V(K)= ( ~  (~V(a , )  
i=1  

al...  ak s.t. al.x. ai 

v(Ix: Da, . . . .  ,Dak)) 

k 

(~V(Dai) 
i=1 

completing the proof. [] 

588 



Goodman Semiring Parsing 

Now, we address the case in which x is an i tem in a looping bucket. This case 
requires computat ion of an infinite sum. We will write out  this infinite sum, and discuss 
how to compute  it exactly in all cases, except for one, where  we approximate it. 

Consider the derivable items x l . . .  Xm in some looping bucket  B. If we build up  
derivat ion trees incrementally, when  we begin processing bucket  B, only those trees 
with no items from bucket  B will be available, what  we will call zeroth generation 
derivation trees. We can pu t  these zeroth generation trees together to form first gener- 
ation trees, headed by elements in B. We can combine these first generation trees with 
each other and with zeroth generat ion trees to form second generation trees, and so 
on. Formally, we define the generation of a derivat ion tree headed  by  x in bucket B 
to be the largest number  of items in B we can encounter  on a path  from the root to a 
leaf. 

Consider the set of all trees of generat ion at most  g headed  by  x. Call this set 
inner<_~(x, B). We can define the Kg generation value of an item x in bucket  B, V<_~(x, B): 

V<_g(x,B) = ( ~  V(D) 
D 6 inner<g (x,B) 

Intuitively, as g increases, for x E B, inner<~(x, B) becomes closer and closer to 
inner(x). That is, the finite sum of values in the former approaches the infinite sum of 
values in the latter. For w-continuous semirings (which includes all of the semirings 
considered in this paper),  an infinite sum is equal to the su p rem u m  of the partial sums 
(Kuich 1997, 613). Thus, 

V(x) = (~  V(D) = sup V<g(x, B) 
OC inner( x,B ) g 

It will be easier to compute  the sup remum if we find a simple formula for V<_g(x, B). 
Notice that for items x E B, there will be no generation 0 derivations, so V_<0(x, B) = 

0. Thus, generation 0 makes a trivial base for a recursive formula.  Now, we can consider 
the general case: 

Theorem 3 
For x an i tem in a looping bucket  B, and for g ~ 1, 

V<g(x,B) 
i=1 [ V<_g-l(ai,  B)  

al... ak s.t. al'x" ak 

if ai ~ B 
if ai E B (7) 

The proof  parallels that of Theorem 2 (Goodman 1998). 

3.2 Solving the Infinite Summation 
A formula for V<_g(x, B) is useful, but  what  we really need is specific techniques for 
comput ing  the supremum,  V(x) = supg V<<_g(x, B). For all w-continuous semirings, the 
sup remum of iteratively approximating the value of a set of polynomial  equations, as 
we are essentially doing in Equation 7, is equal to the smallest solution to the equations 
(Kuich 1997, 622). In particular, consider the equations: 

k ~V(ai) if ai ~ B 
V<_oo(x,B) = 0 ~ [ V<_oo(ai, B) if a i C B (8) 

i:1 
al... ak s.t. al"x" at; 
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where V<~(x, B) can be thought of as indicating [B[ different variables, one for each 
item x in the looping bucket B. Equation 7 represents the iterative approximation of 
Equation 8, and therefore the smallest solution to Equation 8 represents the supremum 
of Equation 7. 

One fact will be useful for several semirings: whenever the values of all items 
x E B at generation g + 1 are the same as the values of all items in the preceding 
generation, g, they will be the same at all succeeding generations, as well. Thus, the 
value at generation g will be the value of the supremum. Elsewhere (Goodman 1998), 
we give a trivial proof of this fact. 

Now, we can consider various semiring-specific algorithms for computing the 
supremum. Most of these algorithms are well known, and we have simply extended 
them from specific parsers (described in Section 7) to the general case, or from one 
semiring to another. 

Notice in this section the wide variety of different algorithms, one for each semi- 
ring, and some of them fairly complicated. In a conventional system, these algorithms 
are interweaved with the parsing algorithm, conflating computation of infinite sums 
with parsing. The result is algorithms that are both harder to understand, and less 
portable to other semirings. 

We first examine the simplest case, the Boolean semiring. Notice that whenever 
a particular item has value TRUE at generation g, it must also have value TRUE 
at generation g +  1, since if the item can be derived in at most g generations then 
it can certainly be derived in at most g + 1 generations. Thus, since the number 
of TRUE valued items is nondecreasing, and is at most IB[, eventually the values 
of all items must not change from one generation to the next. Therefore, for the 
Boolean semiring, a simple algorithm suffices: keep computing successive genera- 
tions, until no change is detected in some generation; the result is the supremum. 
We can perform this computation efficiently if we keep track of items that change 
value in generation g and only examine items that depend on them in generation 
g + l .  This algorithm is then similar to the algorithm of Shieber, Schabes, and Pereira 
(1993). 

For the counting semiring, the Viterbi semiring, and the derivation forest semi- 
ring, we need the concept of a derivation subgraph. In Section 2.2 we considered 
the strongly connected components of the dependency graph, consisting of items that 
for some sentence could possibly depend on each other, and we put these possibly 
interdependent items together in looping buckets. For a given sentence and gram- 
mar, not all items will have derivations. We will find the subgraph of the dependency 
graph of items with derivations, and compute the strongly connected components of 
this subgraph. The strongly connected components of this subgraph correspond to 
loops that actually occur given the sentence and the grammar, as opposed to loops 
that might occur for some sentence and grammar, given the parser alone. We call this 
subgraph the derivation subgraph, and we will say that items in a strongly connected 
component of the derivation subgraph are part of a loop. 

Now, we can discuss the counting semiring (integers under + and x). In the 
counting semiring, for each item, there are three cases: the item can be in a loop; 
the item can depend (directly or indirectly) on an item in a loop; or the item does 
not depend on loops. If the item is in a loop or depends on a loop, its value is in- 
finite. If the item does not depend on a loop in the current bucket, then its value 
becomes fixed after some generation. We can now give the algorithm: first, com- 
pute successive generations until the set of items in B does not change from one 
generation to the next. Next, compute the derivation subgraph, and its strongly con- 
nected components. Items in a strongly connected component (a loop) have an infi- 
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nite number  of derivations, and thus an infinite value. Compute  items that depend  
directly or indirectly on items in loops: these items also have infinite value. Any 
other items can only be der ived in finitely many  ways using items in the current  
bucket, so compute  successive generations until the values of these items do not  
change. 

The method  for solving the infinite summat ion  for the derivation forest semiring 
depends  on the implementat ion of derivation forests. Essentially, that representat ion 
will use pointers to efficiently represent  derivation forests. Pointers, in various forms, 
allow one to efficiently represent infinite circular references, either directly (Goodman 
1999), or indirectly (Goodman 1998). Roughly, the algori thm we will use is to compute  
the derivation subgraph,  and then create pointers analogous to the directed edges in 
the derivat ion subgraph,  including pointers in loops whenever  there is a loop in the 
derivation subgraph (corresponding to an infinite number  of derivations). Details are 
given elsewhere (Goodman 1998). As in the finite case, this representat ion is equivalent 
to that of Billot and Lang (1989). 

For the Viterbi semiring, the algori thm is analogous to the Boolean case. Deriva- 
tions using loops in these semirings will always have values no greater than deriva- 
tions not using loops, since the value with the loop will be the same as some value 
wi thout  the loop, multiplied by  some set of rule probabilities that are at most  1. Since 
the addit ive operat ion is max, these lower (or at most  equal) looping derivations do not  
change the value of an item. Therefore, we can simply compute  successive generations 
until values fail to change from one iteration to the next. 

Now, consider implementat ions of the Viterbi-derivation semiring in practice, 
in which we keep only a representat ive derivation, rather than the whole deriva- 
tion forest. In this case, loops do not  change values, and we use the same algo- 
r i thm as for the Viterbi semiring. In an implementat ion of the Viterbi-n-best semi- 
ring, in practice, loops can change values, but  at most  n times, so the same algo- 
r i thm used for the Viterbi semiring still works. Elsewhere (Goodman 1998), we de- 
scribe theoretically correct implementat ions for both  the Viterbi-derivation and Viterbi- 
n-best semirings that keep all values in the event  of ties, preserving addit ion's  
associativity. 

The last semiring we consider is the inside semiring. This semiring is the most  
difficult. There are two cases of interest, one of which we can solve exactly, and the 
other of which requires approximations.  In many  cases involving looping buckets, all 

alx deduct ion rules will be of the form ~ - ,  where al and b are items in the looping bucket, 

and x is either a rule, or an i tem in a previously computed  bucket. This case corre- 
sponds to the items used for deducing singleton productions,  such as those Earley's 
algori thm uses for rules of the form A --* B and B --+ A. In this case, Equation 8 forms 
a set of linear equations that can be solved by  matrix inversion. In the more  general 
case, as is likely to happen  with epsilon rules, we get a set of nonlinear equations, and 
must  solve them by approximat ion techniques, such as simply comput ing  successive 
generations for many  iterations. 5 Stolcke (1993) provides  an excellent discussion of 
these cases, including a discussion of sparse matrix inversion, useful for speeding up  
some computations.  

5 Note that even in the case where we can only use approximation techniques, this algorithm is 
relatively efficient. By assumption, in this case, there is at least one deduction rule with two items in 
the current generation; thus, the number of deduction trees over which we are summing grows 
exponentially with the number of generations: a linear amount of computation yields the sum of the 
values of exponentially many trees. 
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goal 

Derivation of [goal] 
Figure 7 
Outside algorithm. 

goal 

Outer tree of [b] 

4. Reverse  Values  

The previous section showed how to compute several of the most commonly used 
values for parsers, including Boolean, inside, Viterbi, counting, and derivation forest 
values, among others. Noticeably absent from the list are the outside probabilities, 
which we define below. In general, computing outside probabilities is significantly 
more complicated than computing inside probabilities. 

In this section, we show how to compute outside probabilities from the same 
item-based descriptions used for computing inside values. Outside probabilities have 
many uses, including for reestimating grammar probabilities (Baker 1979), for im- 
proving parser performance on some criteria (Goodman 1996b), for speeding parsing 
in some formalisms, such as data-oriented parsing (Goodman 1996a), and for good 
thresholding algorithms (Goodman 1997). 

We will show that by substituting other semirings, we can get values analogous 
to the outside probabilities for any commutative semiring; elsewhere (Goodman 1998) 
we have shown that we can get similar values for many noncommutative semirings 
as well. We will refer to these analogous quantities as reverse values. For instance, 
the quantity analogous to the outside value for the Viterbi semiring will be called 
the reverse Viterbi value. Notice that the inside semiring values of a hidden Markov 
model (HMM) correspond to the forward values of HMMs, and the reverse inside 
values of an HMM correspond to the backwards values. 

Compare the outside algorithm (Baker 1979; Lari and Young 1990), given in Fig- 
ure 7, to the inside algorithm of Figure 2. Notice that while the inside and recognition 
algorithms are very similar, the outside algorithm is quite a bit different. In particular, 
while the inside and recognition algorithms looped over items from shortest to longest, 
the outside algorithm loops over items in the reverse order, from longest to shortest. 
Also, compare the inside algorithm's main loop formula to the outside algorithm's 
main loop formula. While there is clearly a relationship between the two equations, 
the exact pattern of the relationship is not obvious. Notice that the outside formula is 
about twice as complicated as the inside formula. This doubled complexity is typical 
of outside formulas, and partially explains why the item-based description format is so 
useful: descriptions for the simpler inside values can be developed with relative ease, 
and then automatically used to compute the twice-as-complicated outside values. 6 

6 Jumping ahead a bit, compare Equation 13 for reverse values to Equation 5 for forward values. Let k be 
the number  of terms above the line. Notice that the reverse values equation sums  over k times as many  
terms as the forward values equation. Parsers where all rules have k = 1 terms above the line can only 
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goal 

Derivation of [goal] 

Figure 8 

goal 

Outer  tree of [b] 

Item derivation tree of [goal] and outer tree of [b]. 

For a context-free grammar,  using the CKY parser of Figure 3, recall that the inside 
probabili ty for an i tem [i, A, j] is P(A -~ wi... wj-1). The outside probabili ty for the same 

item is P(S G w l . . .  W i _ l A W j . , .  Wn). T h u s ,  the outside probabili ty has the proper ty  that 
when  multiplied by  the inside probability, it gives the probabili ty that the start symbol 

generates the sentence using the given item, P(S G Wl . . ,  w i _ d A w j . . .  Wn G Wl . . .  Wn). 
This probabili ty equals the sum of the probabilities of all derivations using the given 
item. Formally, letting P(D) represent  the probabili ty of a particular derivation, and 
C(D, [i, X,j]) represent  the number  of occurrences of item [i, X,j] in derivat ion D (which 
for some parsers could be more  than one if X were part  of a loop), 

inside(i, X,j) x outside(i, X,j) = Z P(D) C(D, [i, X,j]) 
D a derivation 

The reverse values in general have an analogous meaning. Let C(D, x) represent  
the number  of occurrences (the count) of item x in item derivation tree D. Then, for 
an i tem x, the reverse value Z(x) should have the proper ty  

V(x) ® Z(x) = V(D)C(D, x) (9) 
D a derivation 

Notice that we have multiplied an element  of the semiring, V(D), by  an integer, C(D, x). 
This multiplication is meant  to indicate repeated addition, using the addit ive operator  
of the semiring. Thus, for instance, in the Viterbi semiring, mult iplying by  a count  
other than 0 has no effect, since x ® x = max(x, x) = x, while in the inside semiring, 
it corresponds to actual multiplication. This value represents the sum of the values of 
all derivat ion trees that the i tem x occurs in; if an i tem x occurs more  than once in a 
derivation tree D, then the value of D is counted more than once. 

To formally define the reverse value of an item x, we must  first define the outer  
trees outer(x). Consider  an i tem derivat ion tree of the goal item, containing one or 
more instances of i tem x. Remove one of these instances of x, and its children too, 
leaving a gap in its place. This tree is an outer tree of x. Figure 8 shows an item 
derivat ion tree of the goal item, including a subderivation of an i tem b, der ived from 
terms al . . . .  , ak. It also shows an outer tree of b, with b and its children removed;  the 
spot b was removed  from is labeled (b). 

parse regular grammars, and tend to be less useful. Thus, in most parsers of interest, k > 1, and the 
complexity of (at least some) outside equations, when the sum is written out, is at least doubled. 
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For an outer tree D E outer(x), we define its value, Z(D), to be the product  of the 
values of all rules in D, (~rCD R(r). Then, the reverse value of an i tem can be formally 
defined as 

Z(x)= 0 Z(D) (10) 
DEouter( x ) 

That is, the reverse value of x is the sum of the values of each outer  tree of x. 
Now, we show that this definition of reverse values has the proper ty  described by  

Equation 9. 7 

Theorem 4 

V(x) ® z(x) = E) v(D)C(D, x) 
D a der iva t ion  

Proof 
First, observe that 

V(x) ®Z(x)= ( E]~ V(I)) ® 0 Z(O)= (~ ~ V(I)®Z(O) (11) 
\lEinner(x) Ocouter(x) IEinner(x) OEouter(x) 

Next, we argue that this last expression equals the expression on the r ight-hand side 
of Equation 9, (~D V(D)C(D,x). For an i tem x, any outer  part  of an i tem derivat ion 
tree for x can be combined wi th  any inner part  to form a complete i tem derivat ion 
tree. That is, any O E outer(x) and any I E inner(x) can be combined to form an i tem 
derivation tree D containing x, and any item derivat ion tree D containing x can be 
decomposed  into such outer  and inner trees. Thus, the list of all combinations of outer  
and inner trees corresponds exactly to the list of all i tem derivat ion trees containing 
x. In fact, for an i tem derivat ion tree D containing C(D, x) instances of x, there are 
C(D, x) ways to form D from combinations of outer  and inner trees. Also, notice that 
for D combined from O and I 

V(I) ® Z(O) = ( ~ R ( r )  ® ( ~ R ( r )  = ( ~ R ( r )  = V(D) 
rEI rEO rED 

T h u s ,  

{~ (~ V(I) ® Z(O) = ( ~  V(D)C(D,x) 
IEinner(x) OEouter(x) D 

Combining Equation 11 with Equation 12, we see that 

(12) 

V(x) o z(x) = 0 V(D)C(O, x) 
D a derivation 

complet ing the proof. [] 

7 We note that satisfying Equation 9 is a useful but  not sufficient condition for using reverse inside 
values for grammar  reestimation. While this definition will typically provide the necessary values for 
the E step of an E-M algorithm, addit ional work  will typically be required to prove this fact; Equation 
9 should be useful in such a proof. 
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There is a simple, recursive formula for efficiently comput ing  reverse values. Recall 
that the basic equat ion for comput ing  forward values not  involved in loops was 

k 

V(x) ---- 0 (~ V(ai) 
i:1 

al . . .  ak s.t. al "x" ak 

At this point, for conciseness, we introduce a nons tandard  notation. We will soon 
be using m a ny  sequences of the form 1, 2 . . . . .  j - 2, j - 1, j + 1, j + 2 . . . . .  k -  1, k. We denote  

such sequences by 1, ._4, k. By extension, we will also write f (1) ,  zL,f(k) to indicate a 
sequence of the form f (1) , f (2)  . . . . .  f ( j -  2 ) , f ( j -  1),f(j  + 1),f(j  + 2) . . . . .  f ( k -  1),f(k). 

Now, we can give a simple formula for comput ing  reverse values Z(x) not involved 
in loops: 

Theorem 5 
For items x E B where  B is nonlooping,  

z(x) = • Z(b) ® @ 
i=l,-t,k j,a,.., ak,b s.t. ~ - ~  A x=¢ 

V(ai) (13) 

unless x is the goal item, in which case Z(x) = 1, the multiplicative identi ty of the 
semiring. 

Proof 
The simple case is when  x is the goal item. Since an outer tree of the goal i tem is a 
derivation of the goal item, with the goal i tem and its children removed,  and since we 
assumed in Section 2.2 that the goal i tem can only appear  in the root of a derivation 
tree, the outer  trees of the goal i tem are all empty. Thus, 

Z(goal) = ( ~  Z(D) = Z({(/}) = ~ )  R(r) = 1 
D6outer(goal) r6 { (I } 

As ment ioned in Section 2.1, the value of the empty  product  is the multiplicative 
identity. 

Now, we consider the general case. We need to expand our  concept of outer to 

include deduct ion rules, where  outer(]', ~ - ~ )  is an i tem derivat ion tree of the goal 

item with one subtree removed,  a subtree headed  by  aj whose parent  is b and whose  

siblings are headed by  al, .-(, ak. Notice that for every  outer  tree D C outer(x), there is 

exactly one j, al . . . . .  ak, and b such that x = aj and D E outer(], ~ ) :  this corresponds 

to the deduct ion rule used at the spot in the tree where  the subtree headed  by  x was 
deleted. Figure 9 illustrates the idea of put t ing together an outer  tree of b with inner 

trees for al, .J., ak to fo rm an outer tree of x ---- aj. Using this observation, 

Z(x) = G z(o) 
Dcouter(x) 

= ( ~  ( ~  Z(D) (14) 

al'~'akA x=aj D f f_ou t e r ( j ,~ )  j,al.., ak,b s.t. 
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/ / 
/ / a  1 a j-1 

Figure 9 

goal 

(a j )  

Combining an outer tree with inner trees to form an outer tree. 

Now, consider all of the outer  trees o u t e r ( j , ~ ) .  For each i tem derivat ion tree 

Dal C inner(a1), ._4, Dak E inner(ak) and for each outer  tree Db E outer(b), there will be 

one outer  tree in the set outer(j, f f~--~)o Similarly, each tree in outer(j, al. "b" ak) can be 

decomposed  into an outer  tree in outer(b) and derivat ion trees for al, ._4, ak. Then, 

z(D) 

= ( ~  Z(Db) ~ V(Da,)@ .:J ~V(Dak ) 
Db C outer( b ) , 
Da 1 Einner(al ),Z!, 

Da k 6inner(ak ) 

= (DbEOut~er(b) Z(Db)) @ (Dalcger(al)g(Dal)) @'~t@ (D~kEinngr(ak) g(Dak)) 

= Z(b) @ W(al)@ --j ®V(ak) 
= Z(b)® ( ~  V(ai) (15) 

i=l,Zt,k 

Substituting equat ion 15 into equat ion 14, we conclude that 

Z(x) = (9 Z(b) ® @ V(a,) 
i=l,-!,k j,al.., ak,b s.t. £ t~  A x=aj 

complet ing the general case. 

Comput ing  the reverse values for loops is somewhat  more  complicated,  and as in 
the forward case, requires an infinite sum, and the use of the concept of generation. 
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We define the generation g of an outer tree D of item x in bucket B to be the number 
of items in bucket B on the path between the root and the removal point, inclusive. 
We can then let Z<_g(x, B) represent the sum of the values of all trees headed by x 
of generation at most g. In the base case, Z_<0(x, B) = 0. For ~;-continuous semirings, 
Z<_g(x, B) approaches Z(x) as g approaches c~. We can give a recursive equation for 
Z<_~(x, B) as follows, using a proof similar to that of Theorem 5 (Goodman 1998): 

Theorem 6 
For items x E B and g > 1, 

( (~  ~ fZ<_~q(b,B) i f b E B  
\ 

Z<_g(x,B) = (~  V(ai)! ® ~Z(b) if b ~ B (16) 

j,al.., ak,b s.t. ~ - ~  A x=aj \i=l,Z!,k / 

5. Semiring Parser Execution 

Executing a semiring parser is fairly simple. There is, however, one issue that must 
be dealt with before we can actually begin parsing. A semiring parser computes the 
values of items in the order of the buckets they fall into. Thus, before we can begin 
parsing, we need to know which items fall into which buckets, and the ordering of 
those buckets. There are three approaches to determining the buckets and ordering that 
we will discuss in this section. The first approach is a simple, brute-force enumeration 
of all items, derivable or not, followed by a topological sort. This approach will have 
suboptimal time and space complexity for some item-based descriptions. The second 
approach is to use an agenda parser in the Boolean semiring to determine the derivable 
items and their dependencies, and to then perform a topological sort. This approach 
has optimal time complexity, but typically suboptimal space complexity. The final 
approach is to use bucketing code specific to the item-based interpreter. This achieves 
optimal performance for additional programming effort. 

The simplest way to determine the bucketing is to simply enumerate all possible 
items for the given item-based description, grammar, and input sentence. Then, we 
compute the strongly connected components and a partial ordering; both steps can be 
done in time proportional to the number of items plus the number of dependencies 
(Cormen, Leiserson, and Rivest 1990, Chap. 23). For some parsers, this technique has 
optimal time complexity, although poor space complexity. In particular, for the CKY 
algorithm, the time complexity is optimal, but since it requires computing and storing 
all possible O(n 3) dependencies between the items, it takes significantly more space 
than the O(n 2) space required in the best implementation. In general, the brute-force 
technique raises the space complexity to be the same as the time complexity. Further- 
more, for some algorithms, such as Earley's algorithm, there could be a significant time 
complexity added as well. In particular, Earley's algorithm may not need to examine 
all possible items. For certain grammars, Earley's algorithm examines only a linear 
number of items and a linear number of dependencies, even though there are O(n 2) 
possible items, and O(n 3) possible dependencies. Thus the brute-force approach would 
require O(n 3) time and space instead of O(n) time and space, for these grammars. 

The next approach to finding the bucketing solves the time complexity problem. 
In this approach, we first parse in the Boolean semiring, using the agenda parser de- 
scribed by Shieber, Schabes, and Pereira (1995), and then we perform a topological 
sort. The techniques that Shieber, Schabes, and Pereira use work well for the Boolean 
semiring, where items only have value TRUE or FALSE, but cannot be used directly for 
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for current := first bucket to last bucket 
if current is a looping bucket 

/* replace with semiring-specific code */ 
for x E current 

v[x, 0] = 0; 
for g :-- 1 to oo 

for each x E current, al . . .  ak s.t. 

k {V[ai] 
V[x,g] := V[x,g] ® ~i=1 V[ai, g - 1] 

for each x E current 
v[x]  : =  v[x, 

else 
for each x E current, al . . .  ak s.t. 

v[x] := V[x] • v[ai]; i=1 
return V[goal]; 

Figure 10 
Forward semiring parser interpreter. 

ai ~ current 
ai E current 

other semirings. For other semirings, we need to make sure that the values of items are 
not computed until after the values of all items they depend on are computed. How- 
ever, we can use the algorithm of Shieber, Schabes, and Pereira to compute all of the 
items that are derivable, and to store all of the dependencies between the items. Then 
we perform a topological sort on the items. The time complexity of both the agenda 
parser and the topological sort will be proportional to the number of dependencies, 
which will be proportional to the optimal time complexity. Unfortunately, we still have 
the space complexity problem, since again, the space used will be proportional to the 
number of dependencies, rather than to the number of items. 

The third approach to bucketing is to create algorithm-specific bucketing code; 
this results in parsers with both optimal time and optimal space complexity. For in- 
stance, in a CKY-style parser, we can simply create one bucket for each length, and 
place each item into the bucket for its length. For some algorithms, such as Ear- 
ley's algorithm, special-purpose code for bucketing might have to be combined with 
code to make sure all and only derivable items are considered (using triggering tech- 
niques described by Shieber, Schabes, and Pereira) in order to achieve optimal perfor- 
mance. 

Once we have the bucketing, the parsing step is fairly simple. The basic algorithm 
appears in Figure 10. We simply loop over each item in each bucket. There are two 
types of buckets: looping buckets, and nonlooping buckets. If the current bucket is 
a looping bucket, we compute the infinite sum needed to determine the bucket's 
values; in a working system, we substitute semiring-specific code for this section, as 
described in Section 3.2. If the bucket is not a looping bucket, we simply compute 
all of the possible instantiations that could contribute to the values of items in that 
bucket. Finally, we return the value of the goal item. 

The reverse semiring parser interpreter is very similar to the forward semiring 
parser interpreter. The differences are that in the reverse semiring parser interpreter, 
we traverse the buckets in reverse order, and we use the formulas for the reverse 
values, rather than the forward values. Elsewhere (Goodman 1998), we give a simple 
inductive proof to show that both interpreters compute the correct values. 
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There are two other implementation issues. First, for some parsers, it will be pos- 
sible to discard some items. That is, some items serve the role of temporary variables, 
and can be discarded after they are no longer needed, especially if only the forward 
values are going to be computed. Also, some items do not depend on the input string, 
but only on the rule value function of the grammar. The values of these items can be 
precomputed. 

6. Examples 

In this section, we survey other results that are described in more detail elsewhere 
(Goodman 1998), including examples of formalisms that can be parsed using item- 
based descriptions, and other uses for the technique of semiring parsing. 

6.1 Finite State Automata and Hidden Markov Models 
Nondeterministic finite-state automata (NFAs) and HMMs turn out to be examples of 
the same underlying formalism, whose values are simply computed in different semi- 
rings. Other semirings lead to other interesting values. For HMMs, notice that the for- 
ward values are simply the forward inside values; the backward values are the reverse 
values of the inside semiring; and Viterbi values are the forward values of the Viterbi 
semiring. For NFAs, we can use the Boolean semiring to determine whether a string is 
in the language of an NFA; we can use the counting semiring to determine how many 
state sequences there are in the NFA for a given string; and we can use the derivation 
forest semiring to get a compact representation of all state sequences in an NFA for an 
input string. A single item-based description can be used to find all of these values. 

6.2 Prefix Values 
For language modeling, it may be useful to compute the prefix probability of a string. 
That is, given a string w l . . .  Wn, we may wish to know the total probability of all 
sentences beginning with that string, 

P(S ~ w l . . .  w n v l . . ,  v~) 
k>O,vl,...,Vk 

where Vl . . .  Vk represent words that could possibly follow wl . . .  wn. Jelinek and Lafferty 
(1991) and Stolcke (1993) both give algorithms for computing these prefix probabilities. 
Elsewhere (Goodman 1998), we show how to produce an item-based description of a 
prefix parser. There are two main advantages to using an item-based description: ease 
of derivation, and reusability. 

First, the conventional derivations are somewhat complex, requiring a fair amount 
of inside-semiring-specific mathematics. In contrast, using item-based descriptions, we 
only need to derive a parser that has the property that there is one item derivation for 
each (complete) grammar derivation that would produce the prefix. The value of any 
prefix given the parser will then automatically be the sum of all grammar derivations 
that include that prefix. 

The other advantage is that the same description can be used to compute many 
values, not just the prefix probability. For instance, we can use this description with the 
Viterbi-derivation semiring to find the most likely derivation that includes this prefix. 
With this most likely derivation, we could begin interpretation of a sentence even be- 
fore the sentence was finished being spoken to a speech recognition system. We could 
even use the Viterbi-n-best semiring to find the n most likely derivations that include 
this prefix, if we wanted to take into account ambiguities present in parses of the prefix. 
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6.3 Beyond Context-Free 
There has been quite a bit of previous work on the intersection of formal language 
theory and algebra, as described by Kuich (1997), among others. This previous work 
has made heavy use of the fact that there is a strong correspondence between alge- 
braic equations in certain noncommutative semirings, and CFGs. This correspondence 
has made it possible to manipulate algebraic systems, rather than grammar systems, 
simplifying many operations. 

On the other hand, there is an inherent limit to such an approach, namely a limit 
to context-free systems. It is then perhaps slightly surprising that we can avoid these 
limitations, and create item-based descriptions of parsers for weakly context-sensitive 
grammars, such as tree adjoining grammars (TAGs). We avoid the limitations of pre- 
vious approaches using two techniques. One technique is to compute derivation trees, 
rather than parse trees, for TAGs. Computing derivation trees for TAGs is significantly 
easier than computing parse trees, since the derivation trees are context-free. The other 
trick we use is to create a set of equations for each grammar and string length rather 
than creating a set of equations for each grammar, as earlier formulations did. Because 
the number of equations grows with the string length with our technique, we can rec- 
ognize strings in weakly context-sensitive languages. Goodman (1998) gives a further 
explication of this subject, including an item-based description for a simple TAG parser. 

6.4 Tomita Parsing 
Our goal in this section has been  to show that item-based descriptions can be used 
to simply describe almost all parsers of interest. One parsing algorithm that would 
seem particularly difficult to describe is Tomita's graph-structured-stack LR parsing 
algorithm. This algorithm at first glance bears little resemblance to other parsing al- 
gorithms. Despite this lack of similarity, Sikkel (1993) gives an item-based description 
for a Tomita-style parser for the Boolean semiring, which is also more efficient than 
Tomita's algorithm. Sikkel's parser can be easily converted to our format, where it can 
be used for w-continuous semirings in general. 

6.5 Graham Harrison Ruzzo (GHR) Parsing 
Graham, Harrison, and Ruzzo (1980) describe a parser similar to Earley's, but with 
several speedups that lead to significant improvements. Essentially, there are three 
improvements in the GHR parser. First, epsilon productions are precomputed; second, 
unary productions are precomputed; and, finally, completion is separated into two 
steps, allowing better dynamic programming. 

Goodman (1998) gives a full item-based description of a GHR parser. The forward 
values of many of the items in our parser related to unary and epsilon productions 
can be computed off-line, once per grammar, which is an idea due to Stolcke (1993). 
Since reverse values require entire strings, the reverse values of these items cannot 
be computed until the input string is known. Because we use a single item-based 
description for precomputed items and nonprecomputed items, and for forward and 
reverse values, this combination of off-line and on-line computation is easily and 
compactly specified. 

6.6 Grammar Transformations 
We can apply the same techniques to grammar transformations that we have so far 
applied to parsing. Consider a grammar transformation, such as the Chomsky normal 
form (CNF) grammar transformation, which takes a grammar with epsilon, unary, 
and n-ary branching productions, and converts it into one in which all productions 
are of the form A --* B C  or A --* a. For any sentence Wl.. .  Wn its value under the 
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original grammar in the Boolean semiring (TRUE if the sentence can be generated by 
the grammar, FALSE otherwise) is the same as its value under a transformed gram- 
mar. Therefore, we say that this grammar transformation is value preserving under 
the Boolean semiring. We can generalize this concept of value preserving to other 
semirings. 

Elsewhere (Goodman 1998), we show that using essentially the same item-based 
descriptions we have used for parsing, we can specify grammar transformations. The 
concept of value preserving grammar transformation is already known in the inter- 
section of formal language theory and algebra (Kuich 1997; Kuich and Salomaa 1986; 
Teitelbaum 1973). Our contribution is to show that these value preserving transforma- 
tions can be written as simple item-based descriptions, allowing the same computa- 
tional machinery to be used for grammar transformations as is used for parsing, and to 
some extent showing the relationship between certain grammar transformations and 
certain parsers, such as that of Graham, Harrison, and Ruzzo (1980). This uniform 
method of specifying grammar transformations is similar to, but clearer than, similar 
techniques used with covering grammars (Nijholt 1980; Leermakers 1989). 

7. Previous Work 

7.1 Historical Work 
The previous work in this area is extensive, including work in deductive parsing, 
work in statistical parsing, and work in the combination of formal language theory 
and algebra. This paper can be thought of as synthetic, combining the work in all three 
areas, although in the course of synthesis, several general formulas have been found, 
most notably the general formula for reverse values. A comprehensive examination of 
all three areas is beyond the scope of this paper, but we can touch on a few significant 
areas of each. 

First, there is the work in deductive parsing. This work in some sense dates back 
to Earley (1970), in which the use of items in parsers is introduced. More recent work 
(Pereira and Warren 1983; Pereira and Shieber 1987) demonstrates how to use deduc- 
tion engines for parsing. Finally, both Shieber, Schabes, and Pereira (1995) and Sikkel 
(1993) have shown how to specify parsers in a simple, interpretable, item-based format. 
This format is roughly the format we have used here, although there are differences 
due to the fact that their work was strictly in the Boolean semiring. 

Work in statistical parsing has also greatly influenced this work. We can trace this 
work back to research in HMMs by Baum and his colleagues (Baum and Eagon 1967; 
Baum 1972). In particular, the work of Baum developed the concept of backward prob- 
abilities (in the inside semiring), as well as many of the techniques for computing in 
the inside semiring. Viterbi (1967) developed corresponding algorithms for computing 
in the Viterbi semiring. Baker (1979) extended the work of Baum and his colleagues to 
PCFGs, including to computation of the outside values (or reverse inside values in our 
terminology). Baker's work is described by Lari and Young (1990). Baker's work was 
only for PCFGs in CNF, avoiding the need to compute infinite summations. Jelinek 
and Lafferty (1991) showed how to compute some of the infinite summations in the 
inside semiring, those needed to compute the prefix probabilities of PCFGs in CNF. 
Stolcke (1993) showed how to use the same techniques to compute inside probabili- 
ties for Earley parsing, dealing with the difficult problems of unary transitions, and 
the more difficult problems of epsilon transitions. He thus solved all of the important 
problems encountered in using an item-based parser to compute the inside and out- 
side values (forward and reverse inside values); he also showed how to compute the 
forward Viterbi values. 
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The final area of work is in formal language theory and algebra. Although it is not 
widely known, there has been quite a bit of work showing how to use formal power 
series to elegantly derive results in formal language theory, dating back to Chomsky 
and Sch~itzenberger (1963). The major classic results can be derived in this frame- 
work, but with the added benefit that they apply to all commutative w-continuous 
semirings. The most accessible introduction to this literature we have found is by 
Kuich (1997). There are also books by Salomaa and Soittola (1978) and Kuich and 
Salomaa (1986). 

One piece of work deserves special mention. Teitelbaum (1973) showed that any 
semiring could be used in the CKY algorithm, laying the foundation for much of the 
work that followed. 

In summary, this paper synthesizes work from several different related fields, in- 
cluding deductive parsing, statistical parsing, and formal language theory; we emulate 
and expand on the earlier synthesis of Teitelbaum. The synthesis here is powerful: by 
generalizing and integrating many results, we make the computation of a much wider 
variety of values possible. 

7.2 R e c e n t  S i m i l a r  W o r k  
There has also been recent similar work by Tendeau (1997b, 1997a). Tendeau (1997b) 
gives an Earley-like algorithm that can be adapted to work with complete semirings 
satisfying certain conditions. Unlike our version of Earley's algorithm, Tendeau's ver- 
sion requires time O(n L+I) where L is the length of the longest right-hand side, as 
opposed to O(n 3) for the classic version, and for our description. While one could split 
right-hand sides of rules to make them binary branching, speeding Tendeau's version 
up, this would then change values in the derivation semirings. Tendeau (1997b, 1997a) 
introduces a parse forest semiring, similar to our derivation forest semiring, in that 
it encodes a parse forest succinctly. To implement this semiring, Tendeau's version of 
rule value functions take as their input not only a nonterminal, but also the span that it 
covers; this is somewhat less elegant than our version. Tendeau (1997a) gives a generic 
description for dynamic programming algorithms. His description is very similar to 
our item-based descriptions, except that it does not include side conditions. Thus, al- 
gorithms such as Earley's algorithm cannot be described in Tendeau's formalism in a 
way that captures their efficiency. 

There are some similarities between our work and the work of Koller, McAllester, 
and Pfeffer (1997), who create a general formalism for handling stochastic programs 
that makes it easy to compute inside and outside probabilities. While their formalism 
is more general than item-based descriptions, in that it is a good way to express any 
stochastic program, it is also less compact than ours for expressing most dynamic pro- 
gramming algorithms. Our formalism also has advantages for approximating infinite 
sums, which we can do efficiently, and in some cases exactly. It would be interesting 
to try to extend item-based descriptions to capture some of the formalisms covered 
by Koller, McAllester, and Pfeffer, including Bayes' nets. 

8. C o n c l u s i o n  

In this paper, we have given a simple item-based description format that can be used 
to describe a very wide variety of parsers. These parsers include the CKY algorithm, 
Earley's algorithm, prefix probability computation, a TAG parsing algorithm, Graham, 
Harrison, Ruzzo (GHR) parsing, and HMM computations. We have shown that this de- 
scription format makes it easy to find parsers that compute values in any w-continuous 
semiring. The same description can be used to find reverse values in commutative w- 
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continuous semirings, and in many noncommutative ones as well. This description 
format can also be used to describe grammar transformations, including transfor- 
mations to CNF and GNF, which preserve values in any commutative w-continuous 
semiring. 

While theoretical in nature, this paper is of some practical value. There are three 
reasons the results of this paper would be used in practice: first, these techniques make 
computation of the outside values simple and mechanical; second, these techniques 
make it easy to show that a parser will work in any w-continuous semiring; and third, 
these techniques isolate computation of infinite sums in a given semiring from the 
parser specification process. 

Perhaps the most useful application of these results is in finding formulas for 
outside values. For parsers such as CKY parsers, finding outside formulas is not par- 
ticularly burdensome, but for complicated parsers such as TAG parsers, GHR parsers, 
and others, it can require a fair amount of thought to find these equations through 
conventional reasoning. With these techniques, the formulas can be found in a simple 
mechanical way. 

The second advantage comes from clarifying the conditions under which a parser 
can be converted from computing values in the Boolean semiring (a recognizer) to 
computing values in any w-continuous semiring. We should note that because in the 
Boolean semiring, infinite summations can be computed trivially and because repeat- 
edly adding a term does not change results, it is not uncommon for parsers that work 
in the Boolean semiring to require significant modification for other semirings. For 
parsers like CKY parsers, verifying that the parser will work in any semiring is triv- 
ial, but for other parsers the conditions are more complex. With the techniques in 
this paper, all that is necessary is to show that there is a one-to-one correspondence 
between item derivations and grammar derivations. Once that has been shown, any 
w-continuous semiring can be used. 

The third use of this paper is to separate the computation of infinite sums from 
the main parsing process. Infinite sums can come from several different phenomena, 
such as loops from productions of the form A --* A; productions involving ~; and 
left recursion. In traditional procedural specifications, the solution to these difficult 
problems is intermixed with the parser specification, and makes the parser specific to 
semirings using the same techniques for solving the summations. 

It is important to notice that the algorithms for solving these infinite summations 
vary fairly widely, depending on the semiring. On the one hand, Boolean infinite 
summations are nearly trivial to compute. For other semirings, such as the counting 
semiring, or derivation forest semiring, more complicated computations are required, 
including the detection of loops. Finally, for the inside semiring, in most cases only 
approximate techniques can be used, although in some cases, matrix inversion can be 
used. Thus, the actual parsing algorithm, if specified procedurally, can vary quite a 
bit depending on the semiring. 

On the other hand, using our techniques makes infinite sums easier to deal with 
in two ways. First, these difficult problems are separated out, relegated conceptu- 
ally to the parser interpreter, where they can be ignored by the constructor of the 
parsing algorithm. Second, because they are separated out, they can be solved once, 
rather than again and again. Both of these advantages make it significantly easier to 
construct parsers. Even in the case where, for efficiency, loops are precomputed off- 
line, as in GHR parsing, the same item-based representation and interpreter can be 
used. 

In summary, the techniques of this paper will make it easier to compute outside 
values, easier to construct parsers that work for any w-continuous semiring, and easier 
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to compute  infinite sums in those semirings. In 1973, Teitelbaum wrote: 

We have pointed out  the relevance of the theory of algebraic power  
series in noncommut ing  variables in order  to minimize further piece- 
meal rediscovery (page 199). 

Many of the techniques needed  to parse in specific semirings continue to be redis- 
covered, and outside formulas are der ived wi thout  observation of the basic formulas 
given here. We hope  this paper  will bring about  Teitelbaum's wish. 
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