
Semiring Parsing

J o s h u a G o o d m a n *
Microsoft Research

We synthesize work on parsing algorithms, deductive parsing, and the theory of algebra applied
to formal languages into a general system for describing parsers. Each parser performs abstract
computations using the operations of a semiring. The system allows a single, simple representation
to be used for describing parsers that compute recognition, derivation forests, Viterbi, n-best,
inside values, and other values, simply by substituting the operations of different semirings. We
also show how to use the same representation, interpreted differently, to compute outside values.
The system can be used to describe a wide variety of parsers, including Earley's algorithm, tree
adjoining grammar parsing, Graham Harrison Ruzzo parsing, and prefix value computation.

1. Introduct ion

For a given grammar and string, there are many interesting quantities we can compute.
We can determine whether the string is generated by the grammar; we can enumerate
all of the derivations of the string; if the grammar is probabilistic, we can compute the
inside and outside probabilities of components of the string. Traditionally, a different
parser description has been needed to compute each of these values. For some parsers,
such as CKY parsers, all of these algorithms (except for the outside parser) strongly
resemble each other. For other parsers, such as Earley parsers, the algorithms for
computing each value are somewhat different, and a fair amount of work can be
required to construct each one. We present a formalism for describing parsers such
that a single simple description can be used to generate parsers that compute all of
these quantities and others. This will be especially useful for finding parsers for outside
values, and for parsers that can handle general grammars, like Earley-style parsers.

Although our description format is not limited to context-free grammars (CFGs),
we will begin by considering parsers for this common formalism. The input string will
be denoted wlw2.. . Wn. We will refer to the complete string as the sentence. A CFG G
is a 4-tuple (N, ~, R, S) where N is the set of nonterminals including the start symbol
S, ~ is the set of terminal symbols, and R is the set of rules, each of the form A --* a
for A c N and a E (N U ~)*. We will use the symbol ~ for immediate derivation and

for its reflexive, transitive closure.
We will illustrate the similarity of parsers for computing different values using

the CKY algorithm as an example. We can write this algorithm in its iterative form
as shown in Figure 1. Here, we explicitly construct a Boolean chart, chart[1..n, 1..IN I,
1..n + 1]. Element chart[i,A,j] contains TRUE if and only if A G wi . . . wj-1. The algo-
rithm consists of a first set of loops to handle the singleton productions, a second set of
loops to handle the binary productions, and a return of the start symbol's chart entry.

Next, we consider probabilistic grammars, in which we associate a probability
with every rule, P(A --* a). These probabilities can be used to associate a probability

* One Microsoft Way, Redmond, WA 98052. E-mail: joshuago@microsoft.com

Q 1999 Association for Computational Linguistics

Computational Linguistics Volume 25, Number 4

boolean chart[1..n, 1..IN I, 1..n+1] := FALSE;
for s := 1 to n/* start position */

for each rule A -+ ws c R
chart[s, A, s+ l] := TRUE;

for l := 2 to n /* length, shortest to longest */
for s := 1 to n- l+1/*s tar tpos i t ion */

for t := 1 to / - 1/* split length */
for each rule A -+ B C ¢ R

/* extra TRUE for expository purposes */
chart[s, A, s.l.l] := chart[s, A, s+l] V

(chart[s, B, s + t] A chart[s ÷ t, C, s + l] A TRUE);
re turn chart[l, S, n+ 1];
Figure 1
CKY recognition algorithm.

float chart[1..n, 1..IN[, 1..n÷1] := 0;
for s := I to n/* start position */

for each rule A --+ ws E R
chart[s, A, s+ l] := P (A --+ ws);

for / := 2 to n /* length, shortest to longest */
for s := I to n - l + l /* start position */

for t := 1 to 1 - 1/* split length */
for each rule A -+ B C c R

chart[s, A, s+l] := chart[s, A, s+l] +
(chart[s, B, s+t] x chart[s+t, C, s+l] x P (A -+ BC));

return chart[l, S, n+ 1];

Figure 2
CKY inside algorithm.

with a particular derivation, equal to the produc t of the rule probabilities used in the

derivation, or to associate a probabil i ty with a set of derivations, A ~ wi. • • wj-1 equal
to the sum of the probabilities of the individual derivations. We call this latter prob-
ability the inside probabil i ty of i ,A,j . We can rewrite the CKY algori thm to compute
the inside probabilities, as shown in Figure 2 (Baker 1979; Lari and Young 1990).

Notice how similar the inside algori thm is to the recognition algorithm: essentially,
all that has been done is to substitute + for V, x for A, and P(A ~ ws) and P(A ~ BC)
for TRUE. For many parsing algorithms, this, or a similarly simple modification, is all
that is needed to create a probabilistic version of the algorithm. On the other hand, a
simple substi tution is not always sufficient. To give a trivial example, if in the CKY
recognition algori thm we had wri t ten

chart[s,A,s÷l] := chart[s,A,s÷l] V chart[s,B,s÷t] A chart[s+t,C,s÷l];

instead of the less natural

chart[s, A, s÷l] := chart[s,A, s,l,l] V chart[s, B, s+t] A chart[s+t, C, s-t-l] A TRUE;

larger changes would be necessary to create the inside algorithm.
Besides recognition, four other quantities are commonly computed by parsing

algorithms: derivat ion forests, Viterbi scores, number of parses, and outside proba-
bilities. The first quantity, a derivat ion forest, is a data structure that allows one to

574

Goodman Semiring Parsing

efficiently compute the set of legal derivations of the input string. The derivation for-
est is typically found by modifying the recognition algorithm to keep track of "back
pointers" for each cell of how it was produced. The second quantity often computed
is the Viterbi score, the probability of the most probable derivation of the sentence.
This can typically be computed by substituting x for A and max for V. Less commonly
computed is the total number of parses of the sentence, which, like the inside values,
can be computed using multiplication and addition; unlike for the inside values, the
probabilities of the rules are not multiplied into the scores. There is one last commonly
computed quantity, the outside probabilities, which we will describe later, in Section 4.

One of the key points of this paper is that all five of these commonly com-
puted quantities can be described as elements of complete semirings (Kuich 1997).
The relationship between grammars and semirings was discovered by Chomsky and
Schiitzenberger (1963), and for parsing with the CKY algorithm, dates back to Teit-
elbaum (1973). A complete semiring is a set of values over which a multiplicative
operator and a commutative additive operator have been defined, and for which infi-
nite summations are defined. For parsing algorithms satisfying certain conditions, the
multiplicative and additive operations of any complete semiring can be used in place
of A and V, and correct values will be returned. We will give a simple normal form
for describing parsers, then precisely define complete semirings, and the conditions
for correctness.

We now describe our normal form for parsers, which is very similar to that used
by Shieber, Schabes, and Pereira (1995) and by Sikkel (1993). This work can be thought
of as a generalization from their work in the Boolean semiring to semirings in general.
In most parsers, there is at least one chart of some form. In our normal form, we
will use a corresponding, equivalent concept, items. Rather than, for instance, a chart
element chart[i,A,j], we will use an item [i,A,j]. Furthermore, rather than use explicit,
procedural descriptions, such as

chart[s,A,s+l] := chart[s,A,s+l] V chart[s,B,s+t] A chart[s+t,C,s+l] A TRUE

we will use inference rules such as

R(A ~ BC) [i,B,k] [k,C,j]
[i,A,j]

The meaning of an inference rule is that if the top line is all true, then we can conclude
the bottom line. For instance, this example inference rule can be read as saying that if

A ~ BC and B G w i . . . Wk-1 and C ~ wk . . . wj-1, then A G w l . . . Wj_l.
The general form for an inference rule will be

A1 " . Ak
B

where if the conditions A1 . . . Ak are all true, then we infer that B is also true. The Ai
can be either items, or (in an extension of the usual convention for inference rules)
rules, such as R(A ~ BC). We write R(A ---* BC) rather than A --~ BC to indicate that
we could be interested in a value associated with the rule, such as the probability of
the rule if we were computing inside probabilities. If a n Ai is in the form R(...), we
call it a rule. All of the Ai must be rules or items; when we wish to refer to both rules
and items, we use the word terms.

We now give an example of an item-based description, and its semantics. Figure 3
gives a description of a CKY-style parser. For this example, we will use the inside

575

Computational Linguistics Volume 25, Number 4

Item form:
[i, A, j]

Goal:
[1, S, n + 1]

Rules:

R(A -+ wi)
{i ,A,i+l]

R(A --+ BC) [i, B, k] [k, C, j]
[i, A, j]

Figure 3
Item-based description of a CKY parser.

Unary

Binary

semiring, whose additive operator is addit ion and whose multiplicative operator is
multiplication. We use the input string xxx to the following grammar:

S ~ X X 1.0
X --* X X 0.2
X --* x 0.8

(1)

Our first step is to use the unary rule,

R(A wi)
[i,A,i+l]

The effect of the unary rule will exactly parallel the first set of loops in the CKY inside
algorithm. We will instantiate the free variables of the unary rule in every possible
way. For instance, we instantiate the free variable i with the value 1, and the free
variable A with the nonterminal X. Since wl = x, the instantiated rule is then

R(x x)
[1,X,2]

Because the value of the top line of the instantiated unary rule, R(X ---, x), has value
0.8, we deduce that the bot tom line, [1,X, 2], has value 0.8. We instantiate the rule in
two other ways, and compute the following chart values:

[1,X,2] = 0.8

[2,X,3] = 0.8

[3,X,4] = 0.8

Next, we will use the binary rule,

R(A --* BC) [i, B, k] [k, C,j]
[i,A,j]

The effect of the binary rule will parallel the second set of loops for the CKY inside
algorithm. Consider the instantiation i = 1, k -- 2, j = 3, A -- X, B = X, C -- X,

R(X ~ XX) [1, X, 2] [2, X, 3]
[1,X,3]

576

Goodman Semiring Parsing

We use the multiplicative operator of the semiring of interest to mult iply together the
values of the top line, deducing that [1, X, 3] = 0.2 x 0.8 x 0.8 = 0.128. Similarly,

[1,X,3] = 0.128

[2,X,4] = 0.128

[1,S,3] -- 0.64

[2,S,4] = 0.64

There are two more ways to instantiate the conditions of the binary rule:

R(S --~ X X) [1, X, 2] [2, X,4]
[1, S, 4]

R(S --+ X X) [1,X,3] [3, X,4]
[1, S, 4]

The first has the value 1 x 0.8 x 0.128 = 0.1024, and the second also has the value
0.1024. When there is more than one way to derive a value for an item, we use the
addit ive operator of the semiring to sum them up. Thus, [1, S, 4] -- 0.2048. Since [1, S, 4]
is the goal item for the CKY parser, we know that the inside value for xxx is 0.2048.
The goal item exactly parallels the return statement of the CKY inside algorithm.

1.1 Earley Parsing
Many parsers are much more complicated than the CKY parser, and we will need to
expand our notat ion a bit to describe them. Earley's algori thm (Earley 1970) exhibits
most of the complexities we wish to discuss. Earley's algori thm is often described as
a bot tom-up parser with top-down filtering. In a probabilistic framework, the bot tom-
up sections compute probabilities, while the top-down filtering nonprobabilistically
removes items that cannot be derived. To capture these differences, we expand our
notation for deduct ion rules, to the following:

a l " " a k C 1 . . . C j
B

C1 " " Cj are side conditions, interpreted nonprobabilistically, while A1 .-- Ak are main
conditions with values in whichever semiring we are using. 1 While the values of all
main conditions are mult iplied together to yield the value for the i tem under the line,
the side conditions are interpreted in a Boolean manner: if all of them are nonzero,
the rule can be used, but if any of them are zero, it cannot be. Other than for checking
whether they are zero or nonzero, their values are ignored.

Figure 4 gives an item-based description of Earley's parser. We assume the addit ion
of a dist inguished nonterminal S' with a single rule S' --+ S. An item of the form

[i,A --, c~ ,J fl, j] asserts that A ~ aft G w i . . . wj- l f l .

1 The side condi t ions m a y depend on any pure ly local i n fo rma t ion - - t he va lues of A 1 . . . Ak, B, or
C1 ... Cj, as well as cons tant global functions, such as R(X) ~6 sin(Y) (a s suming here X and Y are
variables in the A, B, C). The side condi t ions usua l ly cannot d e p e n d on any contextual informat ion,
such as the grandfa ther of A1, wh i ch wou l d not be well defined, s ince there m i g h t be m a n y der ivat ions
of A1. Of course, one could encode the grandfa ther of A1 as a variable in the i tem A1, and then have a
dependency on that variable. This w o u l d guaran tee that the context was un ique and well defined.

577

Computational Linguistics Volume 25, Number 4

Item form:
[i , A - ~ a . fl, j]

Goal:
[1,s' ~ S. , n+ l]

Rules:

[1, S' -~ • S, 1]

[i, A -~ a • w j f l , j]
[i ,A -~ a w j • fl, j + l]

R (B --+ "7) [i, A ~ a • Bfl , j]
[j ,B ~ - '7,j]

[i, A --+ a • B f l , k l [k, B ~ "7 • , j]
[i, A -+ a B • fl, j]

Figure 4
Item-based description of Earley parser.

Initialization

Scanning

Prediction

Completion

The prediction rule includes a side condition, making it a good example. The
rule is:

R (B ~ ' 7) [i , A ~ a . Bfl, j] ~,--~ 7_~ . ~,j]

Through the prediction rule, Earley's algorithm guarantees that an item of the form
~', B -+ • '7,j] can only be produced if S ~ Wl . . . w j _ l B 6 for some 6; this top-down
filtering leads to significantly more efficient parsing for some grammars than the CKY
algorithm. The prediction rule combines side and main conditions. The side condi-
tion, [i ,A --+ ce • Bfl , j], provides the top-down filtering, ensuring that only items that
might be used later by the completion rule can be predicted, while the main con-
dition, R (B --+ "7), provides the probability of the relevant rule. The side condition
is interpreted in a Boolean fashion, while the main condition's actual probability is
used.

Unlike the CKY algorithm, Earley's algorithm can handle grammars with ep-
silon (e), unary, and n-ary branching rules. In some cases, this can significantly com-
plicate parsing. For instance, given unary rules A --+ B and B --+ A, a cycle ex-
ists. This kind of cycle may allow an infinite number of different derivations, re-
quiring an infinite summation to compute the inside probabilities. The ability of
item-based parsers to handle these infinite loops with relative ease is a major
attraction.

1.2 O v e r v i e w
This paper will simplify the development of new parsers in three important ways.
First, it will simplify specification of parsers: the item-based description is simpler
than a procedural description. Second, it will make it easier to generalize parsers
across tasks: a single item-based description can be used to compute values for a
variety of applications, simply by changing semirings. This will be especially ad-
vantageous for parsers that can handle loops resulting from rules like A --+ A and
computations resulting from ¢ productions, both of which typically lead to infinite
stuns. In these cases, the procedure for computing an infinite sum differs from semi-

578

Goodman Semiring Parsing

ring to semiring, and the fact that we can specify that a parser computes an in-
finite sum separately from its method of comput ing that sum will be very help-
ful. The third use of these techniques is for comput ing outside probabilities, val-
ues related to the inside probabilities that we will define later. Unlike the other
quantities we wish to compute, outside probabilities cannot be computed by sim-
ply substituting a different semiring into either an iterative or i tem-based descrip-
tion. Instead, we will show how to compute the outside probabilities using a mod-
ified interpreter of the same item-based description used for comput ing the other
values.

In the next section, we describe the basics of semiring parsing. In Section 3, we
derive formulas for comput ing most of the values in semiring parsers, except out-
side values, and then in Section 4, show how to compute outside values as well. In
Section 5, we give an algori thm for interpreting an item-based description, followed
in Section 6 by examples of using semiring parsers to solve a variety of problems.
Section 7 discusses previous work, and Section 8 concludes the paper.

2. Semiring Parsing

In this section we first describe the inputs to a semiring parser: a semiring, an item-
based description, and a grammar. Next, we give the conditions under which a semi-
ring parser gives correct results. At the end of this section we discuss three especially
complicated and interesting semirings.

2.1 Semiring
In this subsection, we define and discuss semirings (see Kuich [1997] for an intro-
duction). A semiring has two operations, • and ®, that intuitively have most (but
not necessarily all) of the propert ies of the conventional + and x operations on the
positive integers. In particular, we require the following properties: ® is associative
and commutative; ® is associative and distributes over G. If @ is commutat ive, we
will say that the semiring is commutative. We assume an addit ive identi ty element,
which we write as 0, and a multiplicative identi ty element, which we write as 1. Both
addit ion and multiplication can be defined over finite sets of elements; if the set is
empty, then the value is the respective identity element, 0 or 1. We also assume that
x @ 0 = 0 ® x = 0 for all x. In other words, a semiring is just like a ring, except that the
additive operator need not have an inverse. We will write /A, ®, ®, 0,1 / to indicate a
semiring over the set A with addit ive operator ®, multiplicative operator @, addit ive
identi ty 0, and multiplicative identi ty 1.

For parsers with loops, i.e., those in which an i tem can be used to derive itself,
we will also require that sums of an infinite number of elements be well defined. In
particular, we will require that the semirings be complete (Kuich 1997, 611). This means
that sums of an infinite number of elements should be associative and commutat ive,
just like finite sums, and that multiplication should distribute over infinite sums, just
as it does over finite ones. All of the semirings we will deal with in this paper are
complete. 2

All of the semirings we discuss here are also w-continuous. Intuitively, this means
that if any partial sum of an infinite sequence is less than or equal to some value,

2 Completeness is a somewhat stronger condition than we really need; we could, instead, require that
limits be appropriately defined for those infinite sums that occur while parsing, but this weaker
condition is more complicated to describe precisely.

579

Computational Linguistics Volume 25, Number 4

boolean
inside
Viterbi
counting
derivation forest
Viterbi-derivation

Viterbi-n-best

Figure 5

({TRUE, FALSE }, V, A, FALSE, TRUE)
+, x, o, 1>

(II~, max, x, O, 1)
(I ~ , +, ×,0, 1)

{0}>
(l~ 1 x 2E, max, x, (0,0>, (1, {(>}>>

Vii Vit

({topn(X)IX E 2~ x~}, max, x , 0,
Vit-n

{0,{<>}>}>

Semirings used: {A, @, ®, 0,1/.

recognition
string probability
prob. of best derivation
number of derivations
set of derivations
best derivation

best n derivations

then the infinite sum is also less than or equal to that value. 3 This important property
makes it easy to compute, or at least approximate, infinite sums.

There will be several especially useful semirings in this paper, which are defined
in Figure 5. We will write P~ to indicate the set of real numbers from a to b inclusive,
with similar notation for the natural numbers, N. We will write E to indicate the
set of all derivations in some canonical form, and 2 n to indicate the set of all sets
of derivations in canonical form. There are three derivation semirings: the derivation
forest semiring, the Viterbi-derivation semiring, and the Viterbi-n-best semiring. The
operators used in the derivation semirings (., max, x, max, and x) will be described

Vit Vit Vit-n Vit-n
later, in Section 2.5.

The inside semiring includes all nonnegative real numbers, to be closed under
addition, and includes infinity to be closed under infinite sums, while the Viterbi
semiring contains only numbers up to 1, since under max this still leads to closure.

The three derivation forest semirings can be used to find especially important val-
ues: the derivation forest semiring computes all derivations of a sentence; the Viterbi-
derivation semiring computes the most probable derivation; and the Viterbi-n-best
semiring computes the n most probable derivations. A derivation is simply a list
of rules from the grammar. From a derivation, a parse tree can be derived, so the
derivation forest semiring is analogous to conventional parse forests. Unlike the other
semirings, all three of these semirings are noncommutative. The additive operation
of these semirings is essentially union or maximum, while the multiplicative oper-
ation is essentially concatenation. These semirings are described in more detail in
Section 2.5.

2.2 Item-based Description
A semiring parser requires an item-based description of the parsing algorithm, in the
form given earlier. So far, we have skipped one important detail of semiring parsing. In
a simple recognition system, as used in deduction systems, all that matters is whether
an item can be deduced or not. Thus, in these simple systems, the order of processing
items is relatively unimportant, as long as some simple constraints are met. On the
other hand, for a semiring such as the inside semiring, there are important ordering
constraints: we cannot compute the inside value of an item until the inside values of

3 To be more precise, all semirings we discuss here are naturally ordered, meaning that we can define a
partial ordering, _U, such that x _U y if and only if there exists z such that x @ z ---- y. We call a naturally
ordered complete semiring w-continuous (Kuich 1997, 612) if for any sequence Xl, x2 and for any
constant y, if for all n, (~o<_i<_n xi U_ y, then (~ i xi U_ y.

580

Goodman Semiring Parsing

all of its children have been computed.
Thus, we need to impose an ordering on the items, in such a way that no i tem

precedes any item on which it depends. We will assign each i tem x to a "bucket"
B, writ ing bucket(x) = B and saying that i tem x is associated with B. We order the
buckets in such a way that if i tem y depends on i tem x, then bucket(x) <_ bucket(y). For
some pairs of items, it may be that both depend, directly or indirectly, on each other;
we associate these items with special " looping" buckets, whose values may require
infinite sums to compute. We will also call a bucket looping if an i tem associated with
it depends on itself.

One way to achieve a bucket ing with the required ordering constraints (suggested
by Fernando Pereira) is to create a graph of the dependencies, with a node for each
item, and an edge from each i tem x to each i tem b that depends on it. We then
separate the graph into its strongly connected components (maximal sets of nodes all
reachable from each other), and per form a topological sort. Items forming singleton
strongly connected components are associated with their own buckets; items forming
nonsingleton strongly connected components are associated with the same looping
bucket. See also Section 5.

Later, when we discuss algorithms for interpreting an i tem-based description, we
will need another concept. Of all the items associated with a bucket B, we will be
able to find derivations for only a subset. If we can derive an i tem x associated with
bucket B, we write x E B, and say that i tem x is in bucket B. For example, the goal
item of a parser will almost always be associated with the last bucket; if the sentence
is grammatical, the goal i tem will be in the last bucket, and if it is not grammatical, it
will not be.

It will be useful to assume that there is a single, variable-free goal item, and that
this goal i tem does not occur as a condition for any rules. We could always add a

[old-goal]
new goal i tem ~oal] and a rule ~oal] where [old-goal] is the goal in the original

description.

2.3 The Grammar
A semiring parser also requires a g rammar as input. We will need a list of rules in the
grammar, and a function, R(rule), that gives the value for each rule in the grammar.
This latter function will be semiring-specific. For instance, for comput ing the inside
and Viterbi probabilities, the value of a g rammar rule is just the conditional probabili ty
of that rule, or 0 if it is not in the grammar. For the Boolean semiring, the value is
TRUE if the rule is in the grammar, FALSE otherwise. R(rule) replaces the set of rules
R of a conventional g rammar description; a rule is in the grammar if R(rule) ~ O.

2.4 Conditions for Correct Processing
We will say that a semiring parser works correctly if, for any grammar, input, and
semiring, the value of the input according to the grammar equals the value of the input
using the parser. In this subsection, we will define the value of an input according
to the grammar, define the value of an input using the parser, and give a sufficient
condition for a semiring parser to work correctly. From this point onwards, unless we
specifically ment ion otherwise, we will assume that some fixed semiring, i tem-based
description, and grammar have been given, wi thout specifically ment ioning which
ones.

2.4.1 Value According to Grammar. Consider a derivation E, consisting of grammar
rules el, e2 era. We define the value of the derivat ion according to the grammar to

581

Computational Linguistics Volume 25, Number 4

be simply the product (in the semiring) of the values of the rules used in E:

m

VG(E) : @ R(ei)
i:1

Then we can define the value of a sentence that can be der ived using grammar deriva-
tions E 1, E 2 E k to be:

k

v~ = (D v~(EJ)
j=1

where k is potential ly infinite. In other words, the value of the sentence according to
the grammar is the sum of the values of all derivations. We will assume that in each
grammar formalism there is some way to define derivations uniquely; for instance, in
CFGs, one way would be using left-most derivations. For simplicity, we will s imply
refer to derivations, rather than, for example, left-most derivations, since we are never
interested in nonunique derivations.

A short example will help clarify. We consider the following grammar:

s ~ AA a(S-+AA)
A --+ AA a (A - + A A)
A --+ a R (A - + a)

(2)

and the input string aaa. There are two grammar derivations, the first of which
~ S - - + A A , , A - - + A A , , --A---+a . .A---+a --A---+a is ~ => A m ~ A A A ~ aA A ~ aaA ~ aaa, which has value R(S --+ A A) ® R (A --+

A A) ® R (A --+ a) ® R (A --+ a) ® R (A --+ a). Notice that the rules in the value are
the same rules in the same order as in the derivation. The other g rammar deriva-

~ S - - * A A - - ~ A - - * a ~ A - - + A A __ ~ A - - * a __A--*a
tion is ~ ~ .4.4 ~ aA => aA A ~ aaA => aaa, which has value R(S --+ A A) ® R (A --+
a) ® R (A -+ A A) ® R (A --+ a) ® R (A ---* a). The value of the sentence is the sum of the
values of the two derivations,

[R(s --+ AA) ® R(A -+ AA) 0 a (A --+ a) ® R(A --+ ~) ® R(A --+ a)] •

[a(S --+ AA) O R(A --+ a) ® R(A --+ AA) ® R(A -* a) ® R(A --+ ~)]

2.4.2 I tem Der ivat ions . Next, we define i tem derivations, i.e., derivations using the
i tem-based description of the parser. We define i tem derivat ion in such a way that
for a correct parser description, there is exactly one i tem derivat ion for each g rammar
derivation. The value of a sentence using the parser is the sum of the value of all
i tem derivations of the goal item. Just as with g rammar derivations, individual i tem
derivations are finite, but there may be infinitely m an y i tem or g rammar derivations
of a sentence.

We say that ~ Cl . . . cj is an instantiat ion of deduct ion rule A1 .B. Ak C 1 . . . Cj

whenever the first expression is a variable-free instance of the second; that is, the first
expression is the result of consistently substituting constant terms for each variable in
the second. Now, we can define an i t em der ivat ion tree. Intuitively, an item derivat ion

582

Goodman Semiring Parsing

sS--•AA----A-•AA------A-.-•a - - - -A . -+a --A.--~a
=:~ A A :=~ A A A ::~ a A A =~ a a A =:~ a a a

G r a m m a r Derivation

R(S --+ AA)

R(A ~ ~ - ~ a)

a)

G r a m m a r Derivation Tree

[1, S, 4]

R(S ,4]

- - + ~ A ~ R (A --~ a)
R(A ,3]

I I
_ R(A--+a) _ R (A ~ a)
I t em Derivation] t ee

R(S -~ AA) ® R(A ~ AA) ® R(A --+ a) ® R(A ~ a) ® R(A -+ a)
Derivation Value

Figure 6
Grammar derivation, grammar derivation tree, item derivation tree, and derivation value.

tree for x just gives a w a y of deducing x f rom the g r a m m a r rules. We define an
i tem der ivat ion tree recursively. The base case is rules of the g rammar : (r / is an i tem
der ivat ion tree, where r is a rule of the grammar . Also, if Dal Da k, Dcl Dcj are

der ivat ion trees headed by al... ak, Cl... Cj respectively, and if ~ c l . . . cj is the

instantiat ion of a deduct ion rule, then (b: D~ 1 D~k/ is also a der ivat ion tree. Notice
that the De1 • •. Dq do not occur in this tree: they are side conditions, and a l though their
existence is required to p rove that cl • .. cj could be derived, they do not contribute to

the value of the tree. We will wri te a l . . . ak b to indicate that there is an i tem deri-

va t ion tree of the fo rm (b: Da, Dakl. As ment ioned in Section 2.2, we will wri te
x E B if bucket(x) = B and there is an i tem der ivat ion tree for x.

We can continue the example of pars ing aaa, n o w using the i tem-based CKY parser
of Figure 3. There are two i tem derivat ion trees for the goal item; in Figure 6, we give
the first as an example, d isplaying it as a tree, rather than wi th angle bracket notation,
for simplicity.

Notice that an i tem der ivat ion is a tree, not a directed graph. Thus, an i tem sub-
der ivat ion could occur mul t ip le t imes in a given i tem derivation. This means that

583

Computational Linguistics Volume 25, Number 4

we can have a one-to-one correspondence be tween i tem derivat ions and g r a m m a r
derivations; loops in the g r a m m a r lead to an infinite n u m b e r of g r a m m a r derivations,
and an infinite n u m b e r of cor responding i tem derivations.

A g r a m m a r including rules such as

S --, AAA

A --+ B

A ~ a

B --* A

B --,

wou ld al low der ivat ions such as S ~ A A A ~ BAA ~ A A ~ BA ~ A ~ B ~ e.
We wou ld include the exact same i tem der ivat ion showing A ~ B ~ ~ three times.
Similarly, for a der ivat ion such as A ~ B ~ A ~ B ~ A =~ a, we wou ld have a
cor responding i tem der ivat ion tree that included mul t ip le uses of the A --* B and
B --* A rules.

2.4.3 Value of I t em Der iva t ion . The value of an i tem der ivat ion D, V(D), is the p roduc t
of the value of its rules, R(r), in the same order that they appea r in the i tem der ivat ion
tree. Since rules occur only in the leaves of i tem der ivat ion trees, the order is precisely
determined. For an i tem der ivat ion tree D wi th rule values dl , d2 dj as its leaves,

J
V(D) = @ R(di)

i=1

(3)

Alternatively, we can write this equat ion recursively as

[R(D) if D is a rule
V(D) = I@~--1 V(Di) if D = (b: D1 , . . . , Dk} (4)

Cont inuing our example , the value of the i tem der ivat ion tree of Figure 6 is

R(s AA) ® R(A a) ® R(A AA) ® R(A a) ® R(A a)

the same as the value of the first g r a m m a r derivation.
Let inner(x) represent the set of all i tem der ivat ion trees headed b y an i tem x. Then

the value of x is the s u m of all the values of all i tem der ivat ion trees headed b y x.
Formally,

V(x)= V(D)
DEinner(x)

The value of a sentence is just the value of the goal item, V(goal).

2.4.4 I s o - v a l u e d D e r i v a t i o n s . In certain cases, a part icular g r a m m a r der ivat ion and a
part icular i tem der ivat ion will have the same value for any semir ing and any rule value
function R. In this case, we say that the two der ivat ions are iso-valued. In particular, if
and only if the same rules occur in the same order in bo th derivations, then their values
will a lways be the same, and they are iso-valued. In Figure 6, the g r a m m a r der ivat ion
and i tem der ivat ion mee t this condition. In some cases, a g r a m m a r der ivat ion and an

584

Goodman Semiring Parsing

item derivation will have the same value for any commutative semiring and any rule
value function. In this case, we say that the derivations are commutatively iso-valued.

Finishing our example, the value of the goal item given our example sentence is
just the sum of the values of the two item-based derivations,

[R(S ---* AA) @ R(A --~ AA) @ R(A --~ a) @ R(A ~ a) @ R(A ---* a)] @
[R(S ~ AA) ® R(A ~ a) ® R(A - . AA) ® R(A ~ a) ® R(A ~ a) l

This value is the same as the value of the sentence according to the grammar.

2.4.5 Conditions for Correctness. We can now specify the conditions for an item-based
description to be correct.

Theorem 1
Given an item-based description I, if for every grammar G, there exists a one-to-one
correspondence between the item derivations using I and the grammar derivations,
and the corresponding derivations are iso-valued, then for every complete semiring,
the value of a given input wl . . . wn is the same according to the grammar as the value
of the goal item. (If the semiring is commutative, then the corresponding derivations
need only be commutatively iso-valued.)

Proof
The proof is very simple; essentially, each term in each sum occurs in the other. By
hypothesis, for a given input, there are grammar derivations E1 . . . Ek (for 0 < k < o0)
and corresponding item derivation trees D1 .. • Dk of the goal item. Since corresponding
items are iso-valued, for all i, V(Ei) ~- V(Di). (If the semiring is commutative, then
since the items are commutatively iso-valued, it is still the case that for all i, V(Ei) --
V(Di).) Now, since the value of the string according to the grammar is just (~i V(Ei) =
(~i V(Di) , and the value of the goal item is E)i V(Di) , the value of the string according
to the grammar equals the value of the goal item. []

There is one additional condition for an item-based description to be usable in
practice, which is that there be only a finite number of derivable items for a given
input sentence; there may, however, be an infinite number of derivations of any item.

2.5 The Derivation Semirings
All of the semirings we use should be familiar, except for the derivation semirings,
which we now describe. These semirings, unlike the other semirings described in
Figure 5, are not commutative under their multiplicative operator, concatenation.

In many parsers, it is conventional to compute parse forests: compact represen-
tations of the set of trees consistent with the input. We will use a related concept,
derivation forests, a compact representation of the set of derivations consistent with
the input, which corresponds to the parse forest for CFGs, but is easily extended to
other formalisms.

Often, we will not be interested in the set of all derivations, but only in the most
probable derivation. The Viterbi-derivation semiring computes this value. Alterna-
tively, we might want the n best derivations, which would be useful if the output of
the parser were passed to another stage, such as semantic disambiguation; this value
is computed by the Viterbi-n-best derivation semiring.

Notice that each of the derivation semirings can also be used to create trans-
ducers. That is, we simply associate strings rather than grammar rules with each

585

Computational Linguistics Volume 25, Number 4

rule value. Instead of g rammar rule concatenation, we per form string concatena-
tion. The derivat ion semiring then corresponds to nondeterminist ic transductions;
the Viterbi semiring corresponds to a weighted or probabilistic transducer; and the
Viterbi-n-best semiring could be used to get n-best lists from probabilistic transduc-
ers.

2.5.1 Der iva t ion Forest. The derivat ion forest semiring consists of sets of derivations,
where a derivat ion is a list of rules of the grammar. 4 Sets containing one rule, such as
{ (X --* YZ)} for a CFG, constitute the primitive elements of the semiring. The addit ive
operator kJ produces a union of derivations, and the multiplicative operator- produces
the concatenation, one derivat ion concatenated with the next. The concatenation op-
eration (.) is defined on both derivations and sets of derivations; when applied to a
set of derivations, it produces the set of pairwise concatenations. The addit ive identi ty
is s imply the empty set, 0: union with the empty set is an identi ty operation. The
multiplicative identi ty is the set containing the empty derivation, {0}: concatenat ion
with the empty derivat ion is an identi ty operation. Derivations need not be complete.
For instance, for CFGs, {(X --* YZ, Y ~ y)} is a valid element, as is {(Y --* y, X ~ x)}.
In fact, {(X ~ A, B --* b)} is a valid element, a l though it could not occur in a valid
g rammar derivation, or in a correctly functioning parser. An example of concatenation
of sets is {(A ~ a),(B ~ b)}. {(C ~ c),(D ~ d)} = {(A ~ a,C -+ c),(A --* a,D
a), (B b, C c), (B b, D - . a)}.

Potentially, derivat ion forests are sets of infinitely m an y items. However , it is still
possible to store them using finite-sized representations. Elsewhere (Goodman 1998),
we show how to implement derivat ion forests efficiently, using pointers, in a manner
analogous to the typical implementat ion of parse forests, and also similar to the work
of Billot and Lang (1989). Using these techniques, both union and concatenation can
be implemented in constant time, and even infinite unions will be reasonably efficient.

2.5.2 Viterbi-derivation Semiring. The Viterbi-derivation semiring computes the most
probable derivat ion of the sentence, given a probabilistic grammar. Elements of this
semiring are a pair, a real number v and a derivat ion forest E, i.e., the set of derivations
with score v. We define max, the addit ive operator, as

Vit

(v,E) if v > w
m a x ((v , E) , (w , D)) = (w,D) i f v < w

Vit (V , E kJ D) if v = w

In typical practical Viterbi parsers, when two derivations have the same value, one of
the derivations is arbitrarily chosen. In practice, this is usually a fine solution, and one
that could be used in a real-world implementat ion of the ideas in this paper, but f rom
a theoretical viewpoint , the arbitrary choice destroys the associative proper ty of the
addit ive operator, max. To preserve associativity, we keep derivat ion forests of all ele-

ments that tie for beret.
The definition for max is only defined for two elements. Since the operator is

Vit
associative, it is clear how to define max for any finite number of elements, but we also

Vit
need infinite summations to be defined. We use the supremum, sup: the su p rem u m
of a set is the smallest value at least as large as all elements of the set; that is, it is a

4 This semiring is equivalent to one well known to mathematicians, the polynomials over
noncommuting variables.

586

Goodman Semiring Parsing

max imum that is defined in the infinite case. We can now define max for the case of
vit

infinite sums. Let

W ~- s u p V

(v,E>6X

D = {EI<w,E> E X}

Then max X = (w, D/. D is potential ly empty, but this causes us no problems in
vit

theory, and will not occur in practice. We define x as
vit

(v, E I vXit(w, D> = (v x w, E. D>

where E • D represents the concatenation of the two derivation forests.

2.5.3 Viterbi-n-best Semiring. The last kind of derivation semiring is the Viterbi-n-
best semiring, which is used for constructing n-best lists. Intuitively, the value of a
string using this semiring will be the n most likely derivations of that string (unless
there are fewer than n total derivations.) In practice, this is actually how a Viterbi-n-best
semiring would typically be implemented. From a theoretical viewpoint , however, this
implementat ion is inadequate, since we must also define infinite stuns and be sure that
the distributive proper ty holds. Elsewhere (Goodman 1998), we give a mathematical ly
precise definition of the semiring that handles these cases.

3. Efficient Computation of Item Values

Recall that the value of an i tem x is just V(x) = (~Deinner(x)V(D) , the sum of the
values of all derivation trees headed by x. This definition m ay require summing over
exponentially ma ny or even infinitely many terms. In this section, we give relatively
efficient formulas for comput ing the values of items. There are three cases that must
be handled. First is the base case, when x is a rule. In this case, inner(x) is trivially
{(x/}, the set containing the single derivat ion tree x. Thus, V(x) = (~Dcinner(x) V(D) =

(~DC{<x)} V(D) = V((x>) = R(x)

The second and third cases occur when x is an item. Recall that each i tem is asso-
ciated with a bucket, and that the buckets are ordered. Each item x is either associated
with a nonlooping bucket, in which case its value depends only on the values of i tems
in earlier buckets; or with a looping bucket, in which case its value depends poten-
tially on the values of other items in the same bucket. In the case when the i tem is
associated with a nonlooping bucket, if we compute items in the same order as their
buckets, we can assume that the values of items al . . . ak contributing to the value of
i tem b are known. We give a formula for comput ing the value of i tem b that depends
only on the values of items in earlier buckets.

For the final case, in which x is associated with a looping bucket, infinite loops
may occur, when the value of two items in the same bucket are mutual ly dependent ,
or an i tem depends on its own value. These infinite loops m ay require computat ion
of infinite sums. Still, we can express these infinite sums in a relatively simple form,
allowing them to be efficiently computed or approximated.

587

Computational Linguistics Volume 25, Number 4

3.1 Item Value Formula
Theorem 2
If an item x is not in a looping bucket, then

k

V(x) ---- (~ (~ V(ai)
i :1

al.. . ak s.t. al.x. al~

(5)

Proof

Let us expand our notion of inner to include deduction rules: i n n e r (~) is the set

of all derivation trees of the form (b: (a l . . . / (a2 . . . / - . . (ak...11" For any item derivation

tree that is not a simple rule, there is some al. . .ak, b such that D E i n n e r (~) .

Thus, for any item x,

v(x) = (~ v(D)
DE inner(x)

= (~ (~ V(D) (6)

al...al¢ s.t. al'~c, ak DEinner(aI"x" ak)

Consider item derivation trees Dal ... Dak headed by items al . . . ak such that ~ g ~ .

Recall that (x: Da, , Dakl is the item derivation tree formed by combining each of

these trees into a full tree, and notice that U (x: Dal,. . . , Dakl = i n n e r (~) .
Da I ff inner(al)

Da k ff inner (ak)

(9 v(o) = (9
D6inner(al "~c" ak) Da I 6 inner (aJ

Da k 6inner(ak)

Therefore

= G
Da 16inner(al)

Da k ff inner(ak)

k

i=1 Dai Cinner(ai)

k

: (9 V(, , i)
i=1

Substituting this back into Equation 6, we get

k

V(K)= (~ (~V(a ,)
i=1

al... ak s.t. al.x. ai

v(Ix: Da, ,Dak))

k

(~V(Dai)
i=1

completing the proof. []

588

Goodman Semiring Parsing

Now, we address the case in which x is an i tem in a looping bucket. This case
requires computat ion of an infinite sum. We will write out this infinite sum, and discuss
how to compute it exactly in all cases, except for one, where we approximate it.

Consider the derivable items x l . . . Xm in some looping bucket B. If we build up
derivat ion trees incrementally, when we begin processing bucket B, only those trees
with no items from bucket B will be available, what we will call zeroth generation
derivation trees. We can pu t these zeroth generation trees together to form first gener-
ation trees, headed by elements in B. We can combine these first generation trees with
each other and with zeroth generat ion trees to form second generation trees, and so
on. Formally, we define the generation of a derivat ion tree headed by x in bucket B
to be the largest number of items in B we can encounter on a path from the root to a
leaf.

Consider the set of all trees of generat ion at most g headed by x. Call this set
inner<_~(x, B). We can define the Kg generation value of an item x in bucket B, V<_~(x, B):

V<_g(x,B) = (~ V(D)
D 6 inner<g (x,B)

Intuitively, as g increases, for x E B, inner<~(x, B) becomes closer and closer to
inner(x). That is, the finite sum of values in the former approaches the infinite sum of
values in the latter. For w-continuous semirings (which includes all of the semirings
considered in this paper), an infinite sum is equal to the su p rem u m of the partial sums
(Kuich 1997, 613). Thus,

V(x) = (~ V(D) = sup V<g(x, B)
OC inner(x,B) g

It will be easier to compute the sup remum if we find a simple formula for V<_g(x, B).
Notice that for items x E B, there will be no generation 0 derivations, so V_<0(x, B) =

0. Thus, generation 0 makes a trivial base for a recursive formula. Now, we can consider
the general case:

Theorem 3
For x an i tem in a looping bucket B, and for g ~ 1,

V<g(x,B)
i=1 [V<_g-l(ai, B)

al... ak s.t. al'x" ak

if ai ~ B
if ai E B (7)

The proof parallels that of Theorem 2 (Goodman 1998).

3.2 Solving the Infinite Summation
A formula for V<_g(x, B) is useful, but what we really need is specific techniques for
comput ing the supremum, V(x) = supg V<<_g(x, B). For all w-continuous semirings, the
sup remum of iteratively approximating the value of a set of polynomial equations, as
we are essentially doing in Equation 7, is equal to the smallest solution to the equations
(Kuich 1997, 622). In particular, consider the equations:

k ~V(ai) if ai ~ B
V<_oo(x,B) = 0 ~ [V<_oo(ai, B) if a i C B (8)

i:1
al... ak s.t. al"x" at;

589

Computational Linguistics Volume 25, Number 4

where V<~(x, B) can be thought of as indicating [B[different variables, one for each
item x in the looping bucket B. Equation 7 represents the iterative approximation of
Equation 8, and therefore the smallest solution to Equation 8 represents the supremum
of Equation 7.

One fact will be useful for several semirings: whenever the values of all items
x E B at generation g + 1 are the same as the values of all items in the preceding
generation, g, they will be the same at all succeeding generations, as well. Thus, the
value at generation g will be the value of the supremum. Elsewhere (Goodman 1998),
we give a trivial proof of this fact.

Now, we can consider various semiring-specific algorithms for computing the
supremum. Most of these algorithms are well known, and we have simply extended
them from specific parsers (described in Section 7) to the general case, or from one
semiring to another.

Notice in this section the wide variety of different algorithms, one for each semi-
ring, and some of them fairly complicated. In a conventional system, these algorithms
are interweaved with the parsing algorithm, conflating computation of infinite sums
with parsing. The result is algorithms that are both harder to understand, and less
portable to other semirings.

We first examine the simplest case, the Boolean semiring. Notice that whenever
a particular item has value TRUE at generation g, it must also have value TRUE
at generation g + 1, since if the item can be derived in at most g generations then
it can certainly be derived in at most g + 1 generations. Thus, since the number
of TRUE valued items is nondecreasing, and is at most IB[, eventually the values
of all items must not change from one generation to the next. Therefore, for the
Boolean semiring, a simple algorithm suffices: keep computing successive genera-
tions, until no change is detected in some generation; the result is the supremum.
We can perform this computation efficiently if we keep track of items that change
value in generation g and only examine items that depend on them in generation
g + l . This algorithm is then similar to the algorithm of Shieber, Schabes, and Pereira
(1993).

For the counting semiring, the Viterbi semiring, and the derivation forest semi-
ring, we need the concept of a derivation subgraph. In Section 2.2 we considered
the strongly connected components of the dependency graph, consisting of items that
for some sentence could possibly depend on each other, and we put these possibly
interdependent items together in looping buckets. For a given sentence and gram-
mar, not all items will have derivations. We will find the subgraph of the dependency
graph of items with derivations, and compute the strongly connected components of
this subgraph. The strongly connected components of this subgraph correspond to
loops that actually occur given the sentence and the grammar, as opposed to loops
that might occur for some sentence and grammar, given the parser alone. We call this
subgraph the derivation subgraph, and we will say that items in a strongly connected
component of the derivation subgraph are part of a loop.

Now, we can discuss the counting semiring (integers under + and x). In the
counting semiring, for each item, there are three cases: the item can be in a loop;
the item can depend (directly or indirectly) on an item in a loop; or the item does
not depend on loops. If the item is in a loop or depends on a loop, its value is in-
finite. If the item does not depend on a loop in the current bucket, then its value
becomes fixed after some generation. We can now give the algorithm: first, com-
pute successive generations until the set of items in B does not change from one
generation to the next. Next, compute the derivation subgraph, and its strongly con-
nected components. Items in a strongly connected component (a loop) have an infi-

590

Goodman Semiring Parsing

nite number of derivations, and thus an infinite value. Compute items that depend
directly or indirectly on items in loops: these items also have infinite value. Any
other items can only be der ived in finitely many ways using items in the current
bucket, so compute successive generations until the values of these items do not
change.

The method for solving the infinite summat ion for the derivation forest semiring
depends on the implementat ion of derivation forests. Essentially, that representat ion
will use pointers to efficiently represent derivation forests. Pointers, in various forms,
allow one to efficiently represent infinite circular references, either directly (Goodman
1999), or indirectly (Goodman 1998). Roughly, the algori thm we will use is to compute
the derivation subgraph, and then create pointers analogous to the directed edges in
the derivat ion subgraph, including pointers in loops whenever there is a loop in the
derivation subgraph (corresponding to an infinite number of derivations). Details are
given elsewhere (Goodman 1998). As in the finite case, this representat ion is equivalent
to that of Billot and Lang (1989).

For the Viterbi semiring, the algori thm is analogous to the Boolean case. Deriva-
tions using loops in these semirings will always have values no greater than deriva-
tions not using loops, since the value with the loop will be the same as some value
wi thout the loop, multiplied by some set of rule probabilities that are at most 1. Since
the addit ive operat ion is max, these lower (or at most equal) looping derivations do not
change the value of an item. Therefore, we can simply compute successive generations
until values fail to change from one iteration to the next.

Now, consider implementat ions of the Viterbi-derivation semiring in practice,
in which we keep only a representat ive derivation, rather than the whole deriva-
tion forest. In this case, loops do not change values, and we use the same algo-
r i thm as for the Viterbi semiring. In an implementat ion of the Viterbi-n-best semi-
ring, in practice, loops can change values, but at most n times, so the same algo-
r i thm used for the Viterbi semiring still works. Elsewhere (Goodman 1998), we de-
scribe theoretically correct implementat ions for both the Viterbi-derivation and Viterbi-
n-best semirings that keep all values in the event of ties, preserving addit ion's
associativity.

The last semiring we consider is the inside semiring. This semiring is the most
difficult. There are two cases of interest, one of which we can solve exactly, and the
other of which requires approximations. In many cases involving looping buckets, all

alx deduct ion rules will be of the form ~ - , where al and b are items in the looping bucket,

and x is either a rule, or an i tem in a previously computed bucket. This case corre-
sponds to the items used for deducing singleton productions, such as those Earley's
algori thm uses for rules of the form A --* B and B --+ A. In this case, Equation 8 forms
a set of linear equations that can be solved by matrix inversion. In the more general
case, as is likely to happen with epsilon rules, we get a set of nonlinear equations, and
must solve them by approximat ion techniques, such as simply comput ing successive
generations for many iterations. 5 Stolcke (1993) provides an excellent discussion of
these cases, including a discussion of sparse matrix inversion, useful for speeding up
some computations.

5 Note that even in the case where we can only use approximation techniques, this algorithm is
relatively efficient. By assumption, in this case, there is at least one deduction rule with two items in
the current generation; thus, the number of deduction trees over which we are summing grows
exponentially with the number of generations: a linear amount of computation yields the sum of the
values of exponentially many trees.

591

Computational Linguistics Volume 25, Number 4

goal

Derivation of [goal]
Figure 7
Outside algorithm.

goal

Outer tree of [b]

4. Reverse Values

The previous section showed how to compute several of the most commonly used
values for parsers, including Boolean, inside, Viterbi, counting, and derivation forest
values, among others. Noticeably absent from the list are the outside probabilities,
which we define below. In general, computing outside probabilities is significantly
more complicated than computing inside probabilities.

In this section, we show how to compute outside probabilities from the same
item-based descriptions used for computing inside values. Outside probabilities have
many uses, including for reestimating grammar probabilities (Baker 1979), for im-
proving parser performance on some criteria (Goodman 1996b), for speeding parsing
in some formalisms, such as data-oriented parsing (Goodman 1996a), and for good
thresholding algorithms (Goodman 1997).

We will show that by substituting other semirings, we can get values analogous
to the outside probabilities for any commutative semiring; elsewhere (Goodman 1998)
we have shown that we can get similar values for many noncommutative semirings
as well. We will refer to these analogous quantities as reverse values. For instance,
the quantity analogous to the outside value for the Viterbi semiring will be called
the reverse Viterbi value. Notice that the inside semiring values of a hidden Markov
model (HMM) correspond to the forward values of HMMs, and the reverse inside
values of an HMM correspond to the backwards values.

Compare the outside algorithm (Baker 1979; Lari and Young 1990), given in Fig-
ure 7, to the inside algorithm of Figure 2. Notice that while the inside and recognition
algorithms are very similar, the outside algorithm is quite a bit different. In particular,
while the inside and recognition algorithms looped over items from shortest to longest,
the outside algorithm loops over items in the reverse order, from longest to shortest.
Also, compare the inside algorithm's main loop formula to the outside algorithm's
main loop formula. While there is clearly a relationship between the two equations,
the exact pattern of the relationship is not obvious. Notice that the outside formula is
about twice as complicated as the inside formula. This doubled complexity is typical
of outside formulas, and partially explains why the item-based description format is so
useful: descriptions for the simpler inside values can be developed with relative ease,
and then automatically used to compute the twice-as-complicated outside values. 6

6 Jumping ahead a bit, compare Equation 13 for reverse values to Equation 5 for forward values. Let k be
the number of terms above the line. Notice that the reverse values equation sums over k times as many
terms as the forward values equation. Parsers where all rules have k = 1 terms above the line can only

592

Goodman Semiring Parsing

goal

Derivation of [goal]

Figure 8

goal

Outer tree of [b]

Item derivation tree of [goal] and outer tree of [b].

For a context-free grammar, using the CKY parser of Figure 3, recall that the inside
probabili ty for an i tem [i, A, j] is P(A -~ wi... wj-1). The outside probabili ty for the same

item is P(S G w l . . . W i _ l A W j . , . Wn). T h u s , the outside probabili ty has the proper ty that
when multiplied by the inside probability, it gives the probabili ty that the start symbol

generates the sentence using the given item, P(S G Wl . . , w i _ d A w j . . . Wn G Wl . . . Wn).
This probabili ty equals the sum of the probabilities of all derivations using the given
item. Formally, letting P(D) represent the probabili ty of a particular derivation, and
C(D, [i, X,j]) represent the number of occurrences of item [i, X,j] in derivat ion D (which
for some parsers could be more than one if X were part of a loop),

inside(i, X,j) x outside(i, X,j) = Z P(D) C(D, [i, X,j])
D a derivation

The reverse values in general have an analogous meaning. Let C(D, x) represent
the number of occurrences (the count) of item x in item derivation tree D. Then, for
an i tem x, the reverse value Z(x) should have the proper ty

V(x) ® Z(x) = V(D)C(D, x) (9)
D a derivation

Notice that we have multiplied an element of the semiring, V(D), by an integer, C(D, x).
This multiplication is meant to indicate repeated addition, using the addit ive operator
of the semiring. Thus, for instance, in the Viterbi semiring, mult iplying by a count
other than 0 has no effect, since x ® x = max(x, x) = x, while in the inside semiring,
it corresponds to actual multiplication. This value represents the sum of the values of
all derivat ion trees that the i tem x occurs in; if an i tem x occurs more than once in a
derivation tree D, then the value of D is counted more than once.

To formally define the reverse value of an item x, we must first define the outer
trees outer(x). Consider an i tem derivat ion tree of the goal item, containing one or
more instances of i tem x. Remove one of these instances of x, and its children too,
leaving a gap in its place. This tree is an outer tree of x. Figure 8 shows an item
derivat ion tree of the goal item, including a subderivation of an i tem b, der ived from
terms al , ak. It also shows an outer tree of b, with b and its children removed; the
spot b was removed from is labeled (b).

parse regular grammars, and tend to be less useful. Thus, in most parsers of interest, k > 1, and the
complexity of (at least some) outside equations, when the sum is written out, is at least doubled.

593

Computational Linguistics Volume 25, Number 4

For an outer tree D E outer(x), we define its value, Z(D), to be the product of the
values of all rules in D, (~rCD R(r). Then, the reverse value of an i tem can be formally
defined as

Z(x)= 0 Z(D) (10)
DEouter(x)

That is, the reverse value of x is the sum of the values of each outer tree of x.
Now, we show that this definition of reverse values has the proper ty described by

Equation 9. 7

Theorem 4

V(x) ® z(x) = E) v(D)C(D, x)
D a der iva t ion

Proof
First, observe that

V(x) ®Z(x)= (E]~ V(I)) ® 0 Z(O)= (~ ~ V(I)®Z(O) (11)
\lEinner(x) Ocouter(x) IEinner(x) OEouter(x)

Next, we argue that this last expression equals the expression on the r ight-hand side
of Equation 9, (~D V(D)C(D,x). For an i tem x, any outer part of an i tem derivat ion
tree for x can be combined wi th any inner part to form a complete i tem derivat ion
tree. That is, any O E outer(x) and any I E inner(x) can be combined to form an i tem
derivation tree D containing x, and any item derivat ion tree D containing x can be
decomposed into such outer and inner trees. Thus, the list of all combinations of outer
and inner trees corresponds exactly to the list of all i tem derivat ion trees containing
x. In fact, for an i tem derivat ion tree D containing C(D, x) instances of x, there are
C(D, x) ways to form D from combinations of outer and inner trees. Also, notice that
for D combined from O and I

V(I) ® Z(O) = (~ R (r) ® (~ R (r) = (~ R (r) = V(D)
rEI rEO rED

T h u s ,

{~ (~ V(I) ® Z(O) = (~ V(D)C(D,x)
IEinner(x) OEouter(x) D

Combining Equation 11 with Equation 12, we see that

(12)

V(x) o z(x) = 0 V(D)C(O, x)
D a derivation

complet ing the proof. []

7 We note that satisfying Equation 9 is a useful but not sufficient condition for using reverse inside
values for grammar reestimation. While this definition will typically provide the necessary values for
the E step of an E-M algorithm, addit ional work will typically be required to prove this fact; Equation
9 should be useful in such a proof.

594

Goodman Semiring Parsing

There is a simple, recursive formula for efficiently comput ing reverse values. Recall
that the basic equat ion for comput ing forward values not involved in loops was

k

V(x) ---- 0 (~ V(ai)
i:1

al . . . ak s.t. al "x" ak

At this point, for conciseness, we introduce a nons tandard notation. We will soon
be using m a ny sequences of the form 1, 2 j - 2, j - 1, j + 1, j + 2 k - 1, k. We denote

such sequences by 1, ._4, k. By extension, we will also write f (1) , zL,f(k) to indicate a
sequence of the form f (1) , f (2) f (j - 2) , f (j - 1),f(j + 1),f(j + 2) f (k - 1),f(k).

Now, we can give a simple formula for comput ing reverse values Z(x) not involved
in loops:

Theorem 5
For items x E B where B is nonlooping,

z(x) = • Z(b) ® @
i=l,-t,k j,a,.., ak,b s.t. ~ - ~ A x=¢

V(ai) (13)

unless x is the goal item, in which case Z(x) = 1, the multiplicative identi ty of the
semiring.

Proof
The simple case is when x is the goal item. Since an outer tree of the goal i tem is a
derivation of the goal item, with the goal i tem and its children removed, and since we
assumed in Section 2.2 that the goal i tem can only appear in the root of a derivation
tree, the outer trees of the goal i tem are all empty. Thus,

Z(goal) = (~ Z(D) = Z({(/}) = ~) R(r) = 1
D6outer(goal) r6 { (I }

As ment ioned in Section 2.1, the value of the empty product is the multiplicative
identity.

Now, we consider the general case. We need to expand our concept of outer to

include deduct ion rules, where outer(]', ~ - ~) is an i tem derivat ion tree of the goal

item with one subtree removed, a subtree headed by aj whose parent is b and whose

siblings are headed by al, .-(, ak. Notice that for every outer tree D C outer(x), there is

exactly one j, al ak, and b such that x = aj and D E outer(], ~) : this corresponds

to the deduct ion rule used at the spot in the tree where the subtree headed by x was
deleted. Figure 9 illustrates the idea of put t ing together an outer tree of b with inner

trees for al, .J., ak to fo rm an outer tree of x ---- aj. Using this observation,

Z(x) = G z(o)
Dcouter(x)

= (~ (~ Z(D) (14)

al'~'akA x=aj D f f_ou t e r (j ,~) j,al.., ak,b s.t.

595

Computational Linguistics Volume 25, Number 4

/ /
/ / a 1 a j-1

Figure 9

goal

(a j)

Combining an outer tree with inner trees to form an outer tree.

Now, consider all of the outer trees o u t e r (j , ~) . For each i tem derivat ion tree

Dal C inner(a1), ._4, Dak E inner(ak) and for each outer tree Db E outer(b), there will be

one outer tree in the set outer(j, f f~--~)o Similarly, each tree in outer(j, al. "b" ak) can be

decomposed into an outer tree in outer(b) and derivat ion trees for al, ._4, ak. Then,

z(D)

= (~ Z(Db) ~ V(Da,)@ .:J ~V(Dak)
Db C outer(b) ,
Da 1 Einner(al),Z!,

Da k 6inner(ak)

= (DbEOut~er(b) Z(Db)) @ (Dalcger(al)g(Dal)) @'~t@ (D~kEinngr(ak) g(Dak))

= Z(b) @ W(al)@ --j ®V(ak)
= Z(b)® (~ V(ai) (15)

i=l,Zt,k

Substituting equat ion 15 into equat ion 14, we conclude that

Z(x) = (9 Z(b) ® @ V(a,)
i=l,-!,k j,al.., ak,b s.t. £ t~ A x=aj

complet ing the general case.

Comput ing the reverse values for loops is somewhat more complicated, and as in
the forward case, requires an infinite sum, and the use of the concept of generation.

596

Goodman Semiring Parsing

We define the generation g of an outer tree D of item x in bucket B to be the number
of items in bucket B on the path between the root and the removal point, inclusive.
We can then let Z<_g(x, B) represent the sum of the values of all trees headed by x
of generation at most g. In the base case, Z_<0(x, B) = 0. For ~;-continuous semirings,
Z<_g(x, B) approaches Z(x) as g approaches c~. We can give a recursive equation for
Z<_~(x, B) as follows, using a proof similar to that of Theorem 5 (Goodman 1998):

Theorem 6
For items x E B and g > 1,

((~ ~ fZ<_~q(b,B) i f b E B
\

Z<_g(x,B) = (~ V(ai)! ® ~Z(b) if b ~ B (16)

j,al.., ak,b s.t. ~ - ~ A x=aj \i=l,Z!,k /

5. Semiring Parser Execution

Executing a semiring parser is fairly simple. There is, however, one issue that must
be dealt with before we can actually begin parsing. A semiring parser computes the
values of items in the order of the buckets they fall into. Thus, before we can begin
parsing, we need to know which items fall into which buckets, and the ordering of
those buckets. There are three approaches to determining the buckets and ordering that
we will discuss in this section. The first approach is a simple, brute-force enumeration
of all items, derivable or not, followed by a topological sort. This approach will have
suboptimal time and space complexity for some item-based descriptions. The second
approach is to use an agenda parser in the Boolean semiring to determine the derivable
items and their dependencies, and to then perform a topological sort. This approach
has optimal time complexity, but typically suboptimal space complexity. The final
approach is to use bucketing code specific to the item-based interpreter. This achieves
optimal performance for additional programming effort.

The simplest way to determine the bucketing is to simply enumerate all possible
items for the given item-based description, grammar, and input sentence. Then, we
compute the strongly connected components and a partial ordering; both steps can be
done in time proportional to the number of items plus the number of dependencies
(Cormen, Leiserson, and Rivest 1990, Chap. 23). For some parsers, this technique has
optimal time complexity, although poor space complexity. In particular, for the CKY
algorithm, the time complexity is optimal, but since it requires computing and storing
all possible O(n 3) dependencies between the items, it takes significantly more space
than the O(n 2) space required in the best implementation. In general, the brute-force
technique raises the space complexity to be the same as the time complexity. Further-
more, for some algorithms, such as Earley's algorithm, there could be a significant time
complexity added as well. In particular, Earley's algorithm may not need to examine
all possible items. For certain grammars, Earley's algorithm examines only a linear
number of items and a linear number of dependencies, even though there are O(n 2)
possible items, and O(n 3) possible dependencies. Thus the brute-force approach would
require O(n 3) time and space instead of O(n) time and space, for these grammars.

The next approach to finding the bucketing solves the time complexity problem.
In this approach, we first parse in the Boolean semiring, using the agenda parser de-
scribed by Shieber, Schabes, and Pereira (1995), and then we perform a topological
sort. The techniques that Shieber, Schabes, and Pereira use work well for the Boolean
semiring, where items only have value TRUE or FALSE, but cannot be used directly for

597

Computational Linguistics Volume 25, Number 4

for current := first bucket to last bucket
if current is a looping bucket

/* replace with semiring-specific code */
for x E current

v[x, 0] = 0;
for g :-- 1 to oo

for each x E current, al . . . ak s.t.

k {V[ai]
V[x,g] := V[x,g] ® ~i=1 V[ai, g - 1]

for each x E current
v[x] : = v[x,

else
for each x E current, al . . . ak s.t.

v[x] := V[x] • v[ai]; i=1
return V[goal];

Figure 10
Forward semiring parser interpreter.

ai ~ current
ai E current

other semirings. For other semirings, we need to make sure that the values of items are
not computed until after the values of all items they depend on are computed. How-
ever, we can use the algorithm of Shieber, Schabes, and Pereira to compute all of the
items that are derivable, and to store all of the dependencies between the items. Then
we perform a topological sort on the items. The time complexity of both the agenda
parser and the topological sort will be proportional to the number of dependencies,
which will be proportional to the optimal time complexity. Unfortunately, we still have
the space complexity problem, since again, the space used will be proportional to the
number of dependencies, rather than to the number of items.

The third approach to bucketing is to create algorithm-specific bucketing code;
this results in parsers with both optimal time and optimal space complexity. For in-
stance, in a CKY-style parser, we can simply create one bucket for each length, and
place each item into the bucket for its length. For some algorithms, such as Ear-
ley's algorithm, special-purpose code for bucketing might have to be combined with
code to make sure all and only derivable items are considered (using triggering tech-
niques described by Shieber, Schabes, and Pereira) in order to achieve optimal perfor-
mance.

Once we have the bucketing, the parsing step is fairly simple. The basic algorithm
appears in Figure 10. We simply loop over each item in each bucket. There are two
types of buckets: looping buckets, and nonlooping buckets. If the current bucket is
a looping bucket, we compute the infinite sum needed to determine the bucket's
values; in a working system, we substitute semiring-specific code for this section, as
described in Section 3.2. If the bucket is not a looping bucket, we simply compute
all of the possible instantiations that could contribute to the values of items in that
bucket. Finally, we return the value of the goal item.

The reverse semiring parser interpreter is very similar to the forward semiring
parser interpreter. The differences are that in the reverse semiring parser interpreter,
we traverse the buckets in reverse order, and we use the formulas for the reverse
values, rather than the forward values. Elsewhere (Goodman 1998), we give a simple
inductive proof to show that both interpreters compute the correct values.

598

Goodman Semiring Parsing

There are two other implementation issues. First, for some parsers, it will be pos-
sible to discard some items. That is, some items serve the role of temporary variables,
and can be discarded after they are no longer needed, especially if only the forward
values are going to be computed. Also, some items do not depend on the input string,
but only on the rule value function of the grammar. The values of these items can be
precomputed.

6. Examples

In this section, we survey other results that are described in more detail elsewhere
(Goodman 1998), including examples of formalisms that can be parsed using item-
based descriptions, and other uses for the technique of semiring parsing.

6.1 Finite State Automata and Hidden Markov Models
Nondeterministic finite-state automata (NFAs) and HMMs turn out to be examples of
the same underlying formalism, whose values are simply computed in different semi-
rings. Other semirings lead to other interesting values. For HMMs, notice that the for-
ward values are simply the forward inside values; the backward values are the reverse
values of the inside semiring; and Viterbi values are the forward values of the Viterbi
semiring. For NFAs, we can use the Boolean semiring to determine whether a string is
in the language of an NFA; we can use the counting semiring to determine how many
state sequences there are in the NFA for a given string; and we can use the derivation
forest semiring to get a compact representation of all state sequences in an NFA for an
input string. A single item-based description can be used to find all of these values.

6.2 Prefix Values
For language modeling, it may be useful to compute the prefix probability of a string.
That is, given a string w l . . . Wn, we may wish to know the total probability of all
sentences beginning with that string,

P(S ~ w l . . . w n v l . . , v~)
k>O,vl,...,Vk

where Vl . . . Vk represent words that could possibly follow wl . . . wn. Jelinek and Lafferty
(1991) and Stolcke (1993) both give algorithms for computing these prefix probabilities.
Elsewhere (Goodman 1998), we show how to produce an item-based description of a
prefix parser. There are two main advantages to using an item-based description: ease
of derivation, and reusability.

First, the conventional derivations are somewhat complex, requiring a fair amount
of inside-semiring-specific mathematics. In contrast, using item-based descriptions, we
only need to derive a parser that has the property that there is one item derivation for
each (complete) grammar derivation that would produce the prefix. The value of any
prefix given the parser will then automatically be the sum of all grammar derivations
that include that prefix.

The other advantage is that the same description can be used to compute many
values, not just the prefix probability. For instance, we can use this description with the
Viterbi-derivation semiring to find the most likely derivation that includes this prefix.
With this most likely derivation, we could begin interpretation of a sentence even be-
fore the sentence was finished being spoken to a speech recognition system. We could
even use the Viterbi-n-best semiring to find the n most likely derivations that include
this prefix, if we wanted to take into account ambiguities present in parses of the prefix.

599

Computational Linguistics Volume 25, Number 4

6.3 Beyond Context-Free
There has been quite a bit of previous work on the intersection of formal language
theory and algebra, as described by Kuich (1997), among others. This previous work
has made heavy use of the fact that there is a strong correspondence between alge-
braic equations in certain noncommutative semirings, and CFGs. This correspondence
has made it possible to manipulate algebraic systems, rather than grammar systems,
simplifying many operations.

On the other hand, there is an inherent limit to such an approach, namely a limit
to context-free systems. It is then perhaps slightly surprising that we can avoid these
limitations, and create item-based descriptions of parsers for weakly context-sensitive
grammars, such as tree adjoining grammars (TAGs). We avoid the limitations of pre-
vious approaches using two techniques. One technique is to compute derivation trees,
rather than parse trees, for TAGs. Computing derivation trees for TAGs is significantly
easier than computing parse trees, since the derivation trees are context-free. The other
trick we use is to create a set of equations for each grammar and string length rather
than creating a set of equations for each grammar, as earlier formulations did. Because
the number of equations grows with the string length with our technique, we can rec-
ognize strings in weakly context-sensitive languages. Goodman (1998) gives a further
explication of this subject, including an item-based description for a simple TAG parser.

6.4 Tomita Parsing
Our goal in this section has been to show that item-based descriptions can be used
to simply describe almost all parsers of interest. One parsing algorithm that would
seem particularly difficult to describe is Tomita's graph-structured-stack LR parsing
algorithm. This algorithm at first glance bears little resemblance to other parsing al-
gorithms. Despite this lack of similarity, Sikkel (1993) gives an item-based description
for a Tomita-style parser for the Boolean semiring, which is also more efficient than
Tomita's algorithm. Sikkel's parser can be easily converted to our format, where it can
be used for w-continuous semirings in general.

6.5 Graham Harrison Ruzzo (GHR) Parsing
Graham, Harrison, and Ruzzo (1980) describe a parser similar to Earley's, but with
several speedups that lead to significant improvements. Essentially, there are three
improvements in the GHR parser. First, epsilon productions are precomputed; second,
unary productions are precomputed; and, finally, completion is separated into two
steps, allowing better dynamic programming.

Goodman (1998) gives a full item-based description of a GHR parser. The forward
values of many of the items in our parser related to unary and epsilon productions
can be computed off-line, once per grammar, which is an idea due to Stolcke (1993).
Since reverse values require entire strings, the reverse values of these items cannot
be computed until the input string is known. Because we use a single item-based
description for precomputed items and nonprecomputed items, and for forward and
reverse values, this combination of off-line and on-line computation is easily and
compactly specified.

6.6 Grammar Transformations
We can apply the same techniques to grammar transformations that we have so far
applied to parsing. Consider a grammar transformation, such as the Chomsky normal
form (CNF) grammar transformation, which takes a grammar with epsilon, unary,
and n-ary branching productions, and converts it into one in which all productions
are of the form A --* B C or A --* a. For any sentence Wl.. . Wn its value under the

600

Goodman Semiring Parsing

original grammar in the Boolean semiring (TRUE if the sentence can be generated by
the grammar, FALSE otherwise) is the same as its value under a transformed gram-
mar. Therefore, we say that this grammar transformation is value preserving under
the Boolean semiring. We can generalize this concept of value preserving to other
semirings.

Elsewhere (Goodman 1998), we show that using essentially the same item-based
descriptions we have used for parsing, we can specify grammar transformations. The
concept of value preserving grammar transformation is already known in the inter-
section of formal language theory and algebra (Kuich 1997; Kuich and Salomaa 1986;
Teitelbaum 1973). Our contribution is to show that these value preserving transforma-
tions can be written as simple item-based descriptions, allowing the same computa-
tional machinery to be used for grammar transformations as is used for parsing, and to
some extent showing the relationship between certain grammar transformations and
certain parsers, such as that of Graham, Harrison, and Ruzzo (1980). This uniform
method of specifying grammar transformations is similar to, but clearer than, similar
techniques used with covering grammars (Nijholt 1980; Leermakers 1989).

7. Previous Work

7.1 Historical Work
The previous work in this area is extensive, including work in deductive parsing,
work in statistical parsing, and work in the combination of formal language theory
and algebra. This paper can be thought of as synthetic, combining the work in all three
areas, although in the course of synthesis, several general formulas have been found,
most notably the general formula for reverse values. A comprehensive examination of
all three areas is beyond the scope of this paper, but we can touch on a few significant
areas of each.

First, there is the work in deductive parsing. This work in some sense dates back
to Earley (1970), in which the use of items in parsers is introduced. More recent work
(Pereira and Warren 1983; Pereira and Shieber 1987) demonstrates how to use deduc-
tion engines for parsing. Finally, both Shieber, Schabes, and Pereira (1995) and Sikkel
(1993) have shown how to specify parsers in a simple, interpretable, item-based format.
This format is roughly the format we have used here, although there are differences
due to the fact that their work was strictly in the Boolean semiring.

Work in statistical parsing has also greatly influenced this work. We can trace this
work back to research in HMMs by Baum and his colleagues (Baum and Eagon 1967;
Baum 1972). In particular, the work of Baum developed the concept of backward prob-
abilities (in the inside semiring), as well as many of the techniques for computing in
the inside semiring. Viterbi (1967) developed corresponding algorithms for computing
in the Viterbi semiring. Baker (1979) extended the work of Baum and his colleagues to
PCFGs, including to computation of the outside values (or reverse inside values in our
terminology). Baker's work is described by Lari and Young (1990). Baker's work was
only for PCFGs in CNF, avoiding the need to compute infinite summations. Jelinek
and Lafferty (1991) showed how to compute some of the infinite summations in the
inside semiring, those needed to compute the prefix probabilities of PCFGs in CNF.
Stolcke (1993) showed how to use the same techniques to compute inside probabili-
ties for Earley parsing, dealing with the difficult problems of unary transitions, and
the more difficult problems of epsilon transitions. He thus solved all of the important
problems encountered in using an item-based parser to compute the inside and out-
side values (forward and reverse inside values); he also showed how to compute the
forward Viterbi values.

601

Computational Linguistics Volume 25, Number 4

The final area of work is in formal language theory and algebra. Although it is not
widely known, there has been quite a bit of work showing how to use formal power
series to elegantly derive results in formal language theory, dating back to Chomsky
and Sch~itzenberger (1963). The major classic results can be derived in this frame-
work, but with the added benefit that they apply to all commutative w-continuous
semirings. The most accessible introduction to this literature we have found is by
Kuich (1997). There are also books by Salomaa and Soittola (1978) and Kuich and
Salomaa (1986).

One piece of work deserves special mention. Teitelbaum (1973) showed that any
semiring could be used in the CKY algorithm, laying the foundation for much of the
work that followed.

In summary, this paper synthesizes work from several different related fields, in-
cluding deductive parsing, statistical parsing, and formal language theory; we emulate
and expand on the earlier synthesis of Teitelbaum. The synthesis here is powerful: by
generalizing and integrating many results, we make the computation of a much wider
variety of values possible.

7.2 R e c e n t S i m i l a r W o r k
There has also been recent similar work by Tendeau (1997b, 1997a). Tendeau (1997b)
gives an Earley-like algorithm that can be adapted to work with complete semirings
satisfying certain conditions. Unlike our version of Earley's algorithm, Tendeau's ver-
sion requires time O(n L+I) where L is the length of the longest right-hand side, as
opposed to O(n 3) for the classic version, and for our description. While one could split
right-hand sides of rules to make them binary branching, speeding Tendeau's version
up, this would then change values in the derivation semirings. Tendeau (1997b, 1997a)
introduces a parse forest semiring, similar to our derivation forest semiring, in that
it encodes a parse forest succinctly. To implement this semiring, Tendeau's version of
rule value functions take as their input not only a nonterminal, but also the span that it
covers; this is somewhat less elegant than our version. Tendeau (1997a) gives a generic
description for dynamic programming algorithms. His description is very similar to
our item-based descriptions, except that it does not include side conditions. Thus, al-
gorithms such as Earley's algorithm cannot be described in Tendeau's formalism in a
way that captures their efficiency.

There are some similarities between our work and the work of Koller, McAllester,
and Pfeffer (1997), who create a general formalism for handling stochastic programs
that makes it easy to compute inside and outside probabilities. While their formalism
is more general than item-based descriptions, in that it is a good way to express any
stochastic program, it is also less compact than ours for expressing most dynamic pro-
gramming algorithms. Our formalism also has advantages for approximating infinite
sums, which we can do efficiently, and in some cases exactly. It would be interesting
to try to extend item-based descriptions to capture some of the formalisms covered
by Koller, McAllester, and Pfeffer, including Bayes' nets.

8. C o n c l u s i o n

In this paper, we have given a simple item-based description format that can be used
to describe a very wide variety of parsers. These parsers include the CKY algorithm,
Earley's algorithm, prefix probability computation, a TAG parsing algorithm, Graham,
Harrison, Ruzzo (GHR) parsing, and HMM computations. We have shown that this de-
scription format makes it easy to find parsers that compute values in any w-continuous
semiring. The same description can be used to find reverse values in commutative w-

602

Goodman Semiring Parsing

continuous semirings, and in many noncommutative ones as well. This description
format can also be used to describe grammar transformations, including transfor-
mations to CNF and GNF, which preserve values in any commutative w-continuous
semiring.

While theoretical in nature, this paper is of some practical value. There are three
reasons the results of this paper would be used in practice: first, these techniques make
computation of the outside values simple and mechanical; second, these techniques
make it easy to show that a parser will work in any w-continuous semiring; and third,
these techniques isolate computation of infinite sums in a given semiring from the
parser specification process.

Perhaps the most useful application of these results is in finding formulas for
outside values. For parsers such as CKY parsers, finding outside formulas is not par-
ticularly burdensome, but for complicated parsers such as TAG parsers, GHR parsers,
and others, it can require a fair amount of thought to find these equations through
conventional reasoning. With these techniques, the formulas can be found in a simple
mechanical way.

The second advantage comes from clarifying the conditions under which a parser
can be converted from computing values in the Boolean semiring (a recognizer) to
computing values in any w-continuous semiring. We should note that because in the
Boolean semiring, infinite summations can be computed trivially and because repeat-
edly adding a term does not change results, it is not uncommon for parsers that work
in the Boolean semiring to require significant modification for other semirings. For
parsers like CKY parsers, verifying that the parser will work in any semiring is triv-
ial, but for other parsers the conditions are more complex. With the techniques in
this paper, all that is necessary is to show that there is a one-to-one correspondence
between item derivations and grammar derivations. Once that has been shown, any
w-continuous semiring can be used.

The third use of this paper is to separate the computation of infinite sums from
the main parsing process. Infinite sums can come from several different phenomena,
such as loops from productions of the form A --* A; productions involving ~; and
left recursion. In traditional procedural specifications, the solution to these difficult
problems is intermixed with the parser specification, and makes the parser specific to
semirings using the same techniques for solving the summations.

It is important to notice that the algorithms for solving these infinite summations
vary fairly widely, depending on the semiring. On the one hand, Boolean infinite
summations are nearly trivial to compute. For other semirings, such as the counting
semiring, or derivation forest semiring, more complicated computations are required,
including the detection of loops. Finally, for the inside semiring, in most cases only
approximate techniques can be used, although in some cases, matrix inversion can be
used. Thus, the actual parsing algorithm, if specified procedurally, can vary quite a
bit depending on the semiring.

On the other hand, using our techniques makes infinite sums easier to deal with
in two ways. First, these difficult problems are separated out, relegated conceptu-
ally to the parser interpreter, where they can be ignored by the constructor of the
parsing algorithm. Second, because they are separated out, they can be solved once,
rather than again and again. Both of these advantages make it significantly easier to
construct parsers. Even in the case where, for efficiency, loops are precomputed off-
line, as in GHR parsing, the same item-based representation and interpreter can be
used.

In summary, the techniques of this paper will make it easier to compute outside
values, easier to construct parsers that work for any w-continuous semiring, and easier

603

Computational Linguistics Volume 25, Number 4

to compute infinite sums in those semirings. In 1973, Teitelbaum wrote:

We have pointed out the relevance of the theory of algebraic power
series in noncommut ing variables in order to minimize further piece-
meal rediscovery (page 199).

Many of the techniques needed to parse in specific semirings continue to be redis-
covered, and outside formulas are der ived wi thout observation of the basic formulas
given here. We hope this paper will bring about Teitelbaum's wish.

Acknowledgments
I would like to thank Stan Chen, Barbara
Grosz, Luke Hunsberger, Fernando Pereira,
and Stuart Shieber, for helpful comments
and discussions, as well as the anonymous
reviewers for their comments on earlier
drafts. This work was funded in part by the
National Science Foundation through Grant
IRI-9350192, Grant IRI-9712068, and an NSF
Graduate Student Fellowship.

References
Baker, James K. 1979. Trainable grammars

for speech recognition. In Proceedings of the
Spring Conference of the Acoustical Society of
America, pages 547-550, Boston, MA, June.

Baum, Leonard E. 1972. An inequality and
associated maximization technique in
statistical estimation of probabilistic
functions of a Markov process.
Inequalities, 3:1-8.

Baum, Leonard E. and J. A. Eagon. 1967. An
inequality with application to statistical
estimation for probabilistic functions of
Markov processes and to a model for
ecology. Bulletin of the American
Mathematicians Society, 73:360-363.

Billot, Sylvie and Bernard Lang. 1989. The
structure of shared forests in ambiguous
parsing. In Proceedings of the 27th Annual
Meeting, pages 143-151, Vancouver.
Association for Computational
Linguistics.

Chomsky, Noam and Marcel-Paul
Sch(itzenberger. 1963. The algebraic
theory of context-free languages. In
P. Braffort and D. Hirschberg, editors,
Computer Programming and Formal Systems.
North-Holland, pages 118-161.

Cormen, Thomas H., Charles E. Leiserson,
and Ronald L. Rivest. 1990. Introduction to
Algorithms. MIT Press, Cambridge, MA.

Earley, Jay. 1970. An efficient context-free
parsing algorithm. Communications of the
ACM, 13:94-102.

Goodman, Joshua. 1996a. Efficient
algorithms for parsing the DOP model. In
Proceedings of the Conference on Empirical

Methods in Natural Language Processing,
pages 143-152, May. Available as
cmp-lg/9604008.

Goodman, Joshua. 1996b. Parsing
algorithms and metrics. In Proceedings of
the 34th Annual Meeting, pages 177-183,
Santa Cruz, CA, June. Association for
Computational Linguistics. Available as
cmp-lg/9605036.

Goodman, Joshua. 1997. Global
thresholding and multiple-pass parsing.
In Proceedings of the Second Conference on
Empirical Methods in Natural Language
Processing, pages 11-25.

Goodman, Joshua. 1998. Parsing Inside-Out.
Ph.D. thesis, Harvard University.
Available as cmp-lg/9805007 and from
http://www.eecs.harvard.edu/
~goodman/thesis.ps.

Goodman, Joshua. 1999. Semiring parsing.
Computational Linguistics, 25(4):573-605.

Graham, Susan L., Michael A. Harrison, and
Walter L. Ruzzo. 1980. An improved
context-free recognizer. ACM Transactions
on Programming Languages and Systems,
2(3):415-462, July.

Jelinek, Frederick and John D. Lafferty. 1991.
Computation of the probability of initial
substring generation by stochastic
context-free grammars. Computational
Linguistics, pages 315-323.

Koller, Daphne, David McAllester, and Avi
Pfeffer. 1997. Effective bayesian inference
for stochastic programs. In Proceedings of
the 14th National Conference on Arti~cial
Intelligence, pages 740-747, Providence, RI,
August.

Kuich, Werner. 1997. Semirings and formal
power series: Their relevance to formal
languages and automata. In Grzegorz
Rozenberg and Arto Salomaa, editors,
Handbook of Formal Languages.
Springer-Verlag, Berlin, pages 609-677.

Kuich, Werner and Arto Salomaa. 1986.
Semirings, Automata, Languages. Number 5
of EATCS Monographs on Theoretical
Computer Science. Springer-Verlag,
Berlin, Germany.

604

Goodman Semiring Parsing

Lari, K. and S. J. Young. 1990. The
estimation of stochastic context-free
grammars using the inside-outside
algorithm. Computer Speech and Language,
4:35-56.

Leermakers, Ren~. 1989. How to cover a
grammar. In Proceedings of the 27th Annual
Meeting, pages 135-142, Vancouver.
Association for Computational
Linguistics.

Nijholt, Anton. 1980. Context-Free Grammars:
Covers, Normal Forms, and Parsing.
Number 93 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Germany.

Pereira, Fernando and Stuart Shieber. 1987.
Prolog and Natural Language Analysis.
Number 10 of CSU Lecture Notes. Center
for the Study of Language and
Information, Stanford, CA.

Pereira, Fernando and David Warren. 1983.
Parsing as deduction. In Proceedings of the
21st Annual Meeting, pages 137-44,
Cambridge, MA. Association for
Computational Linguistics.

Salomaa, Arto and Matti Soittola. 1978.
Automata-Theoretic Aspects of Formal Power
Series. Springer-Verlag, Berlin, Germany.

Shieber, Stuart, Yves Schabes, and Fernando
Pereira. 1995. Principles and
implementation of deductive parsing.
Journal of Logic Programming, 24(1-2):3-36.

Sikkel, Klaas. 1993. Parsing Schemata. Ph.D.
thesis, University of Twente, Enschede,
The Netherlands.

Stolcke, Andreas. 1993. An efficient
probabilistic context-free parsing
algorithm that computes prefix
probabilities. Technical Report TR-93-065,
International Computer Science Institute,
Berkeley, CA. Available as
cmp-lg/9411029.

Teitelbaum, Ray. 1973. Context-free error
analysis by evaluation of algebraic power
series. In Proceedings of the Fifth Annual
ACM Symposium on Theory of Computing,
pages 196-199, Austin, TX.

Tendeau, Fr~d4ric. 1997a. Computing
abstract decorations of parse forests using
dynamic programming and algebraic
power series. Theoretical Computer Science.
To appear.

Tendeau, Fr~d4ric. 1997b. An Earley
algorithm for generic attribute augmented
grammars and applications. In Proceedings
of the International Workshop on Parsing
Technologies 1997, pages 199-209.

Viterbi, Andrew J. 1967. Error bounds for
convolutional codes and an
asymptotically optimum decoding
algorithm. IEEE Transactions on Information
Theory, IT-13:260-267.

605

