Lexical Rules in Constraint-based

Grammars
Ted Briscoe* Ann Copestake!
University of Cambridge CSLL Stanford University

Lexical rules have been used to cover a very diverse range of phenomena in constraint-based
grammars. Examination of the full range of rules proposed shows that Carpenter’s (1991) postu-
lated upper bound on the length of list-valued attributes such as SUBCAT in the lexicon cannot be
maintained, leading to unrestricted generative capacity in constraint-based formalisms utilizing
HPSG-style lexical rules. We argue that it is preferable to subdivide such rules into a class of
semiproductive lexically governed genuinely lexical rules, and a class of fully productive unary
syntactic rules.

We develop a restricted approach to lexical rules in a typed default feature structure (TDFS)
framework (Lascarides et al. 1995; Lascarides and Copestake 1999), which has enough expressivity
to state, for example, rules of verb diathesis alternation, but which does not allow arbitrary
manipulation of list-valued features. An interpretation of such lexical rules within a probabilistic
version of a TDFS-based linguistic (lexical and grammatical) theory allows us to capture the
semiproductive nature of genuinely lexical rules, steering an intermediate course between fully
generative or purely abbreviatory rules.

We illustrate the utility of this approach with a treatment of dative constructions within
a linguistic framework that borrows insights from the constraint-based theories: HPSG, UCG,
(Zeevat, Klein, and Calder 1987) and construction grammar (Goldberg 1995). We end by outlin-
ing how our approach to lexical rules allows for a treatment of passive and recursive affixation,
which are generally assumed to require unrestricted list manipulation operations.

1. Introduction

In lexicalist approaches to grammar, lexical rules are a crucial component of the overall
theory and more and more generalizations have come to be stated within them. For
example, in the development of HPSG (Pollard and Sag 1987, 1994) from GPSG (Gaz-
dar et al. 1985) several syntactic metarules concerning the location of empty categories
in unbounded dependency constructions are restated as lexical rules. One example is
the Subject Extraction rule, which licenses subject extractions from sentential comple-
ments. Inflectional morphological rules, such as Plural Formation, and rules of verb
alternation, such as Passive, are also stated as lexical rules by Pollard and Sag. Recently,
Bouma and van Noord (1994) have proposed a lexical rule of Adjunct Introduction,
which can recursively add adverbial categories to the SUBCAT list of a verbal category.
There are three main problems with the treatment of lexical, or what might be better
termed unary, rules as a homogeneous class.

* Computer Laboratory, University of Cambridge, Pembroke Street, Cambridge CB2 3QG, UK. E-mail:
ejb@cl.cam.ac.uk

t Center for the Study of Language and Information, Stanford University, Ventura Hall, Stanford,
CA 94305. E-mail: aac@csli.stanford.edu

© 1999 Association for Computational Linguistics

Computational Linguistics Volume 25, Number 4

Firstly, Carpenter (1991) demonstrates that if lexical rules are able to perform ar-
bitrary manipulations (deletion, addition, and permutation) of potentially unbounded
lists, any recursively enumerable language can be generated, even if the nonderived
lexicon and grammar only generate context-free languages. However, once we are
committed to treating rules such as Passive and Adjunct Introduction in a homoge-
neous way, restrictions that prevent lexical rules from increasing generative capacity,
such as constraining the use of category variables, bounding the length of the sus-
cAT list, or limiting recursive application, cannot be imposed. Subdividing lexical and
unary syntactic rules allows such restrictions to be naturally maintained in the lexicon.

Secondly, within theories like HPSG, which utilize constraint logics over (typed)
feature structures ((T)FSs) as the lexical and grammatical representation language,
the formal status of lexical rules is unclear. They do not have a straightforward in-
terpretation as logical constraints and are normally treated as metalevel conditional
generalizations concerning the set of admissible lexical entries. This leads to immedi-
ate disadvantages, such as nondeclarativity, potential nontermination in application,
and the need for the grammar writer to specify what stays unchanged as well as what
changes in a derived entry. Our approach to lexical rules improves this situation by
formalizing them in terms of default unification utilizing existing operations in the
typed default feature structure (TDFS) representation language (Lascarides et al. 1995;
Lascarides and Copestake 1999).

Thirdly, most lexical, though not unary, rules are semiproductive. In HPSG, lexi-
cal rules are interpreted as generative rules encoding putatively exceptionless condi-
tional generalizations concerning the existence of derived lexical entries. Exceptions
and irregularities must be marked explicitly in lexical entries. While this approach is
defensible for rules of inflectional morphology, generalizations about unbounded de-
pendency constructions and adjunct introduction, it is less plausible when we come to
consider morphological rules of derivation or most verb diathesis alternations. These
latter are semiproductive; that is, subject to blocking (preemption by synonymy or by
lexical form), to arbitrary lexical gaps, and to varying degrees of conventionalization
(see Jackendoff [1997a] for a recent discussion). It is technically possible to reinterpret
(some) lexical rules as (lexical) redundancy rules using constraint-based techniques
(e.g., Sanfilippo 1993). However, this approach reduces lexical rules to a purely abbre-
viatory device even more thoroughly than Jackendoff’s (1975) original proposal. We
will argue in Section 7 that the pure redundancy rule interpretation is not optimal,
even for semiproductive lexical rules, as such rules are utilized in the production and
interpretation of nonce usages and neologisms.

Throughout the paper, we assume a linguistic framework based on typed feature
structures like HPSG, but allowing for defeasible specification in typed default feature
structures (e.g., Lascarides et al. 1995). We distinguish between lexical rules and other
unary rules and present an account of lexical rules compatible with this framework
and, potentially, with other constraint-based (T)FS frameworks. We argue that this
account satisfactorily addresses the issues of generative power, formal interpretation,
and semiproductivity. In Section 2 we discuss the use and interpretation of HPSG-style
lexical rules in more detail. In Section 3 we present the TDFS framework for lexical
and grammatical representation, which extends monotonic theories of lexical organi-
zation with default inheritance and defeasible specification. In Section 4, we formalize
lexical rules in terms of default unification and demonstrate that this leads to a more
restricted operation fully defined in terms of the nonmonotonic conditional logic of
TDFSs. In Section 5 we show that, despite this restricted capacity, a linguistically in-
sightful account of English dative constructions can be formulated, which treats them
as (mostly) deri ed by lexical rule. This draws on insights from Dowty’s (1989) theory

488

Briscoe and Copestake Lexical Rules

base
PHON . 3rdsn.

3RDSNG" PHON : f3rdsng((. G
SYN . [LOC . [SUBCAT .]] = | SYN. [LOC . [SUBCAT .]]
SEM . [CONT . [@ | SEM . [CONT . [q |

Figure 1

HPSG Third Singular Verb Formation lexical rule.

base

3rdsn,
PHON . - [}
[3RDSNG. Bl } PHON : frdsng((. @)

Figure 2
Abbreviated form of the Third Singular Verb Formation lexical rule.

of proto-roles, Sanfilippo’s (1990, 1992, 1993) treatment of verb alternations in UCG
(Zeevat, Klein, and Calder 1987) and Goldberg’s (1995) analysis in Construction Gram-
mar. In Section 6 we argue that the dative alternation is a semiproductive process in
English not fully reducible to an abbreviatory convention, and provide an account
of lexical rule application within a probabilistic version of the TDFS framework that
captures the variable acceptability of different verbs in the dative construction. Thus,
we modify and extend the analysis of dative in Lascarides et al. (1995) by providing
a more adequate and restrictive formalization of this type of semiproductive lexical
rule. In Section 7 we consider the extent to which our approach to lexical rules will
generalize to other types of putatively lexical processes.

2. Lexical Rules in HPSG

Lexical rules in HPSG are interpreted as conditional relationships between lexical en-
tries represented as constraints on TFSs (e.g., Pollard and Sag 1994, p. 395, n. 1). Since
lexical entries themselves are FS descriptions, not FSs per se, this interpretation makes
lexical rules metalevel statements in an informally defined language. For example, the
lexical rule for Third Singular Verb Formation (Pollard and Sag 1987, 210-213) is given
in Figure 1. In this notation, coindexation must be interpreted as a copying operator
and not as a specification of reentrancy within a single TFS description, and the de-
scription language must be extended with a conditional implication operator relating
FSs. A linguistic infelicity of this notation is that it requires explicit specification of
what is unchanged under lexical rule application as well as of the changes to the de-
rived entry. The informal interpretation of such a rule is that for lexical entries that
unify with the antecedent description, a derived entry can be created by copying ele-
ments as specified into the consequent description. However, in the HPSG literature,
these explicit copying statements are often left unstated, with the notation being in-
terpreted to mean that features that are omitted have their values copied over, giving
the notation shown in Figure 2.

A number of modifications of this original proposal within the HPSG framework
have been proposed. Copestake and Briscoe (1992) and Copestake (1992) represent
lexical rules as TFSs containing 1 and 0 attributes representing input and output de-
scriptions of the lexical rule, respectively. This enables lexical rules to be encoded in
a type hierarchy and for relationships between rules to be expressed via type inher-
itance. The interpretation of lexical rules is analogous to that of grammar rules (e.g.,
Shieber 1992), and such rules can be thought of as equivalent to unary grammar rules.

489

Computational Linguistics Volume 25, Number 4

3rdsng-Ir
IN . [base
3rdsn
OUT : | PHO ;G[Brdsng<m. Eh
3RDSNG : @
Figure 3

Reformulated Third Singular Verb Formation lexical rule.

Calcagno (1995) develops an algorithm for improving the notation for lexical rules by
eliminating the need to specify what is copied from input to output. Meurers (1995)
also develops a similar algorithm but, although he augments the description language
to allow lexical rules to be written in this abbreviated notation, he interprets the result
as a relational constraint on lexical entries.! Thus, in Meurers’ notation, the rule in
Figure 1 would be written without coindexation as a TFS using IN/OUT attributes as
in Figure 3, and appropriate coindexation would be algorithmically generated from
both the rule specification and the type system to recover an expanded rule effec-
tively equivalent to that in Figure 1 (though the entire values of syN and sEmM would
be carried over). In Meurers’ formulation the coindexation generated is interpreted as
genuine reentrancy since the lexicon is defined utilizing “junk slot” encoding (Ait-Kaci
1984) of the set of possible words, as shown below:

o) lex-rule
word — (L1 Vo VLV [STORE < [OUT :] >]>

This constraint states that a word must be subsumed by one of the basic descriptions
or by a description derived via one or more lexical rule applications (i.e., any de-
scription tagged [). This latter step integrates the interpretation of lexical rules into
the underlying constraint logic of TFS descriptions by structure sharing information
between descriptions of basic and derived lexical entries.

In view of the unrestricted generative power of conventional HPSG-style lexical
rules (Carpenter 1991), naive generative application of recursive or cyclic rules can
lead to nontermination during parsing. Bouma and van Noord (1994) and Johnson
and Dorre (1995) propose techniques for delayed evaluation of lexical rules so that
they apply “on demand” at parse time. Meurers and Minnen (1997) present a compu-
tational framework for efficient application of Meurers’ (1995) formalization of lexical
rules. In their covariation approach, a finite-state machine for the application of lexi-
cal rules is derived by computing possible “follow” relations between the set of rules.
Next, pruned finite-state machines are associated with classes of actual lexical entries
representing the restricted set of rules that can apply to those entries. Finally, entries
themselves are extended with information common to all their derived variants. These
techniques achieve most of the advantages of lexicon expansion in the face of recursive
rules and cyclic rule interactions that preclude a full off-line expansion.

Since their inception, the productivity of some types of lexical rule has been an
issue (e.g., Jackendoff 1975). Given the interpretations discussed above, lexical rules
predict that derived entries will exist without exception for any basic entry subsumed
by a lexical rule input description. Pollard and Sag (1987, 210f.) treat the blocking
of regular rules of morphological affixation by making the application of affixation

1 Riehemann (1993) was the first to propose this interpretation of lexical rules, though she chose to
represent them directly in the type inheritance hierarchy.

490

Briscoe and Copestake Lexical Rules

functions sensitive to specification of irregular affixes in base entries. Thus the rule of
Third Singular Verb Formation in Figure 1 contains a function f3rdsng that combines
the value of the attribute 3RDSNG with that of PHON to create the PHON of the out-
put sign. If the base sign specifies an irregular form for third singular the function
will simply return this form as opposed to the form produced by regular suffixation
with -s. However, preemption by synonymy with an irregularly derived lexical en-
try is only one form of semiproductivity exemplified by lexical rules. Preemption by
synonymy can also apply in cases where the blocking form is basic and does not
involve affixation, such as glory blocking *gloriosity (see Aronoff [1976]). Identity of
lexical form between a derived and underived entry or a more irregular derived entry
can serve to block the more regular derived entry, as with sticker, which has a highly
preferred meaning derived via object, as opposed to subject, -er nominalization (com-
pare bumper sticker to ?a sticker of offensive posters to billboards). There are many other
types of semiproductivity, such as that created by “accidental” gaps or idiosyncratic
exceptions, for example, ?thinkable (compare unthinkable), as well as cases whose status
as “systematic” exceptions or gaps is unclear. For example, verbs such as cost, weigh,
or last, which take measure phrase NP objects do not undergo Passive. These should
probably be blocked from undergoing the lexical rule by enriching its structural input
with restrictions on the semantic nature of the object NP. However, symmetric predi-
cates, such as resemble and equal, which also appear not to passivize easily, are a more
complex case (e.g., Wasow 1980). Firstly, there are symmetric predicates that passivize
relatively easily, such as meet—Kim was usually met by someone from the Russian Embassy
at the safe house. Secondly, it is possible to create acceptable examples for the verbs
standardly cited in the literature—The difficulty of the solution was only equalled by the
obduracy of the research team. And thirdly, there is a general pragmatic reason to believe
Passive might be (largely) redundant with symmetric predicates since in most uses
the subject and object can be reversed without changing meaning. Nevertheless, the
formulation of Passive given in Pollard and Sag (1987, 215) does not address either
type of exception (under the assumption that these verbs are all of type transitive).

Jackendoff (1975) and others have proposed that lexical rules be interpreted as
redundancy statements that abbreviate the statement of the lexicon but that are not
applied generatively. This conception of lexical rules has been utilized in a constraint-
based framework by Sanfilippo (1993) who adds a list-valued attribute to the input
description of a lexical rule that encodes the name of the lexical rule, so that the rule
input specification will only unify with lexical entries that also specify the rule name as
a member of this list-valued attribute. We illustrate this approach in slightly modified
form with respect to the causative-inchoative verb alternation in Figure 4.2 The effect
is that a verb will explicitly specify the alternations that apply to it, as values for the
feature ALTS, out of a set of alternations that are possible for its type, and that lexical
rules may only be applied when the lexical sign has the appropriate value for that
alternation instantiated.

In Sanfilippo’s approach, a constraint-based encoding of categorial grammar (e.g.,
Zeevat, Klein, and Calder 1987) is combined with Dowty’s proto thematic role theory
and proto-roles are interpreted as predicates holding between event and participant
variables in a neo-Davidsonian semantic representation. The version of the rule given
assumes proto-roles appropriate for movement verbs and could be used to relate lexical
entries for gallop as in John galloped the horse / The horse galloped. For convenience here

2 Subscripted coindexing is used to abbreviate the path to the semantic index of the verbal argument
category.

491

Computational Linguistics Volume 25, Number 4

intrans-verb b
PHON . [

RESULT . ssign
SYN . [ACTIVE npglgnm]

=
-agt-cause-move
SEM - ["erb're‘] [VENT . e]>
EVENT ARG . [
ALTS . [4 [TRANS—ALT : caus-inchoat]
[trans-caus-verb b
PHON : [}
RESULT : ssign
syn . | RESULT: | ACTIVE . npsxgnm]

ACTIVE . npsxgnm

t-cause at-move
SEM : < [Eg,fg{\ﬁl] EVENT e [E\?ENT e]>
: ARG .

| ALTS . @

Figure 4
The Causative-Inchoative lexical rule: Sanfilippo’s approach.

we are using an abbreviated version of the “minimally-recursive” style of encoding
for the semantics (MRS) described by Copestake et al. (1995). The semantics for the
causative form of gallop described is equivalent in linearized notation to:

[gallop(e) A p-agt-cause(e, x) A p-pat-move(e, y)]

However, the rule can only apply if the transitive entry for gallop specifies caus-inchoat
as the value of ALTS TRANS-ALT. An immediate problem arises, because as Pinker (1989)
and others have argued, the rule is semiproductive rather than purely abbreviatory,
in the sense that nonce usages are clearly interpreted conventionally as being novel
(mis)applications of such rules. As in for example, Kim subscribed his friend to Byte for a
year or Don’t fall my dolly over!

Although the proposals reviewed considerably clarify and enrich the original con-
ception of lexical rules in HPSG, problems remain. The generative power of lexical
rules places no limit on possible variations in derived words. A more restricted lexical
rule formalism would encourage finer-grained distinctions between rule classes and
development of substantive criteria for characterizing a rule as lexical (as opposed to
unary syntactic). It would also allow an interpretation of lexical rules more conso-
nant with constraint-based frameworks. Neither the interpretation of lexical rules as
fully generative nor as purely abbreviatory is adequate. Although many lexical rules
are subject to exceptions, gaps, and variable degrees of conventionalization, most are
semiproductive because they play a role in the production and interpretation of nonce
usage, errors, and neologisms.

3. The Typed Default Feature Structure Formalism

Our alternative approach to lexical rules assumes the use of typed default feature struc-
tures as the basic data structure. The TDFS formalism extends typed feature structure
formalisms, such as those described in Carpenter (1992) or King (1994), by allowing
for structures that include default information. These are combined by typed (persis-
tent) default unification. In most previous accounts (see, for example, Bouma [1992],
Carpenter [1993], Copestake [1993], and Russell et al. [1993]), default unification is
an asymmetric operation that combines two ordinary (T)FSs, one of which is treated

492

Briscoe and Copestake Lexical Rules

as default and one nondefault, to produce a normal TFS. In contrast, TDFSs mark
default information explicitly within each structure, and are combined with a sym-
metric operation, which retains the information about the defeasibility of particular
pieces of information. There are two advantages of the TDFS framework over previous
approaches that are important for our treatment of lexical rules:

1. Unlike asymmetric default unification, the unification operation on
TDFSs is order-independent. Thus inheritance hierarchies may be defined
in which some inherited information may be overridden by more specific
information, without the results being dependent on evaluation order.

2. Structures can be represented as having persistent defaults: in particular,
parts of the semantics of lexical signs can be marked as defeasible, in a
way that allows the information to be overridden either by sentential or
discourse context.

Lascarides et al. (1995) provide an initial formalization of the TDFS framework,
Lascarides and Copestake (1999: henceforth L&C) describe the version of default uni-
fication assumed in the informal outline of the TDFS formalism that follows.

3.1 Asymmetric Default Unification

In L&C, a symmetric unification operation on TDFSs is defined in terms of an asym-
metric default unification operation, so we begin by describing the latter operation.
We will also use a variant of this operation in our formalization of lexical rules in
Section 4. Carpenter (1993) gives an elegant definition of asymmetric default unifica-
tion of untyped feature structures in terms of maximal incorporation of information.
Because of conflicts in defaults, this may give rise to multiple extensions. There are
two alternative approaches to this: the operation can either return all extensions as
a disjunction or return their generalization. This gives unification-based analogues of
credulous and skeptical default logics. Here and below, we use M to represent unifica-
tion (i.e., conjunction of information), J for subsumption (i.e., is more general than),
T for the most general type, and L to indicate inconsistency.

Definition: Credulous Default Unification (ISIC)
The result of credulously adding the default information in G to the strict information
in F is given by:

F.G={FNG :G' 1Gis maximally specific such that F G’ is defined}
where M is ordinary unification.
Definition: Skeptical Default Unification (ISIS)

F,G=U{FNG :G' JGis maximally specific such that FM G’ is defined}

The result is the generalization (L)) of the result of the credulous default unification
operation.

Figure 5 gives an example (here and in the examples below we assume that a, b,
and c are pairwise incompatible and pairwise generalize to T). Carpenter makes use

493

Computational Linguistics Volume 25, Number 4

)

e

Qm
__|§I
A
o
p———
AEE
(-2
[
I
TOMW ———
TaOm
nE]B

nEEI
o
—_—
Il
——
—
O™

O™ TO™

=]

(e
S

[

Figure 5
Credulous and skeptical asymmetric default unification.

W
—

of a characterization of FSs as sets of atomic feature structures: that is, FSs that consist
either of a single path with an associated atomic value (which would correspond to a
type in a TFS framework), or of a pair of (possibly identical) paths that are shared. Any
FS can be described in terms of the set of atomic FSs that are strictly more general than
itself. Carpenter’s definition of default unification can thus be understood in terms of
incorporation of maximal subsets of the set of atomic FSs into which the default FS
can be decomposed.

3.2 Well-formedness Constraints
Because [, and I, are ultimately defined in terms of monotonic subsumption, we can
create variant definitions corresponding to variant notions of subsumption. This is
particularly relevant when we come to consider typed rather than untyped FSs. We
can consider the subsumption ordering on well-formed typed feature structures, where
well-formed TFSs are a subset of TFSs in general. There are a variety of proposals for
well-formedness conditions for typed FSs: here we assume conditions on appropriate
features based on Carpenter (1992). We will not give these in detail here, but briefly,
we assume that every type, t, has a set of appropriate features associated with it,
AppFeat(t). For a TFS F to be well-formed, every node, g, in the structure must have
an associated type, t, and the features labeling the edges that come out of the node g
directly must be equal to AppFeat(t). For example, if the type ne-list has the appropriate
features HD and TL, and has no subtypes, then the FS [SYN . intrans] will not unify
with an FS of type ne-list.

So, assume J; indicates the partial order in the collection of well-formed TFSs,
and I, indicates the corresponding greatest lower bound, and so on. Then we can
define ;, a straightforward variant on Carpenter’s M, but defined on typed FSs.

Definition: Skeptical Typed Default Unification (Islt)
The result of skeptically adding the default information in the TFS G to the strict
information in the TFS F is given by:

Fr,G = U{FM; G’ : G J; G is maximally specific such that F; G’ is defined}

In what follows, we will omit the subscript t and in general assume well-formedness
of TFSs.

3.3 Symmetric Default Unification

As we mentioned above, we want to make a distinction between default and nonde-
fault information in a typed default FS (TDFS), and to allow the default information
to “persist” through a series of default unification operations. This is done by making
a TDFS be a dual structure, of which the first component is a standard TFS indicating
nondefault information and the second is a structure known as a tail. A tail is a set

494

Briscoe and Copestake Lexical Rules

of pairs, each consisting of an atomic FS and a type that indicates specificity. Atomic
FSs associated with more specific types in the tail will be preferred over those asso-
ciated with more general types in the case of conflict. As L&C discuss in detail, if
we want to maintain associativity of default unification (in order to guarantee order-
independence) we must maintain some of the unification “history.” The tail does this
and may thus include conflicting elements that were introduced by different TDFSs.
However, the atomic FSs in the tail are required to be consistent with the indefeasible
TFS. We use the notation I/T to indicate a TDFS with indefeasible component, I, and
tail, T. An example of a TDFS is shown in (1).

U [c b)) 0,
N L (([F- [d].2)
H.a (S]],t”)}

The default unification operation, <ﬂ>, combines two TDFSs. It simply involves
taking the unification of their indefeasible components, and the union of their tails
with all elements inconsistent with the indefeasible result removed. The following
definition of the operation is slightly modified from L&C (ps(T) is an operation that
extracts the atomic FS components of tail elements):

Definition: Symmetric Default Unification H -
Let F; =, I;/T! and F, =4 12/T2 be two TDFSs, and let Fip =, F; [F,. Furthermore,
assume Fy; =, I17/T'2. Then I;; and T'? are calculated as follows:

1. The Indefeasible Part:
Ip=hLHNh
That is, the indefeasible TFs is the unification of the indefeasible parts of
the arguments.

2. The Tail T2
T2 =af Filter(llz, (Tl U Tz))
where Filter(I;;, T) includes only the elements of T where the atomic Fs
95 (T) is compatible with Ij,. That is:

Filter(F,T) = {T' € T: pp(T')NF # 1}

Of course, it will sometimes be necessary to know which default information
“wins.” That is, we require an operation, DefFS, that will give us a consistent default
TFS, given the tail and the indefeasible structure. In the case of conflicts, the result of
DefFS is dependent on the types that introduced the default information, since infor-
mation associated with more specific types is preferred over that from more general
types (the analogue of the “penguin principle”). L&C therefore define the notion of a
specificity partition of a tail, such that all the elements which are maximally specific
(according to the partial order of their types in the type hierarchy) are in the first
partition, all the next most specific elements are in the second partition, and so on.
That is, the partition of a tail T is (u1, ..., n), where the types associated with the tail
elements in y; are strictly more specific than the types in uy, and so forth.

DefFS proceeds by using credulous asymmetric default unification to combine all
the possible elements of the most specific partition with the indefeasible structure,

495

Computational Linguistics Volume 25, Number 4

then incorporating the next most specific partition into the result of this, and so on.
Each step may result in multiple TFSs. Incorporation of information is defined by the
credulous default unification operation, IEICS, which is a slight modification of 151(;, as
defined by Carpenter, because it has to allow for the nondefault argument being a
set of TFSs and the default argument being a set of atomic FSs that may be mutually
incompatible.

Definition: Credulous Default Unification lslcs on Sets
Let F; be a set of TFss {Fy,...,F,}, and G, a set of atomic Fss. Then

< < <
~7:1|_]ch2 = {FlrlcagL .. -/Fn[—lcagz}
where

Fllslm{Gl, ...,Gy} ={F1MFy: F,is the unification of a maximal subset of
{Gy,...,Gy} such that F; N F; is defined }

Definition: The Operation DefFS
Let F be a TDFs I/T. Then

DefFS(F) = U((Iﬁcspfs(lil))ﬁcs . Islcsﬁ’v’fs(ﬁ"n))

So multiple TFSs may result from the credulous asymmetric default unification
steps, but a final generalization operation takes only the information that they all
have in common. Thus, in the absence of type precedence, conflicting defaults are
treated skeptically overall.

In the example below, we illustrate DefFS on the TDFS shown in (1). On the as-
sumption that the type t is strictly more specific than t’, which is strictly more specific
than t”, each partition in the tail has a single element. In the example, the tail elements
are shown in specificity order. The most specific will unify with the indefeasible struc-
ture, but the other elements conflict with the result (on the assumption that a, b, and
¢ are incompatible).

t {[F[c-v]] 0, t
DeffS(|F - [¢ <] ((Folc-g] 0 - Fol& o]
H:a <f{[]],t")} H:a

The tail notation is somewhat cumbersome, especially since we are often concerned
with TDESs where the default information is mutually consistent. We can adopt an
abbreviated notation for cases where there are no conflicts in which default information
(i.e., the atomic FSs in the tail) is indicated by means of a slash notation, following the
appropriate path in the indefeasible structure. For example, the TDFS shown in (2a)
is represented in the abbreviated notation as shown in (2b).

o . [“] (ﬁﬁf tg1f]],t>}

H . H.

496

Briscoe and Copestake Lexical Rules

t

v
b. F:[G:/a]
H:/

We will use this abbreviated notation in the examples that follow. We refer the reader
to L&C and Lascarides et al. (1995) for formal specification and detailed motivation
of the TDFS formalism.?

3.4 Persistent Defaults

Symmetric default unification can be used to extend the functionality of any linguistic
framework based on, or embedded in, TFSs in two ways. Firstly, the organization
of the lexicon can be extended naturally to allow for default inheritance networks
of constraints. Default inheritance has been widely exploited in lexical descriptions
both within and outside the TFS framework (e.g., Daelemans, de Smedt, and Gazdar
1992). However, the TDFS approach extends formalized and implemented proposals
for default inheritance, such as DATR (Evans and Gazdar 1989, 1996) or any version
based on asymmetric unification, in that the lexicon now consists of a set of TDFSs, as
opposed to a set of (T)FSs; that is, it permits default specification to persist “beyond
the lexicon” for exploitation during syntactic, semantic, or discourse level operations.
This is the most significant property of the TDFS framework for our use of lexical
rules, so we will give a simple example of its potential utility.

Figure 6 gives a possible lexical entry for climb that exploits persistent default
specification to capture the defeasible nature of aspects of the meaning of this verb. In
this sense and pattern of realizations, climb can combine with a locative PP specifying
the goal and/or directional path of movement. By default, the directional path is
specified to be upwards. The preposition heading the PP may strengthen, override, or
leave default this specification, as illustrated in (3).

(3) a.John climbed up the shaft
b. John climbed along the shaft
¢. John climbed around the shaft
d. John climbed through the shaft
e. John climbed down the shaft
In addition, lexical rules that create an intransitive form of the verb by removing
the requirement for the PP arguments must leave the default direction specification

unmodified, and in all cases the lexically specified default remains defeasible during
discourse processing in a context with which it is inconsistent, as illustrated in (4).

(4) a. The shaft was very deep. John climbed for several hours, before
reaching the bottom.

b. The shaft had two inspection hatches: the first was five feet above the
second. John climbed through the shaft entering from the first inspection
hatch and exiting via the second.

3 Note, however, that although L&C conjecture that DefFS is worst-case exponential, Malouf (1999) has
developed an algorithm that is efficient even for cases where the tail is large in proportion to the
indefeasible structure and where complex reentrancies are involved. Malouf’s results so far suggest that
practical complexity varies from linear to quadratic, and that, overall, recoding a monotonic system to
use defaults can improve performance, chiefly because it reduces the complexity of the type hierarchy.

497

Computational Linguistics Volume 25, Number 4

transitive-pp-verb

PHON : climb
. -agt-move direction-rel/up-rel
SEM . < [%‘{,’g}{;{d] EVENT e] EVENT e >
‘€] | ARG : x ARG .y
Figure 6

Lexical entry for climb.

The fact that defeasible components of meaning interact subtly with both lexical rules
affecting grammatical realization and discourse context supports a framework in which
defeasible semantic specifications can be explicitly represented at the lexical level.
Copestake and Briscoe (1995) argue at some length for this position, and Lascarides
and Copestake (1995) and Lascarides et al. (1995) show how lexical defaults interact
appropriately with nonmonotonic discourse reasoning within the formal framework
of DICE (Lascarides and Asher 1991, 1993).

4, Lexical Rules in the TDFS Formalism

Lexical rules differ from (default) inheritance in several ways. Firstly, a lexical rule
relates lexical entries whose types are unordered, and secondly, such rules often ap-
ply recursively. Nevertheless, there are similarities between default unification and
the process of creating a new lexical entry, conditionally, given the presence of an-
other entry satisfying certain properties. In particular, asymmetric default unification
presents itself as a way of implementing the requirement that information should
carry over from input to output description in a lexical rule, provided that it is con-
sistent with the output type and any further constraints specified in the rule. Fur-
thermore, if we wish to express lexical rules in terms of the TDFS formalism outlined
in Section 3, it makes sense to explore the utility of the nonmonotonic component
developed.

Asymmetric default unification can provide the foundation for the carrying over
of consistent information between input and output descriptions in lexical rules. For
example, the second formulation of the rule of Third Singular Verb Formation (without
coindexation) given in Section 2 can be reinterpreted as an application of asymmetric
default unification, as illustrated in Figure 7 (an explicit encoding of function appli-
cation has been introduced for clarity). Under this new interpretation of the notation
(and assuming for the moment that the structures have empty tails), if the input
description subsumes a lexical structure, then the result is given by asymmetrically
default unifying the lexical structure with the output description. The effect is that in-
formation in the input that is inconsistent with the output description is lost, whether
because it conflicts with a path specification or because the path itself is inconsistent
with the output type. On the other hand, conflicting or new information in the output
specification survives. The typed variant of Carpenter’s definition of asymmetric de-
fault unification that was presented in Section 3.2 will support this approach to lexical
rules.

4.1 The Definition of a TDFS Lexical Rule
All lexical rules are of the following form, where I,/T, and I, /T, are TDFSs:

Ia/Ta = Ib/Tb

498

Briscoe and Copestake Lexical Rules

3rdsg e3ed
~ [FUNCTION : f3rdsng
[base]'—) PHON . ARGS : < 7.1 >]
3RDSNG : [i]
Applied to:
base

FUNCTION ,
PHON - | ARGS . < walk >]
3RDSNG -
SYN LOC SUBCAT . < NP >

is equivalent to:

base

3rdsg FUNCTION .
PHON . [FUNCTION . f3‘ds“g] M | PHON <1 ARGS . < walk]
ARGS < T, > 3RDSNG .

3RDSNG :] SYN LOC SUBCAT : < NP >

3rdsg d
[FUNCTION . f3rdsng
PHON - | W RGS " < walk, [f] >]
3RDSNG -
SYN LOC SUBCAT . < NP >
Figure 7

Reinterpreted Third Singular Verb Formation lexical rule.

The interpretation of the rule is as follows: Given a lexeme, I; /T1, where [; C I,, then
the result of applying the lexical rule is a TDFS, I;/T, such that:

1. Io=L%h
The indefeasible output is given by asymmetrically default unifying the
indefeasible part of the output specification with the indefeasible part of
the input lexeme.

2. T, = Filter(I, (T, UTy))
The output tail is the union of the output specification’s tail T, and the
input tail, T1, minus any tail elements that are incompatible with the
new indefeasible information.

Note that this definition parallels the definition of H, with 1, replacing M. Note
also that although as we have described them here lexical rules apply to TDFSs, it
should be clear that their application to ordinary TFSs is just the special case where
there are no default components in any of the feature structures involved.

4.2 Maximal Incorporation of Information in a Type Hierarchy
When we extend atomic FSs as defined by Carpenter to a typed framework, if a TFS
has a path 7 with value t, then [. t] is an atomic FS in the decomposition of the TFS.
However, if t has supertypes r, s, and so on, in order to get maximal incorporation of
information, we must also include the atomic FSs [x . 1], [x - SJ’ and so on (see L&C,
Sec. 6.3). This is important in our use of asymmetric default unification to define lexical
rules, as we illustrate with the following example.

Suppose we describe the inchoative-causative alternation using the lexical rule
shown in (5).

(5) [intrans-verb] /{} — [trans-caus-verb]| /{}

499

Computational Linguistics Volume 25, Number 4

trans-verb
intrans-verb /movt-‘gb\ tr/am-caus-veﬂ)
intrans-movt-verb trans-caus-movt-verb
Figure 8

Multiple inheritance for movement verbs.

This is intended to apply to a range of semantic subclasses and the specific semantic
class should be retained after application of the lexical rule: for example, if the input
is a movement verb then the result should also be a movement verb. If semantic
subclasses cross-classify with types such as trans-verb and intrans-verb, this could be
implemented using multiple inheritance: i.e., the type intrans-movt-verb would inherit
from intrans-verb and movt-verb, and the type trans-caus-movt-verb would inherit
from trans-caus-verb and movt-verb as shown in Figure 8. Assume we apply the rule
in (5) to a lexeme of type intrans-movt-verb. If the asymmetric default unification
operation used in the definition of lexical rules did not consider the supertypes of
this type, the application of the rule would give an output of type trans-verb, because
the value of the type on the input is incompatible with trans-verb. However, if we
take account of all the supertypes of the type that are compatible with the output, the
result is the desired one: trans-caus-movt-verb. This is illustrated in Figure 9.

4.3 Reversibility and Backformation

Given the arguments in Lascarides et al. (1995) about the desirability of the symmetric
form of default unification on the grounds of order-independence, it may seem surpris-
ing to suggest that an order-dependent operation be the basis for the formalization of
lexical rules. But it is clear that lexical rule application must be order-dependent, for
example to distinguish truthfulness from *truthnessful. However, bidirectionality and
reversibility are required in order to model both analysis and generation, and also to
deal with backformation. In fact, although conventional HPSG-style lexical rules ap-
pear to be straightforwardly interpretable as bidirectional, there is no guarantee that
any given input can be recovered from knowledge of the rule and of its output, unless
all the information in the input is copied over to the output. The most that can be said
is that by reversing the rule a result will be obtained that is unifiable with the original
input. Of course, lexical rules could be written in such a way that all information
about the input can be recovered, by copying all the information over (for example to
a DTR-style attribute in the output).

Reversibility of TDFS lexical rules is defined somewhat differently. Given a rule
FS; — FS,, and an input I that results in output O, we can recover I' defined as the
unification of FS; with F, the most general FS such that FMFS; = O. By the definition
of default unification, I C F, and since TDFS lexical rules apply under subsumption,
I € FS;. ThusI C I, that is, we can guarantee that the result of the “reverse” application
subsumes or is equal to the input (which is actually a stronger result than we obtain for
conventional lexical rules). With both conventional and TDFS lexical rules, therefore,

500

Briscoe and Copestake Lexical Rules

intrans-verb
PHON : phon
RESULT : ssign
SYN - [ACTIVE : npsign]
-agt-cause

SEM:<["erb'rel] VNT:e]>
EVENT . e || RYENT

[trans-caus-verb
PHON : phon

. [RESULT . ssign
RESULT - | ACTIVE . npsign]
| ACTIVE : npsign

oo <[. (YRS | Bl o]
RGy

SYN .

EVENT . e ARG : x

intrans-movt-verb
PHON : gallop

RESULT : ssign
SYN - [ACTIVE ; npsign]

SEM allop-rel E'aét-cause-mo\,e
<[EVE T:e]' A\I]{GN'I;e N

Input:

[trans-caus-movt-verb
PHON . gallop

RESULT : ssign
SYN . [RESULT: [ACTIVE : np§ign]]

ACTIVE : npsign
-agt-cause-move -pat-move
SEM:<[E*{}}§S¥"1]. VENT . e] EVENT e | >
"€J [ARG : x ARG .y

Output:

Figure 9
Causative-Inchoative lexical rule revisited.

additional assumptions about the relationship between the input and the output, at
least with respect to phonology/orthography and semantics, would have to be made
if we wanted to guarantee that a lexical entry will be fully retrievable.

Thus, idiosyncratic information in the input lexical entry, which is overridden in
the output, cannot be recovered. This actually seems to be a desirable property when
we consider how backformations may be modeled. For example, self-destruct rather
than self-destroy is the backformation from self-destruction (see Bauer [1983, 232]). It is
thus apparently linguistically unmotivated to assume that the input to a lexical rule is
completely recoverable from a derived form and the asymmetry of TDFS lexical rules
arguably captures some of the markedness of backformation without precluding the
possibility that individual reversed rules faithfully model the effects of backformations.

4.4 Discussion

Unlike the versions of lexical rules described by Riehemann (1993), Copestake and
Briscoe (1995), and Meurers (1995), this interpretation cannot be incorporated into a
monotonic constraint-based formalism, since the operation of lexical rules is essentially
nonmonotonic, in that the incorporation of additional information into the input may
result in loss of information from the output. This treatment of lexical rules therefore
requires that there be an interface between the lexicon and the syntactic component
so that operations are carried out in a predefined order. This is not a disadvantage

501

Computational Linguistics Volume 25, Number 4

I
U\,

Input Result

t r

1 Fb F:a
t r

2 F.c F.e
t r

3 Fd Fie

Figure 10

Abstract lexical rule example.

from our perspective, since the use of defaults to encode information that does not
persist beyond the lexicon requires such an interface in any case. The cost of the fully
monotonic version of lexical rules is that the complete history of rule application has
to be accessible, either explicitly, as with Riehemann’s approach, or implicitly (e.g., via
junk slots). However, our current approach does mean that some potential applications
of lexical rules are precluded, which we discuss further in Section 7.

In contrast with Meurer’s notation, it is not possible to straightforwardly compile
out our lexical rules into equivalent rules that do not use defaults, even when TFSs
rather than TDFSs are considered. Consider the abstract example shown in Figure 10.
To state this using conventional lexical rules would be extremely complex, since it
would require a whole series of rules to deal with the possible values of F, each with
negative conditions to prevent them applying incorrectly. Contrast this to Meurer’s ap-
proach, where all inputs would give a result where F had the value a. Essentially the
difference is that whereas our approach can be paraphrased as “transfer all information
for a feature F that does not conflict with information on the output,” Meurer’s defi-
nition can be paraphrased “transfer all values for a feature F unless any information
is stated about F.” The example shown in Figure 9 illustrates one case for which our
approach leads to desirable results. Another example arises when inflection is imple-
mented using lexical rules, as with the example of the Third Singular Verb Formation
rule (Figure 7). With conventional lexical rules it is impossible to carry over informa-
tion about the type of the input to the output (unless the rule is totally monotonic
in operation, in which case it is equivalent to the use of simple subsumption-based
inheritance). Therefore lexical types cannot persist after inflectional rules are applied,
unless the rule is split so that one subrule applies to each type (see, for example,
Copestake [1992] for further discussion). This class of problems is avoided with our
current approach.

In other respects, this version of lexical rules is intermediate in expressivity be-
tween simple inheritance and conventional lexical rules. It is more powerful than
simple inheritance, because the “input” and “output” types of lexical rules do not
have to be in a fixed inheritance hierarchy, and recursive application of rules is pos-
sible. Consider for example, an alternative encoding, using simple inheritance, of the
Causative-Inchoative rule shown in Figure 9. This requires that a type caus-or-inch-

502

Briscoe and Copestake Lexical Rules

verb exists that has intrans-verb and trans-caus-verb as subtypes. However, in order
to encode further alternations, these types themselves have to have subtypes corre-
sponding to each rule. For example, if the goal PP in John galloped the horse to the
barn / The horse galloped to the barn is encoded as an argument, then intrans-verb and
trans-caus-verb both have to have subtypes for the goal PP and this configuration
has to be replicated for all subtypes of intrans-verb, such as intrans-movt-verb. This
quickly leads to highly complex type hierarchies, since the configuration of the types
encodes “reachability,” as well as inheritance. Furthermore, encoding lexical rules by
inheritance does not allow for any notion of semiproductivity of a rule. Individual
exceptions to a rule can be encoded, for example, if run is encoded as an intrans-verb
and not specified to be of the higher type caus-or-inch-verb, then causative forms of
run will not be generated. But this leaves it as an accident that, at least for this class
of movement verbs, it is generally the causative rather than the inchoative form that
is impossible or marked. We will discuss how we can exploit the asymmetry of TDFS
lexical rules to allow for semiproductivity in Section 6.

Our approach to lexical rules is, on the other hand, less powerful than conventional
HPSG-style lexical rules because it is not possible to arbitrarily “rearrange” material
between the input and the output structures: a value that is present on a particular
path in the input can either be unified with a value on the same path in the output
structure, or be overridden, but it cannot be moved to a new position within the
output feature structure. This approach therefore shares some of the restrictions of
simple inheritance with respect to encoding potentially recursive operations, and we
discuss the implications of this further in Section 7.

It is clear that the notion of lexical rules that we have presented encodes something
like “type reachability” rules for lexical types. This is an inherently more restricted
notion than that of HPSG-style lexical rules, which can also encode arbitrary operations
on list-valued features. A consequence of this more restricted notion is that lexical rules
cannot be used to rearrange the order of list-valued features and cannot be applied
recursively in a manner that makes such lists unbounded. In fact, since lexical rules
simply relate lexical types predefined in the lexicon, they cannot increase the generative
capacity of the overall system in which they are embedded.*

In Section 5, nevertheless, we show that an insightful account of one rule that
would be encoded via SUBCAT list manipulations can be stated in this more restrictive
framework. In Section 7 we consider the extent to which our approach can capture
other putative lexical rules and argue for a clearer distinction between lexical rules
and (unary) syntactic rules.’

5. Dative Constructions
Lascarides, Copestake, and Briscoe (1996) present an account of the dative alterna-

tion that illustrates the utility of the TDFS framework for encoding defeasible lexical
semantic entailments in terms of Dowty’s (1989) proto thematic roles, and the interac-

4 We omit a formal proof as this would require more detailed specification of the syntactic component
than is warranted in the rest of the paper.

5 An alternative method of exploiting the TDFS formalism to encode rules was mentioned in L&C
(page 87) and has been explored by Malouf (1999). This technique uses the TDFS description language
to allow a very succinct statement of rules that use coindexation to relate their input and output:
effectively, paths in the input and output structure can be specified to be coindexed by default. The
expanded rules have the same properties as the lexical rule variants described by Copestake (1992) or
Riehemann (1993). Thus, in terms of the current paper, this encoding is a way of improving the
representation of syntactic rules.

503

Computational Linguistics Volume 25, Number 4

tion of these with the dative alternation (e.g., Green 1974). This account draws heavily
on Goldberg’s (1995) analysis of dative in construction grammar (e.g., Fillmore, Kay,
and O’Connor 1988), and attempts to integrate her insights and general approach into
a more formally explicit constraint-based framework. In this section, we extend this
account by embedding the account in a syntactic framework based on UCG (Zeevat,
Klein, and Calder 1987), as integrated with Dowty’s approach to thematic roles and
extended by Sanfilippo (1990, 1992, 1993), and augmented with linking theory (Chang
1995).¢ This allows us to utilize TDFS lexical rules in an insightful way to express an
alternation otherwise naturally treated in terms of rearrangement of a list-valued suB-
cAT feature. In Section 8 we go on to propose a probabilistic interpretation of TDFS
lexical rules that allows us to capture the semiproductivity of the dative alternation,
and other lexical rules.

Following Goldberg (1995) we argue that there is a family of dative constructions
that exhibit the same syntactic properties and related semantic properties, exemplified

in (6).

(6) a. Mary gave Joe a present
b. Joe painted Sally a picture
¢. Mary promised Joe a new car
d. He tipped Bill two pounds
e. The medicine brought him relief
f. The music lent the party a festive air
g. Jo gave Bob a punch
h. He blew his wife a kiss

i. She smiled herself an upgrade

The core dative construction involves a volitional agent and willing recipient and
carries the entailments that the agent causes the recipient to receive the object denoted
by the patient/affected-object argument, as in (6a). Under this interpretation, (6b)
involves a shift in meaning where the recipient may or may not receive the affected-
object, but the agent acts with this intention, whilst (6¢c) involves a similar shift as the
act of transfer is intended to take place at some point in the future and may not in
fact occur. (6d), unlike the previous examples, does not have an oblique counterpart.
The remaining examples all appear to involve metaphorical or idiomatic extensions to
the core dative construction.

We represent the difference in the basic (abstract) meaning of the dative construc-
tion in (6a) and (6b) in terms of entailments associated with proto thematic roles, so
that agent becomes p-agt-cause-transfer in (6a) and p-agt-cause-make-intend-transfer
in (6b). There are lexical rules that relate the dative construction with the alternative
oblique complementation patterns involving to and for PP arguments, respectively,
which alter the proto-agent role of a “creation” verb such as paint from p-agt-cause-
make to p-agt-cause-make-intend-transfer. We abbreviate the different entailments
(willingness and successful transfer) concerning the first object in (6a) and (6b) as

6 Nevertheless, the general approach to lexical rules is equally compatible with HPSG, combinatory
categorial grammar (e.g., Steedman 1996), tree adjoining grammar (e.g., Joshi 1987) or indeed any
grammatical theory embeddable in the T(D)FS representation language.

504

Briscoe and Copestake Lexical Rules

" dative-verb
PHON : phon

gyNn . | RESULT : ACTIVE : npsign
ACTIVE . npsign
ACTIVE : npsign

-agt-caus/p-agt-cause-transfer
SEM . ¢ [verb-rel] EVENT of 8

EVENT . e ARG . x

-pat/p-pat-aff-obj -obl/p-obl-reci
E\yENg' :Pe J . EVEN¥ e P >
ARG .y ARG .z]

Figure 11
The dative type constraint.

[oblique-transfer-verb

PHON : phon
RESULT . [RESULT : ssign]]

SYN . RESULT : A(.ZTIVE : npsign
ACTIVE . npsign

ACTIVE : pptosign

-agt-cause-transfer -pat-aff-obj -obl-reci
SEM . < [E‘{;}z’g&;‘_ e]' EVENT - e ABVENT e) |. | BVENT ¢ | >
' ARG : x ARG :y ARG : z]

Figure 12
The oblique-transfer type constraint.

recipient and benefactive, respectively. It should only be necessary to state the form
of the dative construction once. Furthermore, it should not be necessary to say that
verbs of creation, such as paint, are lexically ambiguous between two- and three-place
predicates; rather, it is participation in the dative construction itself that creates the
third benefactive argument for these inherently two-place predicates. We also assume
without explicit argument here that the for PP variant is produced by a lexical rule
introducing the optional PP.

In the TDFS framework we can state the semantics of the dative construction
independently of specific lexical heads (or arguments) as a type constraint on the set of
dative lexical items. The type constraint expressed as a TDFS in Figure 11 achieves this
and utilizes default specification of the proto-roles on the arguments so that specific
verbs can override the core entailments. This constraint stipulates that dative verbs will
necessarily have a p-agt-cause role, but, by default, this will be specialized to p-agt-
cause-transfer, thus expressing the generalization that the dative construction usually
implies that some transfer has taken place. Similarly, the role on the proto-patient
is p-pat-aff-obj by default, since the object will usually be affected, and p-obl-recip
captures the entailment that the oblique argument usually corresponds to a recipient.
(We assume that the second object is treated as an oblique [indirect object] argument
in the framework, though nothing particularly rests on this assumption.)

Most verbs will not be directly specified in the lexicon as being of type dative,
but will become associated with this type via the lexical rules relating oblique-transfer
verbs and transitive-creation verbs to it. The type constraints for these source types
are given in Figure 12 and Figure 13, respectively. (We ignore the issue of how the in-
formation represented at these types might be factored between supertypes to capture
further generalizations concerning verb classes; see, for example, Sanfilippo [1993].)
The two lexical rules required are given in Figure 14.

505

Computational Linguistics Volume 25, Number 4

[trans-create-verb
PHON : phon

RESULT . ssign
SYN . [RESULT: [ACTIVE ; np§ign] }

ACTIVE : npsign

-agt-cause-make -pat-aff-obj
SEM . < [yerbrel e], EVENT . e | BVENT ¢) | >
i ARG : x ARG :y

Figure 13
The transitive-creation type constraint.

The Dative Lexical Rule

oblique-transfer-verb — dative-verb

Create-to-Benef-Dative Lexical Rule

dative-verb

-agt-cause-make-intend-transfer
SEM . < [gerbeel . BVENT o oo nsien
trans-create-verb — : ARG : x
E;})at-aff-obj -obl-benef
ENT . e .| EVENT : e >
ARG :y ARG : z

Figure 14
Dative lexical rules.

These rules can be stated quite simply with reference to the type system for verbs.
The first rule, which is the core (recipient) Dative rule, is simply stipulated as a “reach-
ability” relationship between the two types oblique-transfer-verb and dative-verb.
However, when this rule is applied to a lexical entry of type oblique-transfer-verb,
the specifications of the proto-roles as p-agt-cause-transfer and p-obl-recip in the result
will be indefeasible, in contrast to their defeasible status in dative-verb, because they
are indefeasible in the basic type. We show the input and output TDFSs for a transfer
verb (give) undergoing this rule in Figure 15. In contrast, the benefactive Dative rule
specializes the dative type so that the proto-role entailments stipulated override the
defaults on the type dative-verb. Thus, p-agt-cause-make-intend-transfer overrides p-
agt-cause-transfer and p-obl-benef overrides p-obl-recip. The effect is that the result
does not imply that transfer of the affected object was necessarily successful. Figure 16
shows the input and output for a creation verb (paint) undergoing this rule. Thus these
rules correct predict that while (6a) implies successful transfer, (6b) only implies that
transfer was intended.

The verb types shown so far do not make explicit the linking between proto-role
arguments and the semantic indices of syntactic arguments. In HPSG and construction
grammar, such linking is provided on a construction-by-construction basis in the type
definitions for each construction/sign. The standard way of linking arguments in a
(T)FS framework is to make the semantic indices of the syntactic arguments reentrant
with the indices representing the arguments of the (proto) thematic roles. However,
if we adopted this approach, default unifying linked versions of oblique-transfer-
verb with dative-verb would result in the incoherent structure shown in Figure 17
because the reentrancies in the input type description are consistent with the output
type description, and are thus incorrectly preserved.

506

Briscoe and Copestake

Input:
[oblique-transfer-verb
PHON : give

gyN . | RESULT - ACTIVE . npsign
' ACTIVE : npsign

ACTIVE . pptosign

ARG : x ARG .y

Output:
" dative-verb
PHON : give
RESULT : ssign
syn . | RESULT . | RESULT: [ACTIVE : npgign]]
' ACTIVE : npsign
ACTIVE : npsign

ARG : x ARG .y

Figure 15
give

Input:

[trans-create-verb
PHON : paint

RESULT : ssign
syN . | RESULT . [ACTIVE ; np§ign]
ACTIVE : npsign

ARG : x ARGy

Output:

[dative-verb
PHON : paint

syN . | RESULT : ACTIVE : npsign
ACTIVE : npsign
ACTIVE . npsign

SEM . <[aint-rel] Eg?gt-cause-make-intend-transfer

RESULT . [RESULT . ssign]]

NT : e
VENT : e ARG . x
E-\?at-aff-obj -obl-benef
ENT . e .| EVENT:e | >
ARG :y ARG : z
Figure 16
paint

. -agt-cause-make -pat-aff-obj
SEM . < [BYENT | EVENT e],[E\?ENT;e

] .

: -agt-cause-transfer -pat-aff-obj
SEM < [et e EVENT . e }.[E\yENT:e][

. -agt-cause-transfer -pat-aff-obj
SEM:<['\‘,’EK&IAe],[EVENTze]'[E\yENT:e]{

|-

-obl-recip
VENT : e
ARG :z

-obl-recip
VENT : e
ARG : z

Lexical Rules

|-

>

There are ways in which we could extend the formalism to avoid this problem,
for instance by allowing specification of inequalities (Carpenter 1992), which could be
used to explicitly prevent inappropriate coindexation (see Lascarides and Copestake
[1999] for inequalities in the TDFS framework). However, for the purposes of link-
ing, this restriction on the expressivity of lexical rules is a virtue rather than a vice:
Pinker (1989) argues on quite independent grounds that linking rules should apply

507

Computational Linguistics Volume 25, Number 4

[dative-verb
PHON : phon

RESULT . " | ACTIVE : npsigny
ACTIVE : npsign[g
ACTIVE : npsign

RESULT . | RESULT - ssign]
SYN .

SEM . < [verb-rel] E-aét-cags/p-agt-cause-transfer

EVENT :e |’ ARG . II]
-pat/p-pat-aff-obj -obl/] -obl -reci
EVENT re || BvEn Pl
ARG . ARG .

Figure 17
Incoherent linked dative TDFS.

after lexical rules so that all lexical entries are subject to the same linking constraints.
By factoring linking constraints out of the type constraints on specific constructions
we can eliminate redundancy and explicitly express the appropriate linking gener-
alizations. Chang (1995) follows Wechsler (1991) and Davis (1996) in assuming that
linking generalizations are captured via constraints specified as TFSs, but makes the
assumption that linking applies after lexical rule application. She shows how linking
generalizations can be captured within the TDFS framework assuming the linguistic
framework of UCG/construction grammar and proto thematic roles outlined above.
By reorganizing the semantic type hierarchy to take account of the distinction between
internal and external causation (see Levin and Rappaport Hovav [1995]), Chang is able
to define 11 partly defeasible verbal linking constraints, each specifying the link be-
tween one thematic role and one argument position, correctly linking monadic, dyadic,
and triadic predicates that may undergo causative-inchoative, passive, and/or dative
alternations by persistent default unification of all linking constraints with each dis-
tinct basic and derived verbal type. Thus, our approach to lexical rules is similar to that
of Pinker (1989) in that all basic and derived lexical entries are subject to a few gen-
eral linking constraints that coindex syntactic arguments with appropriate proto-roles.
However, in common with Goldberg (1995), we adopt the position that such rules are
not fully reducible to operations on semantic representations, but rather concern the
interplay of syntax and semantics in (bounded dependency) constructions.

Verbs such as promise in (6¢) are treated as a subclass of transfer verbs, which we
call future transfer verbs, defined by a subtype of oblique-transfer-verb altering the
proto-role entailments analogously to the benefactive case already discussed, so that no
entailment of actual transfer is made. If the source type description is modified in this
fashion, the main dative lexical rule will apply and produce an output TDFS in which
the dative type defeasible proto-role entailments are overwritten to something like p-
agt-cause-intend-fut-transfer and p-pat-benef, respectively. Thus, all that is required
is an extra source type description for this semantic subclass of verbs to produce
correct behavior.

The verb tip in (6d) is an example of a small class of verbs (also including envy),
which show that dative variants can exist without an oblique “source.” In an approach
that generated derived entries strictly from basic source entries, these cases would be
problematic. However, in an approach such as ours where lexical rules relate inde-
pendently defined (specialized) type descriptions, there is no prediction that output
types of lexical rules cannot be basic types for some verbs. We can simply treat tip
and similar cases as basic dative verbs and alter the defeasible proto-role entailments

508

Briscoe and Copestake Lexical Rules

[dative-met-verb

PHON : phon
RESULT : ssign
gyn . | RESULT . | RESULT: [ACTIVE : npsign]
' ACTIVE : npsign

ACTIVE : npsign

verb-rel -agt-caus/p-agt-cause-met-transfer
SEM . < [perrel . EVENT . -

ARG : x
E;})at-transferred-ev -obl-met-recip
ENT e , VENT : e >
ARG . e, ARG : z

Figure 18
Metaphorical dative type constraint.

of the dative type as appropriate. Thus, we make no prediction that the set of dative
verbs will be a subset of the set of oblique verbs.

Goldberg (1995) argues that (6e) and (6f) are licensed by a metaphorical extension
of the transfer relation by which causal events are viewed as transfers. Causing an
effect in an entity is understood as transferring that effect to it. We capture this by
altering the entailments associated with verbs such as lend by the proto-roles specified
by oblique-transfer-verb using a lexical rule that creates an entry of a sister type
met-oblique-transfer-verb that specifies different proto-roles. The Dative lexical rule
would also apply to this subtype, capturing the fact that this metaphorical extension
in the dative construction parallels a similar extension of the same verb set in the
oblique to prepositional phrase construction.

In contrast, (6g) and (6h) provide evidence that certain quasi-idiomatic expressions
need to be associated directly with dative-sign as they have no counterparts in such
oblique expressions. We assume that (quasi) idioms are best represented as subtypes of
lexical signs in which not only the syntactic head but also other arguments are severely
constrained in terms of lexical selection. Thus Goldberg claims the quasi-idiomatic
expressions in (6g) and (6h) are licensed by a metaphor that involves understanding
actions intentionally directed at another person as being entities transferred to that
person. As a first approximation, we might represent this process in terms of the
subtype of dative-verb shown in Figure 18, in which we have overridden the default
proto-role specifications with entailments specific to the metaphor, which we assume
also serve to constrain the range of acceptable arguments to the (transfer) verb.

Finally, (6i) demonstrates that reflexive datives can sometimes be formed from
intransitive verbs. The semantic restrictions on the source for such constructions are
not entirely clear to us, however, all the putative similar examples to the attested (6i)
seem innovative and much less conventionalized than the core dative examples. It
would be straightforward to introduce a lexical rule mapping intransitive verbs to the
dative construction. However, the relative productivity of this putative rule should
be represented as being much lower than the two rules discussed above. Nothing
in the representation we have presented so far equips us to deal with the issue of
(semi)productivity which also arises with the two rules introduced earlier; consider
the famous example of donate, which does not undergo the dative alternation although
it is uncontroversially an oblique transfer verb. In the next section we consider this
issue in detail.

509

Computational Linguistics Volume 25, Number 4

6. Semiproductivity and Probabilistic TDFS Grammar

The search for a fully productive statement of verb alternations such as dative has led
to an increasingly semantic perspective on such rules. However, while a reasonable
case can be made that the conditions on the rules introduced in Figure 14 express
necessary conditions for their application, they do not capture sufficient conditions
because of the existence of semantically similar nonalternating verbs, such as donate
as opposed to give, or create as opposed to paint, as (7a) and (7b) illustrate.

(7) a. *The president donated the club a trophy
b. *The architect created them a bridge

Pinker (1989) argues that so-called broad semantic classes of the type identified in the
dative rules given above (i.e., creation or transfer verbs) provide necessary conditions
for lexical rule application, but that narrow class lexical rules should be specified
breaking down such rules into a number of fully productive subcases. In the attempt to
define such subcases Pinker is forced to make subtle and often unintuitive distinctions,
and to claim that the meaning components involved are features of universal grammar
to which the grammars of any language may be sensitive. For example, in attempting
to differentiate the dative alternating and nonalternating subclasses in (8a) and (8b),
Pinker (1989, 110-111) characterizes those in (8a) as “verbs of continuous imparting
of force in some manner causing accompanied motion” and those in (8b) as “verbs of
continuous causation of motion ...in a deictically-specified direction.”

(8) a. *John dragged/pulled Bill the computer / the computer to Bill
b. John brought/carried/took Bill the computer / the computer to Bill
c. John pushed Bill his beer / ?calculator / *computer
d. John slid Bill his beer / ?calculator / *computer

Furthermore, the continuous nature of force imparted seems crucial to the acceptability
of dative with the first class: so (8c) is more acceptable, the lighter the affected object
and the more plausible it is to construct a scenario in which push is synonymous with
slide, as in (8d).

Notwithstanding the subtle distinctions Pinker makes and the often very tiny size
of the narrow verb classes he identifies, there remain exceptions to his generalizations.
For exampile, in British English, which is generally slightly more liberal with respect to
the dative alternation than American English, the examples in (9a) and (9b) are pairs,
classified in the same narrow class by Pinker, where one is acceptable in the dative
and one is not.

(9) a.John designed / *created them a bridge
b. I picked / *indicated her a dress
Such dialectal disparities would be less problematic if they applied uniformly to nar-
row classes but instead they appear to be insensitive to Pinker’s classifications. In
addition, Pirelli, Ruimy, and Montemagni (1994) and Nicholls (1995) document cases

where Pinker’s narrow classes do not generalize to equivalent alternations in Italian
and French, respectively; demonstrating that cross-linguistic disparities are similarly

510

Briscoe and Copestake Lexical Rules

insensitive to putative narrow classes. More generally, Pinker’s notion of a fully pro-
ductive narrow-class lexical rule is falsified by many examples cited in Boguraev and
Briscoe (1989), Levin (1992), and Schiitze (1997). We conclude that the program of
treating all exceptions to dative as systematic, as opposed to accidental or idiosyn-
cratic (Wasow 1980), fails for dative movement, and will, we suspect, fail for most
verb diathesis alternations. Therefore, it is not possible to characterize such rules as a
fully productive generative operation.

Within the generative tradition of work on lexical rules, the only alternative to
treating such rules as fully productive generalizations is to treat them as redundancy
rules of some form (e.g., Jackendoff [1975] and see the discussion in Section 2). How-
ever, this approach does not account for the semiproductive nature of such rules. For
example, Pinker notes with respect to the dative alternation that a variety of recent
nonce verbs readily undergo dative because they are clearly members of the commu-
nication subclass of transfer verbs, as (10a) illustrates.

(10) a. John faxed / xeroxed / emailed his colleagues a copy of the report
b. Sun donated us a bunch of computers
c. John explained me the problem
d. He stripped him the ball

A redundancy rule only relates existing lexical entries to achieve abbreviation in the
statement of the lexicon. It cannot be generatively applied to nonce usages. Similarly,
the examples in (10b), (10c), and (10d) are all attested uses of the dative that violate
putative (narrow-class) morphological or semantic constraints on its application from
Pinker (1989, 155-157). The existence of creative or analogous application to nonce
usages and attested exceptions to the narrow-class rules makes the redundancy rule
approach unsatisfactory, at least, when formalized as a purely abbreviatory device (see
Section 2 above).

The search for narrow classes and full productivity seems futile for rules of verb
alternation because such rules are inherently semiproductive in the same manner that
derivational rules are often characterized as semiproductive (e.g., Bauer 1983). Instead,
we argue, following Goldberg (1995), who in turn is influenced by theories of semipro-
ductivity developed for morphology, that rules of verb alternation are sensitive to both
type and token frequency effects that determine language users’ assessments of the de-
gree of acceptability of a given derived form and also their willingness to apply a rule
in producing or interpreting a novel form. Bauer (1983, 71f.), in supporting the view
that lexical rules should be treated as fully productive generative rules analogous to
those employed in syntactic description, argues that it is this greater “item-familiarity”
of lexical items that allows judgements of relative novelty/conventionality to be built
up. He points out that there are simply too many combinatoric possibilities at the
sentential level for the frequency of particular combinations to be assessed with any
confidence by a language user. However, in the case of words and, we might add,
idioms, the range of possibilities, though large, is not so great that judgements of
novelty based on frequency of use cannot be acquired. Bauer argues, therefore, that
accounting for semiproductivity is an issue of performance, not competence. There is
considerable evidence that language users are very sensitive to the relative frequency
of variant forms and senses of lexical items. Such assumptions underlie influential
theories of language variation and change (e.g., Labov 1972) and psycholinguistic
accounts of preferences and misinterpretation during language comprehension (e.g.,
Kelly and Martin 1994).

511

Computational Linguistics Volume 25, Number 4

The frequency with which a given word form is associated with a particular lexical
entry (i.e., sense or grammatical realization) is often highly skewed; Church and Mer-
cer (1993) point out that a model of part-of-speech assignment in context will be 90%
accurate (for English) if it simply chooses the lexically most frequent part-of-speech for
a given word. In the LOB corpus, there are about 18 times as many instances of believe
in the most common subcategorization class (sentential complement) as in the four
least common classes combined, and other multiple-complement-taking verbs show
similar strong skews (e.g., Briscoe, Copestake, and Boguraev 1990). In the absence of
other factors, it seems very likely that language users utilize frequency information to
resolve indeterminacies in both generation and interpretation. Such a strategy is com-
patible with and may well underlie the Gricean maxim of manner, in that ambiguities
in language will be more easily interpretable if there is a tacit agreement not to utilize
abnormal or rare means of conveying particular messages. We can model this aspect
of language use as a conditional probability that a word form will be associated to a
specific lexical entry, derived using a maximum likelihood estimator:”

freq(lexical-entry with word-form)

Prob(lexical-entry | word-form) = Freq(word-form)

This proposal is not novel and is the analogue of proposals to associate proba-
bilities with initial trees in, for example, a lexicalized tree adjoining grammar (Resnik
1992; Schabes 1992). However, it differs from recent proposals by, for example, Brew
(1995), to associate probabilities with values on paths in a TFS formalism underlying
HPSG, as the probabilistic information is much less fine-grained. We associate a single
probability with each complete TDFS that represents a lexical entry. In a probabilistic
grammar based on this approach, the probability of a derivation must depend in part
on details of the grammatical approach adopted. In a categorial framework it may be
there are only mutually exclusive schemata for combining lexical entries into phrasal
and clausal signs, so the probability of a given derivation can be treated as the product
of the probability of the lexical entries utilized in that derivation. In this case, for word
forms i in sentence:

Prob(sent-interp) = H(lex—entry | word-form;)

i

In frameworks that incorporate alternative competing syntactic rule schemata or op-
erations, it might be necessary to associate probabilities with such rules and treat the
probability of a derivation as the combined product of the probability of the syntac-
tic operations applied and the lexical entries utilized (e.g., Schabes 1992). Under this
formulation, the conditional probability of a lexical entry given a word form is inde-
pendent of the larger context in which the word occurs (except to the extent that this
is encoded in the lexical entry). This approximation ties the number of probabilistic
parameters to be estimated by the language user to the size of the user’s lexicon and
is thus the probabilistic analogue of the item-familiarity approach described above. It

7 In what follows we assume familiarity with the basic axioms of probability theory and with statistical
estimation (e.g., Box and Tiao 1973). We should emphasize that we are proposing a probabilistic version
of a grammatical theory developed in the TDFS framework, not as a solution to practical engineering
problems of parsing, but as a theoretical account of the item-familiarity view of semiproductivity. We
doubt that this theory is psycholinguistically accurate in the sense that language users literally compute
probabilities and abide by the axioms of probability theory. However, probability theory provides a
precise and clear framework in which to represent estimates of the relative likelihood of events.

512

Briscoe and Copestake Lexical Rules

[trans-caus-verb
PHON . fax

RESULT . | RESULT - ssign]

ACTIVE : npsign;
ACTIVE : npsign;
-agt-cause -pat-aff-obj
SEM=<[E§’,‘]‘§§1T.€].[VENT . e } EVENT. ¢ | >
' ARG . ARG :

SYN .

create/transfer-lexeme-fsm(trans(0.2), oblique-tr(0.3) . . .)

Figure 19
Lexeme for fax.

says, in effect, that users can track the relative frequency of words/lexemes but not of
(most) phrases or sentences.

We assume that lexical probabilities are acquired for both basic and derived lexi-
cal entries independently of any lexical rules used to create derived entries. Thus we
make no claim that a derived entry will necessarily be less frequent than a basic one.
It might seem that this assumption commits us to a “full entry” theory of the lexicon
(e.g., Aronoff 1976; Jackendoff 1997a) in which all possible words are present; that is,
the consequences of lexical rules are precomputed. In the limit, the full entry theory
cannot be correct because of the presence of recursive lexical rules such as derivational
rules of re-, anti-, or great- prefixation in words such as rereprogram, anti-anti-missile or
great-great-grandfather. Instead we adopt an intermediate position in which basic entries
are augmented with a representation of the attested lexical rules that have applied to
them and any such derived chains, where both the basic entry and these “abbreviated”
derived entries are associated with a probability. One way of formalizing and imple-
menting this approach is to adopt the covariation technique of Meurers and Minnen
(1997) discussed in Section 2, in which finite-state machines (FSMs) representing the
possible lexical rules that can apply to each basic lexical entry are associated with
equivalence classes of such entries and the entry is simplified to information common
between the variants. If we assume a precompiled representation of this form, con-
ditional probabilities that a word form will be associated with a particular (basic or
derived) entry can be associated with states in the FSM, as illustrated in Figure 19.

In this representation, the states of the FSM, which have been given mnemonic
names corresponding to their types, are each associated with a probability represent-
ing the relative likelihood that fax will be associated with the derived entry that results
from applying the rule to the source entry (the probabilities shown here are purely
for illustrative purposes). We call this representation the lexeme for a given word.
Figure 20 shows part of the corresponding FSM explicitly. Note that there are states
with no associated probabilities, reflecting possible but unattested usages. The topol-
ogy of the FSM associated with a given word may be shared with other words, but the
specific probabilities associated with the states representing lexical entries will be id-
iosyncratic, so that the each lexeme representation must minimally encode the unique
name of the relevant FSM and a probability for each attested state/lexical entry as
shown in Figure 19. If the derived form is irregular in some way, then the exceptional
information can be stipulated at the relevant state, and the feature structure calculated
by default unifying the specified information with the productive output of the lexical
rule. For example, if beggar is treated as derived by the agentive -er rule (which is
reasonable synchronically), then the irregular morphology can be stipulated and will
override the predicted begger.

513

Computational Linguistics Volume 25, Number 4

dative-1r

[J ol
transfer-1 . . .
//Olthue-tr recip-dative
r 0.3
[

create-dative-1r

> @
trans benef-dative
0.2
Figure 20
FSM for fax.
agentive-e
person
use-subst-1r instrument-er
® i >~ @
substance trans instrument
0.84 0.1
0.1
®
result-1r .
resultative
0.01
Figure 21

Lexeme for lacquer.

The resulting FSM is not equivalent to a Markov model because probabilities on
states represent output probabilities and not transition probabilities in the machine.
In addition, since the probabilities encode the relative likelihood that a given word
form will associate with a particular lexical entry, the set of probabilities on states of
an FSM will not be globally normalized. One FSM will represent the application of
both rules of conversion (zero affixation) and rules of derivation to a given lexeme
and the latter will change the form of the word, and thus participate in a different
distribution. See for example, Figure 21, which is intended to cover the noun and
verb lacquer, plus the derived form, lacquerer (with agentive and instrument readings
taken as distinct). Thus, probabilities on states in FSMs are not required to sum to one,
though conditional probabilities of the set of possible (attested and unattested) lexical
entries for a given word form are.

One immediate problem with the proposed representation is that certain rules may
apply cyclically or recursively, creating an infinite set of entries. The FSM encoding
devised by Meurers and Minnen is specifically developed as a form of precompilation
compatible with this possibility. The majority of clearly recursive or cyclic rules in
the literature are derivational, so it is clear from the word form how many times a
rule has applied. We can extend the probabilistic encoding scheme to allow sets of
probabilities to be encoded on states annotated with number of affixations (e.g., [q4,
[anti,pl; anti-anti,p2; ...]]). We assume for now that rules of conversion, such as most
verb alternation rules, do not apply cyclically or recursively and discuss apparent
exceptions in Section 7.

A second problem with the acquisition of reliable estimates of such probabilities
for a language user (or implemented parser) is that many possibilities will remain

514

Briscoe and Copestake Lexical Rules

unseen and will, therefore, be unattested. For instance, the fact that donate has not
been seen in the dative construction may indicate the ungrammaticality of this real-
ization or merely reflect lack of linguistic exposure to the appropriate dialect, register,
or whatever. The simple maximum likelihood estimator shown above will assign zero
probability to unseen events. There are a variety of methods for estimating proba-
bilistic parameters or smoothing probability distributions that avoid assigning zero
probability to unseen events. One standard approach assigns a hypothetical single
observation to each unseen event in a distribution before normalizing frequencies to
obtain probabilities. This captures the intuition that the more frequent the observation
of some events in a distribution, the less likely it is that the unseen possibilities will
occur. Thus, a rare word with only a few observations may be more likely to be seen
in an alternative realization than a very frequent word that has been observed many
times in some subset of the possible realizations licensed by the grammar. However,
all unseen events will be assigned the same probability within each distinct distribu-
tion and this is at best a gross estimate of their actual distribution. (The technique is
analogous to assuming a uniform prior distribution within the framework of Bayesian
estimation.)

In the case of unattested derived lexical entries for a given word form, the relative
productivity of the lexical rule(s) required to produce the derived entry are the most
likely source of information to estimate the probability of an unattested derived entry
given a word form.® Within the probabilistic framework presented above lexical rules
are not directly associated with probabilities. Nevertheless we can represent the relative
productivity of each lexical rule by calculating the ratio of possible to attested outputs
for each rule (see Aronoff [1976]):

Prod(lexical-rule) = %

(where N is the number of attested lexical entries that match the lexical rule input
and M is the number of attested output entries). This is a very simple estimate of
productivity, and more complex accounts are considered below.

The estimate for degree of productivity of a rule can be combined with smoothing
to obtain a variant-enhanced smoothing method of the type discussed by Church
and Gale (1991), capable of assigning distinct probabilities to unseen events within
the same distribution. This can be achieved by estimating the held-back probability
mass to be distributed between the unseen entries using the basic smoothing method
outlined above and then distributing this mass differentially by multiplying the total
mass for unseen entries (expressed as a ratio of the total observations for a given
word) by a different ratio for each lexical rule. This ratio is obtained by dividing the
ratio representing the productivity of the lexical rule(s) by the sum of the ratios of the
lexical rules required to construct all the unseen entries.

Unseen-pr-mass(word-form) =
number-of-unattested-entries(word-form)
freqeword-formy+number-of-unattested-entries(word-form)

Est-freq(lex-entry; with word-form;) =

Unseen-pr-mass(word-form;) x Prod(ir;)

Z Prod(Iry),...,Prod(lr,)

8 An estimate of the relative productivity of a lexical rule would correspond to Goldberg’s (1995) notion
of type frequency, while the conditional probability of a lexical entry being associated with a specific
word form corresponds to her token frequency.

515

Computational Linguistics Volume 25, Number 4

(where Iry...Ir, are the n lexical rules needed to derive the n unattested entries for
word-form;). This will yield revised ratios for each given word, which can then be
normalized to probabilities.

To make this clearer, consider the use of the probabilities to drive interpretation
in the case of a nonce usage; for example, a language user faced with an unattested
realization (in their experience) of fax in a dative construction, such as fax me the
minutes of the last meeting. Given the assumptions made in the lexeme representation
in Figure 19, fax may undergo either the benefactive Dative or recipient Dative rules
to yield a dative realization. These rules would produce either a deputive reading
where, although the speaker is a beneficiary of the action, the recipient is unspecified,
or a reading where the speaker is also the recipient of the transfer action. Choosing
between these rules in the absence of clear contextual information could be achieved
by choosing the derivation (and thus interpretation) with highest probability. This
would depend solely on the relative probability of the unseen derived entries created
by applying these two rules to fax. This would be (pre)computed by applying the
formulas above to a representation of the lexeme for fax in which ratios represent the
number of observations of an entry for a given word form over the total number of
observations of that word form, and unattested entries are noted and assigned one
observation each:

create/transfer-lexeme-fsm (trans(2%), oblique-tr(%),
recip-dative (155), benef-dative(7k;), - - -}

Now if we assume that the recipient Dative rule can apply to 100 source entries and
the resulting derived entries are attested in 60 cases, while the benefactive Dative can
apply to 1,000 entries and the derived entries are attested in 100 cases, we can compute
the revised estimates of the probabilities for the unseen entries for fax by instantiating
the formula for estimated frequency as follows:

Est-freq(fax with recipient-dative) = 3% x (—Z(%}_w X %)
and similarly for the benefactive-dative case. The resulting ratios can then be converted
to probabilities by normalizing them along with those for the attested entries for fax.
In this case, the recipient reading will be preferred as the recipient Dative rule is more
productive.

This general approach could be refined in order to take account of Pinker’s obser-
vations concerning narrow-class rules, and already handles the possibility of special-
ized subcases of more general rules. For example, we could factor the computation of
productivity between subtypes of the input type of a rule and derive more fine-grained
measures of productivity for each narrow class a rule applies to (assuming the type
system is not recursive in such a way that the subclasses of the input type are infinite).
In the case of specialized subcases of lexical rules that apply to a narrower range of
lexical items, but yield a more specific interpretation (such as the rules of Meat or Fur
grinding, as opposed to general Grinding, proposed in Copestake and Briscoe [1995];
see Section 7), the relative productivity of each rule will be estimated in the manner
described above, but the more specialized rule is likely to be more productive since
it will apply to fewer entries than the more general rule. Similarly, in Figure 21, we
assumed a Use-Substance lexical rule, but a more accurate estimation of probabilities
might be obtained by considering specialized subclasses. This approach to deriving
estimates of the productivity of lexical rules is applied to four denominal verb forma-

516

Briscoe and Copestake Lexical Rules

tion rules in Briscoe and Copestake (1996), where the probabilities of the basic and
derived word forms are estimated from part-of-speech tagged textual corpora.

The probabilistic approach we have presented is part of a theory of language use
or performance rather than one of competence or grammatical representation. As such
it is not a part of the T(D)FS representation language, which is intended as a general
formalism in which paradigmatic (lexical) and syntagmatic (syntactic and semantic)
theories can be encoded or embedded. This probabilistic approach to lexical rules
integrates neatly with extant proposals to control application of lexical rules efficiently
within a constraint-based framework, such as those of Meurers and Minnen (1997).
To our knowledge it is the first attempt to formalize relatively informal accounts of
semiproductivity based on the item-familiarity view of (morphological) lexical rules.
As such it serves to highlight a potential difference between genuinely lexical rules
and unary syntactic rules, such as Adjunct Introduction, because in the probabilistic
framework presented here the latter rule applied during construction of a sentential
derivation will not affect the probability of the derivation, while lexical rules may,
since they can output lexical entries with estimated conditional probabilities.

The general claim we make here is that if we assume that speakers choose well-
attested high-frequency forms to realize particular senses and listeners choose well-
attested high-frequency senses when faced with ambiguity, then much of the semipro-
ductivity of lexical rules is predicted. This improves on the control principle suggested
in Copestake (1992), that lexical rules should only be applied if no interpretation was
applicable that did not involve a lexical rule, since it allows for cases such as turkey,
where the derived (meat) use is more frequent than the nonderived (animal) use in
the corpora which we have examined. The two other control effects suggested in
Copestake (1992) are both also superseded by the current proposal. One of these was
to allow for blocking, which is discussed below. The other was that more specific
lexical rules should be preferred over more general ones. We would expect that, in
general, the more specialized rule will be more productive, as a natural consequence
of applying to a smaller class, but the earlier proposal would have had the undesir-
able consequence that this was a fixed consequence, which could not be adjusted for
cases where the generalization did not hold. Thus the grammar writer was, in effect,
required to consider both competence and performance when stipulating a rule.

Blocking can be treated as a special case of this principle: if speakers use higher-
frequency forms to convey a given meaning, an extended meaning will not become
conventionalized if a common synonym exists. This means that we do not have to
stipulate a separate blocking principle in interpretation, since the blocked senses will
not be attested or will have a very low frequency. And in generation, we assume that
higher-probability forms are preferred as a way of conveying a given meaning. It is
necessary to allow for the possibility of unblocking, because of examples such as the
following:

(11) In the case of at least one county primary school ... they were offered
(with perfect timing) saute potatoes, carrots, runner beans and roast cow.
(Guardian newspaper, May 16th 1990, in a story about mad cow disease.)

However, this is not the complete story, since we have not accounted formally for the
extra implicatures that the use of a blocked form conveys, nor have we allowed for the
generation of blocked forms (apart from in the circumstances where the generator’s
lexicon omits the synonym). Both these problems require an account of the interface
with pragmatics (see Copestake and Lascarides [1997] for one such account, which
integrates probabilistic information into pragmatic reasoning).

517

Computational Linguistics Volume 25, Number 4

The method proposed above for estimating the probability of unattested but pos-
sible derived lexical entries for given lexical items is simple. Other more complex
schemes could be developed, which, for example, took account of the average prob-
ability of the output of a lexical rule. This might be necessary, for example, to model
the relative frequencies of -er versus -ee suffixation, since although the latter is more
productive (by Baayen and Lieber’s [1991] definition), tokens of the former are more
frequent overall (Barker 1995). However, we have presented a simple approach here,
since we currently have no evidence that a more complex approach is justified, given
that our main aim is to rank unseen senses by plausibility. Another problem is the
need to ensure that classes have comparable frequency distributions. This could mat-
ter if there were competing lexical rules, defined on different but overlapping classes,
since if one class has a high percentage of low-frequency words compared to the other,
the estimate of its productivity will tend to be lower. The productivity figure could be
adjusted to allow for item frequency within classes. We will not discuss this further
here, but see Baayen and Sproat (1996) for discussion of the related phenomenon of
ambiguous derivational affixes.

Schiitze (1997, 133f.) argues, in the context of a detailed critique of Pinker (1989),
that accounts of lexical rules that do not include a quantitative component cannot
form the basis for a satisfactory theory of the acquisition of lexical rules by language
learners. The seed for the formation of a specific lexical rule must be comparison
of the semantics and alternation/derivation behavior of a class of lexical items, but
since there will always be noise in the form of exceptions because of the inherent
semiproductivity of the processes modeled by lexical rules, the induction of a rule
must be based in part on quantitative reasoning concerning the degree of generaliza-
tion obtained from, or equivalently number of exceptions to, a putative lexical rule.
The probabilistic approach proposed here could, we think, form the basis for such
reasoning (see Schiitze [1997] for a detailed discussion of the learning of lexical rules.)
Jackendoff (1997a, 115f.) also notes that the learning of semiproductive lexical rules
must be grounded in the prior existence of basic and derived lexical entries in the
child’s lexicon. Jackendoff (1997a, 124f.) goes on to argue for a full entry theory of
lexical organization in which the output of semiproductive lexical rules is entirely
specified lexically. He suggests that the advantage of positing semiproductive rules
remains because the “informational-cost” of learning such semiregular components of
the lexicon is reduced. The attraction of the current proposal, integrated with Meurers
and Minnen’s (1997) partial precompilation approach, is that we can do justice to the
facts of semiproductivity and also achieve an efficient and maximally nonredundant
encoding of the lexicon.

7. Other Lexical Processes

Lexical rules should be able to account for processes of morphological inflection,
derivation, and conversion. Verb alternations are a class of morphological conversion
rules that exhibit similar semiproductive behavior to other processes of derivation
and conversion. We have discussed dative in detail to demonstrate that a linguisti-
cally adequate account of one such rule is possible in the proposed framework. A
similar approach to other alternations should be feasible within the framework pre-
sented. However the formalism introduced so far provides no mechanism for building
up any recursive structure. There is no direct way of copying over information from
the input into a different slot in the output structure. The mechanism proposed will
therefore allow for at most one step of affixation as shown for the inflectional rule
in Figure 7, because inputting the output to another rule would override the func-

518

Briscoe and Copestake Lexical Rules

tion specification. Similarly, the rules given in Section 5 rely on their semantic effects
applying to known structures in the input.

At first sight, this restriction might appear to preclude a treatment of rules such as
Passive, which have been assumed to require manipulations of a list-valued SUBCAT
feature (Pollard and Sag 1987). However, since Passive is nonrecursive, the appropriate
effect can be expressed indirectly in our framework, by setting up a feature that is
subsequently linked to the “real” SUBCAT. We use ARGREAL (for argument realization)
for this feature in the sketch of the account of Passive that follows.

We assume the following types:

unlinked-active
SYN : [ARGREAL . difflist]

funlinked-passive
-

SYN . | ARGREAL .
TL . elist

LIST : [HD : [fppbysign]
LAST . [HD=]

‘: L

linked-active

SyN . [ARGREAL . [LIST . 1]
|SUBCAT .

-linked-passive

SYN . |ARGREAL . |LIST . [TL .]}
| SUBCAT :

The Passive lexical rule simply states:
unlinked-active — unlinked-passive

The feature ARCREAL is encoded as a difference list on unlinked-active: that is, there
are two features, LIST and LAST, such that the value of the LIST feature is a list in
the usual HD/TL encoding and LAST is maintained as a pointer to the end of the list.
Figure 22 shows an example of rule application to a lexical sign (equivalent to the sign
for give shown in Figure 15 with a sUBCAT list instead of the categorial encoding).

As above, we assume that linking occurs after lexical rule application, and the
types linked-active and linked-passive provide the appropriate reentrancy statements
between ARGREAL and SUBCAT. The effect is that the first element of the SUBCAT list in
the linked active form will be the last element in the linked passive, which is realized
as a PP[by] rather than an NP because of the constraints on the unlinked-passive
type. An advantage of this approach to Passive is that linking generalizations can
be identical for active and passive forms, since they are expressed with respect to
the ARGREAL slot rather than sUBCAT. The feature ARGREAL has similarities with the
argument structure feature used in more recent versions of HPSG, and we suspect it
would be possible to combine the functionality of both features.

The formalism is therefore sufficiently expressive to encode some nonrecursive
list manipulation operations, if suitable pointers into the list, such as LAST, are set
up lexically or on the output of rules that produce lists of sufficiently determinate
structure. But this is inadequate for encoding rules that require that the entire semantics
of the input (which may itself arise from previous rule applications) be modified by
the semantics expressed by the rule. To take a simple example, consider prefixation
by re-, and assume that this is encoded by a lexical rule that can apply an arbitrary
number of times, each time appending re- to a list of prefixes in the PHON value, and

519

Computational Linguistics Volume 25, Number 4

Input:
" oblique-transfer-verb 7
PHON : give
HD : npsign
HD : npsign
SYN ARGREAL . | UST | 1, HD . pptosign
TL . TL. 5? &
LAST : f1]]
Output:
unlmked-passxve b
PHON : give
HD : z1ppbysign
HD : npsign
LIST . .
SYN ARGREAL . Lo, [HE IgptOSIgn]]

LAST - @[1 i]

Linked form:
[linked-passive

PHON : give .
HD : npsign
HD : pptosign

SUBCAT TL: | 1. HD .PpbySIgn

SYN . o elist
HD H .
ARGREAL . | LIST: [TL:]
I LAST . i J
Figure 22

An example of Passive: oblique-transfer-verb is here assumed to be a subtype of
unlinked-active.

[STEM . < tie >
PHON - PREFIXES : < re, re >]
re-rel re-rel .
SEM . < | EVENT . e |. | EVENT. ¢ |, [Herel 1
ARG : ¢ ARG - " EVENT . e
Figure 23
reretie

adding a re-rel to the semantics, as sketched in Figure 23, which shows a possible
representation for reretie.’

In order to allow rules of this type to be expressed, an extension to the formalism
is required to allow the values of list-valued features in the output of the rule to
be appended to the input values. Figure 24 illustrates how this could be used to
express a lexical rule for re- prefixation, with @ being used as the notation to indicate
that the value of the feature in the input be appended to the right of the structure
stated in the output. Figure 25 shows the equivalent rule in the conventional notation,
using reentrancy to indicate copying. However, this extension is more restricted in
expressivity than allowing arbitrary copying between input and output structures,
and still does not make available the arbitrary list-manipulation operations that are
possible in conventional HPSG-style lexical rules. This extension relies on the use of a
flat representation such as minimal recursion semantics (MRS, Copestake et al. 1995),

9 The semantic representation is not intended to be taken too seriously, but the argument applies to any
representation where it is assumed that, for example, reretie is not equivalent to retie.

520

Briscoe and Copestake Lexical Rules

PHON : [PREFIXES : < re >o |

re-rel
verb SEM : < EVENT:e] >®<[rEe\1/ENT ,]....>
ARG : €' €

Figure 24
Sketch of lexical rule for re- prefixation.

[HD . re]
PHON . [PREFIXES: [TL: &]

’
SEM . ARG . e

verb re-rel
PHON [PREFIXES :] — HD: | EVENT : e
SEM i
re
TL: [HD: [EVENT:e’]]

TL . list

Figure 25
Corresponding lexical rule using reentrancy notation for copying.

since the reason we can simply use Append to construct the semantics of the output is
that the semantics of any sign is always encoded as a list, without any embedding of
structures. Thus we are exploiting the fact that semantic composition in the grammar
as a whole relies on the Append operation.

The use of Append in conjunction with a flat semantic representation is also
adequate to express potentially recursive rules of regular sense extension, such as
“grinding” and “portioning,” as lexical rules (Copestake and Briscoe 1992, 1995). In
general, we believe that our formulation of lexical rules is expressive enough to cap-
ture inflectional, derivational, and conversion processes, to model both systematic and
idiosyncratic exceptions, and preemption by both synonymy and lexical form.

A rule such as Adjunct Introduction (Bouma and van Noord 1994), which adds
adjunct categories to the SUBCAT lists of verb entries recursively creating a potentially
infinite set of derived entries, seems to us to be a clear example of a nonlexical unary
syntactic rule. Firstly, it appears to be fully productive in that it is neither lexically
governed nor subject to idiosyncratic exceptions, blocking, or other forms of semipro-
ductivity. Secondly, its function is to add, or better interpolate, adjunct categories to
the SUBCAT list “on demand,” given the syntactic context, and this is best achieved by
the syntactic component during syntactic analysis.

It is possible that an account of Adjunct Introduction could be formulated as a
TDEFS lexical rule via Append, though it is difficult to see how such a formulation
could account naturally for argument-adjunct interpolation of the kind found in ex-
amples like: United flies from New York daily to the Gulf Coast. However, once we adopt
the probabilistic approach to lexical rules, it becomes increasingly unnatural and un-
motivated to attempt to interpret such processes as lexical. The item-familiarity theory
of lexical productivity clearly should not extend to attempting to model whether a
specific verb is more likely to appear with one or two adjuncts, because this is in no
sense a definition of a “possible lexeme.”

Furthermore, there are now clear theoretical advantages for creating a distinct
class of unary nonlexical rules. In the TDFS framework, an interface between the
lexical component and syntactic-semantic component of the grammar is required so
that some lexical default specification does not persist into the syntactic component (for
example, defaults concerning grammatical agreement; see Lascarides and Copestake
[1999]). Thus, such rules must necessarily apply after all genuinely lexical rules, and

521

Computational Linguistics Volume 25, Number 4

creating such a separation means that it should be possible to ensure that the two types
of rule cannot interact in ways that lead to unrestricted generative capacity in the full
system. The two main criteria for distinguishing such rules that we have identified
so far are (semi)productivity and the creation of (un)bounded list structures in the
syntactic representation.

8. Conclusions

Both Goldberg (1995) and Jackendoff (1997a, 1997b) contrast the lexical rule approach
to bounded dependencies with one that treats each construction independently and
characterizes relations between constructions, somewhat vaguely, in terms of “inheri-
tance.” Jackendoff (1997b, 556f.) makes the point that lexical rules in lexicalist frame-
works are expressive enough to describe bounded constructions and any idiosyncratic
meanings they convey, so they can be used to capture relations among such construc-
tions. He argues against this approach though, because he suggests that the elements
of the constructions related by such rules are often not lexical. Copestake and Briscoe
(1995) make the same point with respect to examples of systematic metonymy, where
such semiproductive “lexical” rules apply to noun phrase constructions. Jackendoff
also argues, however, that constructions need to be treated as a kind of phrasal lexical
item whose (idiosyncratic) meaning is learnt like that of a lexical item (Jackendoff
1997b, 554). For us, the defining characteristic of a lexical rule is that it requires some
listing of properties to accurately express its behavior, whether this be because it is
lexically governed, has exceptions, is underspecified in its effects, or whatever. Thus
idioms must be lexically specified, though they are best treated as particularly idiosyn-
cratic phrases/constructions, rather than lexical items.

For Jackendoff (1997a, 115f.), the crucial distinction is not lexical/nonlexical but
productive/semiproductive rule. Jackendoff’s definition of a productive rule encom-
passes rules such as Plural Noun Formation or Third Singular Verb Formation (see
Section 2 above), despite the existence of irregular derived forms, because he argues
that such a rule’s output need not be listed. It is semiproductive only to the extent
that certain aspects of its output can be overridden or blocked by lexical specification
of exceptions. He reserves the term semiproductive for rules, such as Denominal Verb
Formation (shelf — shelve), where the exact output of the rule is underspecified and
the existence of the derived words is not guaranteed. Thus, the precise meaning of the
denominal verb is partly systematic (‘to put x in/on y’) and partly idiosyncratic and
unpredictable (e.g., to saddle (a horse) means ‘to put a saddle on a horse’s back,” while to
shelve a book means ‘to put a book on a shelf’), and the phonological form is not always
identical with or entirely predictable from the nominal form {(e.g., shelve). Furthermore,
there are many nouns that do not have corresponding denominal forms (mustard vs.
butter, teapot vs. knife, etc.). Jackendoff argues that the nature of the exceptions to the
latter type of rule requires (full) listing in the lexicon of the derived forms, while the
former does not.

In our approach, lexical rules are those that require some element of lexical/listed
specification, whether it be the listing of irregular forms that override aspects of the
rule output or of idiosyncratic aspects of the resulting meaning, or the unattested sta-
tus of the derived entry. The approach to lexical rules we have advocated, integrating a
restrictive default-based formalization with partial precompilation and a probabilistic
account of item-familiarity and semiproductivity, is capable of expressing inflectional,
derivational, and conversion rules whose domain is (within) that of a bounded depen-
dency construction (i.e., includes “alternation” rules relating bounded constructions).
This approach reintegrates construction-based generalizations with more traditional

522

Briscoe and Copestake Lexical Rules

lexical rules, provides a very general means for encoding semiproductivity, and makes
a principled distinction between lexical and unary syntactic rules that should allow the
generative power of the overall grammar to be restricted. To summarize: lexical rules
cannot perform arbitrary operations on unbounded lists; they are unidirectional, but
have limited reversibility properties appropriate to account for backformation; they
involve no extension to the underlying logic of the TDFS framework; they require the
statement of what changes, not what stays the same; they are subject to type con-
straints and can exploit the default inheritance hierarchy to capture generalizations;
they can be semiproductive and are predicted to be sensitive to blocking, exceptions,
conventionalization, and so forth; and they allow a linguistically elegant, and accurate,
account of the dative construction/alternation, subsuming the insights emerging from
recent detailed analyses of this specific lexical rule.

Furthermore, we outlined ways in which this approach can be extended straight-
forwardly to deal with rules apparently involving more complex SUBCAT list manipu-
lations, and with recursive processes of derivation and conversion and their associated
semantics, without sacrificing these desirable properties. It follows from our approach
that some putative lexical rules should be treated as unary syntactic rules. A poten-
tial advantage of this division of labor is that it may even be possible to develop a
separate treatment of unary syntactic rules that does not utilize category-valued vari-
ables over list-valued features. In any case, if these rules only apply to the output
of the lexicon, this will avoid the increase in generative capacity identified by Car-
penter (1991), resulting from the interaction of recursion, arbitrary list operations and
unbounded lists, by keeping list-valued features bounded during lexical rule appli-
cation, and only allowing unbounded additions to, or limited modification of, such
features during syntactic processing.

Acknowledgments

We would like to thank Tony Kroch, Mark
Liberman, Geoff Nunberg, Mark Steedman
and, especially, Annie Zaenen for helpful
input and advice. The content and structure
of the paper is, we hope, much improved
on the basis of three anonymous referees’
insightful comments on an earlier draft. All
the ideas and mistakes, nevertheless, remain
our responsibility.

References

Ait-Kaci, Hassan. 1984. A Lattice-Theoretic
Approach to Computation Based on a Calculus
of Partially Ordered Type Structures. Doctoral
dissertation, University of Pennsylvania.

Aronoff, Mark. 1976. Word Formation in
Generative Grammar. Linguistic Inquiry
Monograph 1. MIT Press, Cambridge,
MA

Baayen, Harald and Rochelle Lieber. 1991.
Productivity and English derivation: A
corpus-based study. Linguistics,
29:801-843.

Baayen, Harald and Richard Sproat. 1996.
Estimating lexical priors for
low-frequency morphologically
ambiguous forms. Computational

Linguistics, 22(2):155-166.

Barker, Chris. 1995. Episodic -ee in English:
Thematic relations and new word
formation. In Mandy Simons and Teresa
Galloway, editors, Semantics and Linguistic
Theory V. Cornell University, Ithaca, NY,
pages 1-18.

Bauer, Laurie. 1983. English Word-Formation.
Cambridge University Press, Cambridge,
England.

Boguraev, Bran and Ted Briscoe. 1989.
Utilizing the LDOCE grammar codes. In
Bran Boguraev and Ted Briscoe, editors,
Computational Lexicography for Natural
Language Processing. Longman, London,
pages 85-116.

Bouma, Gosse. 1992. Feature structures and
nonmonotonicity. Computational
Linguistics, 18(2):183-204.

Bouma, Gosse and Gertjan van Noord. 1994.
Constraint-based categorial grammar. In
Proceedings of the 32nd Annual Meeting,
pages 147-154. Las Cruces, NM.
Association for Computational
Linguistics.

Box, George E. P. and George C. Tiao. 1973.
Bayesian Inference in Statistical Analysis.
Addison-Wesley, Reading, MA.

Brew, Chris. 1995. Stochastic HPSG. In

523

Computational Linguistics

Proceedings of the 7th European Conference of
the Association of Computational Linguistics,
pages 83-89, Dublin, Ireland.

Briscoe, Ted and Ann Copestake. 1996.
Controlling the application of lexical
rules. In Proceedings of the ACL SIGLEX
Workshop on Breadth and Depth of Semantic
Lexicons, pages 7-19, Santa Cruz.

Briscoe, Ted, Ann Copestake, and Bran
Boguraev. 1990. Enjoy the paper: Lexical
semantics via lexicology. In Proceedings of
the 13th International Conference on
Computational Linguistics, pages 42—47,
Helsinki.

Calcagno, Michael. 1995. Interpreting lexical
rules. In Proceedings of the Conference on
Formal Grammar, Barcelona.

Carpenter, Bob. 1991. The generative power
of categorial grammars and head-driven
phrase structure grammars with lexical
rules. Computational Linguistics,
17(3):301-314.

Carpenter, Bob. 1992. The Logic of Typed
Feature Structures. Cambridge University
Press, Cambridge, England.

Carpenter, Bob. 1993. Skeptical and
credulous default unification with
application to templates and inheritance.
In Ted Briscoe, Ann Copestake, and
Valeria de Paiva, editors, Inheritance,
Defaults and the Lexicon. Cambridge
University Press, Cambridge, England,
pages 13-37.

Chang, Nancy. 1995. A Constraint-Based
Approach to Linking. M.Phil. dissertation,
Cambridge University.

Church, Ken and William Gale. 1991. A
comparison of the enhanced Good-Turing
and deleted estimation methods for
estimating probabilities of English
bigrams. Computer Speech and Language,
5(1):19-54.

Church, Ken and Robert Mercer. 1993.
Introduction to the special issue on
computational linguistics using large
corpora. Computational Linguistics,
19(1):1-24.

Copestake, Ann. 1992. The Representation of
Lexical Semantic Information. Doctoral
dissertation, University of Sussex.
Cognitive Science Research Paper CSRP
280.

Copestake, Ann. 1993. Defaults in lexical
representation. In Ted Briscoe, Ann
Copestake, and Valeria de Paiva, editors,
Inheritance, Defaults and the Lexicon.
Cambridge University Press, Cambridge,
England, pages 223-245.

Copestake, Ann and Ted Briscoe. 1992.
Lexical operations in a unification based
framework. In James Pustejovsky and

524

Volume 25, Number 4

Sabine Bergler, editors, Lexical Semantics
and Knowledge Representation. Proceedings of
the first SIGLEX Workshop, Berkeley, CA.
Springer-Verlag, Berlin, pages 101-119.

Copestake, Ann and Ted Briscoe. 1995.
Semi-productive polysemy and sense
extension. Journal of Semantics, 12:15-67.

Copestake, Ann, Dan Flickinger, Robert
Malouf, Suzanne Riehemann, and Ivan
Sag. 1995. Translation using minimal
recursion semantics. In Proceedings of the
Sixth International Conference on Theoretical
and Methodological Issues in Machine
Translation (TMI95), pages 15-32, Leuven,
Belgium.

Copestake, Ann and Alex Lascarides. 1997.
Integrating symbolic and statistical
representations: the lexicon-pragmatics
interface. In Proceedings of the 35th Annual
Meeting of the Association for Computational
Linguistics and 8th Conference of the
European Chapter of the Association for
Computational Linguistics (ACL-EACL 97),
Madrid, pages 136-143.

Daelemans, Walter, Konrad de Smedt, and
Gerald Gazdar. 1992. Inheritance in
natural language processing.
Computational Linguistics, 18(2):205-218.

Davis, Antony. 1996. Lexical semantics and
linking in the hierarchical lexicon.
Doctoral dissertation, Stanford University.

Dowty, David. 1989. On the semantic
content of the notion “thematic role.” In
Gennaro Chierchia, Barbara Partee, and
Ray Turner, editors, Property Theory, Type
Theory and Natural Language Semantics.
Reidel, Dordrecht, The Netherlands,
pages 69-129.

Evans, Roger and Gerald Gazdar. 1989.
Inference in DATR. In Proceedings of the 4th
Conference of the European Chapter of the
Association for Computational Linguistics
(EACL-1989), pages 66-71, Manchester,
England.

Evans, Roger and Gerald Gazdar. 1996.
DATR: A language for lexical knowledge
representation. Computational Linguistics,
22(2):167-216.

Fillmore, Charles, Paul Kay, and Mary
O’Connor. 1988. Regularity and
idiomaticity in grammatical constructions.
Language, 64:501-538.

Gazdar, Gerald, Ewan Klein, Geoffrey
Pullum, and Ivan Sag. 1985. Generalized
Phrase Structure Grammar. Basil Blackwell,
Oxford.

Goldberg, Adele. 1995. Constructions.
Chicago University Press, Chicago, IL.

Green, Georgia. 1974. Semantics and Syntactic
Regularity. Indiana University Press.

Jackendoff, Ray. 1975. Morphological and

Briscoe and Copestake

semantic regularities in the lexicon.
Language, 51(3):639-671.
Jackendoff, Ray. 1997a. The Architecture of the

Language Faculty. MIT Press, Cambridge, .

MA.

Jackendoff, Ray. 1997b. Twistin” the night
away. Language, 73(3):534-559.

Johnson, Mark and Jochen Dorre. 1995.
Memoization of coroutined constraints.
Proceedings of the 33rd Annual Meeting,
pages 100-107, Cambridge, MA.
Association of Computational Linguistics.

Joshi, Aravind. 1987. An introduction to
tree-adjoining grammars. In Alexis
Manaster-Ramer, editor, Mathematics of
Language. John Benjamins, Amsterdam,
pages 87-115.

Kelly, Martin and Steven Martin. 1994.
Domain-general abilities applied to
domain-specific tasks: Sensitivity to
probabilities in perception, cognition and
language. Lingua, 92:105-140.

King, Paul. 1994. An expanded logical
formalism for head-driven phrase
structure grammar. Arbeitspapiere des
SFB 340/59, University of Tiibingen.

Labov, William. 1972. Seciolinguistic Patterns.
University of Pennsylvania Press,
Philadelphia.

Lascarides, Alex and Nicholas Asher. 1991.
Discourse relations and defeasible
knowledge. In Proceedings of the 29th
Annual Meeting, pages 55-63, Berkeley,
CA. Association for Computational
Linguistics.

Lascarides, Alex and Nicholas Asher. 1993.
Temporal interpretation, discourse
relations and common sense entailment.
Linguistics and Philosophy, 16:437-493.

Lascarides, Alex, Ted Briscoe, Nicholas
Asher, and Ann Copestake. 1995. Order
independent and persistent typed default
unification. Linguistics and Philosophy,
19(1):1-89.

Lascarides, Alex and Ann Copestake. 1995.
The pragmatics of word meaning. In
Mandy Simons and Teresa Galloway,
editors, Semantics and Linguistic Theory V.
Cornell University, Ithaca, NY,
pages 204-221.

Lascarides, Alex and Ann Copestake. 1999.
Default representation in constraint-based
frameworks. Computational Linguistics,
25(1):55-106.

Lascarides, Alex, Ann Copestake, and Ted
Briscoe. 1996. Ambiguity and coherence.
Journal of Semantics, 13:41-65.

Levin, Beth. 1992. Towards a Lexical
Organization of English Verbs. University of
Chicago Press, Chicago, IL.

Levin, Beth and Malka Rappaport Hovav.

Lexical Rules

1995. Unaccusativity at the Syntax-Lexical
Semantics Interface. MIT Press, Cambridge,
MA.

Malouf, Robert. 1999. Practical default
inheritance in constraint-based grammars.
Paper presented at Ohio State University.

Meurers, Detmar. 1995. Towards a semantics
for lexical rules as used in HPSG. In
Proceedings of the Conference on Formal
Grammar, Barcelona. Available on-line at
http:/ /www.sfs.nphil.uni-
tuebingen.de/~dm/LR/sem.ps.gz

Meurers, Detmar and Guido Minnen. 1997.
A computational treatment of HPSG
lexical rules as covariation in lexical
entries. Computational Linguistics,
23(4):543-596.

Nicholls, Diane. 1995. Can fully productive
lexical rules be defined and can they
apply cross-linguistically? Acquilex-II
Working Paper 79: http:/ /www.cl.cam.
ac.uk/Research/NL/acquilex/.

Pinker, Steven. 1989. Learnability and
Cognition: The Acquisition of Argument
Structure. MIT Press, Cambridge, MA.

Pirelli, Vito, Nilda Ruimy, and
Simonetta Montemagni. 1994. Lexical
regularities and lexicon compilation.
Acquilex-II Working Paper 36: http://
www.cl.cam.ac.uk/Research/NL/acquilex/.

Pollard, Carl and Ivan Sag. 1987. An
Information-based Approach to Syntax and
Semantics: Volume 1 Fundamentals. CSLI
Lecture Notes 13, CSLI Publications,
Stanford, CA.

Pollard, Carl and Ivan Sag. 1994.
Head-driven Phrase Structure Grammar.
Chicago University Press, Chicago.

Resnik, Philip. 1992. Probabilistic lexicalized
tree adjoining grammar. In Proceedings of
the 14th International Conference on
Computational Linguistics (COLING-92),
pages 418424, Nantes, France.

Riehemann, Suzanne. 1993. Word Formation
in Lexical Type Hierarchies. M.Phil.
dissertation, University of Tiibingen,
Germany.

Russell, Graham, Afzal Ballim, John Carroll,
and Susan Warwick-Armstrong. 1993. A
practical approach to multiple default
inheritance for unification-based lexicons.
In Ted Briscoe, Ann Copestake, and
Valeria de Paiva, editors, Inheritance,
Defaults and the Lexicon. Cambridge
University Press, Cambridge, England,
pages 137-147.

Sanfilippo, Antonio. 1990. Grammatical
Relations, Thematic Roles and Verb Semantics.
Doctoral dissertation, Centre for
Cognitive Science, University of
Edinburgh.

525

Computational Linguistics

Sanfilippo, Antonio. 1992. Verbal diathesis,
knowledge acquisition, lexicon
construction and dictionary compilation.
Acquilex-I1 Working Papers 1: http://
www.cl.cam.ac.uk/Research/NL/acquilex/.

Sanfilippo, Antonio. 1993. LKB encoding of
lexical knowledge from machine-readable
dictionaries. In Ted Briscoe, Ann
Copestake, and Valeria de Paiva, editors,
Inheritance, Defaults and the Lexicon.
Cambridge University Press, Cambridge,
England, pages 190-222.

Schabes, Yves. 1992. Stochastic lexicalized
tree adjoining grammar. In Proceedings of
the 14th International Conference on
Computational Linguistics (COLING-92),
pages 425-432, Nantes, France.

Schiitze, Hinrich. 1997. Ambiguity Resolution
in Language Learning: Computational and
Cognitive Models. CSLI Lecture Notes 71,
CSLI Publications, Stanford, CA.

Shieber, Stuart. 1992. Constraint-based
Grammar Formalisms. MIT Press,
Cambridge, MA.

Steedman, Mark. 1996. Surface Structure and
Interpretation. MIT Press, Cambridge, MA.

Wasow, Tom. 1980. Major and minor rules
in lexical grammar. In Tuen Hoekstra,
Harry van der Hulst, and Michael
Moortgat, editors, Lexical Grammar. Foris,
Dordrecht, pages 285-312.

Wechsler, Steven. 1991. Argument Structure
and Linking. Doctoral dissertation,
Stanford University.

Zeevat, Henk, Ewan Klein, and Jo Calder.
1987. An introduction to unification
categorial grammar. In Nicholas Haddock,
Ewan Klein, and Glyn Morrill, editors,
Categorial Grammar, Unification Grammar
and Parsing: Working Papers in Cognitive
Science 1. Centre for Cognitive Science,
University of Edinburgh, pages 195-222.

526

Volume 25, Number 4

