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This paper describes a domain-independent, automatically trained natural language call router 
for directing incoming calls in a call center. Our call router directs customer calls based on 
their response to an open-ended How may I direct your call? prompt. Routing behavior is 
trained from a corpus of transcribed and hand-routed calls and then carried out using vector- 
based information retrieval techniques. Terms consist of n-gram sequences of morphologically 
reduced content words, while documents representing routing destinations consist of weighted 
term frequencies derived from calls to that destination in the training corpus. Based on the 
statistical discriminating power of the n-gram terms extracted from the caller's request, the caller 
is 1) routed to the appropriate destination, 2) transferred to a human operator, or 3) asked a 
disambiguation question. In the last case, the system dynamically generates queries tailored to 
the caller's request and the destinations with which it is consistent, based on our extension of 
the vector model. Evaluation of the call router performance over a financial services call center 
using both accurate transcriptions of calls and fairly noisy speech recognizer output demonstrated 
robustness in the face of speech recognition errors. More specifically, using accurate transcriptions 
of speech input, our system correctly routed 93.8% of the calls after redirecting 10.2% of all calls 
to a human operator. Using speech recognizer output with a 23% error rate reduced the number 
of correctly routed calls by 4%. 

1. Introduction 

The call routing task is one of directing a customer's call to an appropriate destination 
within a call center or directly providing some simple information, such as current 
loan rates, on the basis of some kind of interaction with the customer. In current 
systems, such interaction is typically carried out via a touch-tone system with a rigid 
predetermined navigational menu. The primary disadvantages of navigating menus 
for users are the time it takes to listen to all the options and the difficulty of matching 
their goals to the given options. These problems are compounded by the necessity 
of descending a nested hierarchy of choices to zero in on a particular activity. Even 
requests with simple English phrasings such as I want the balance on my car loan may 
require users to navigate as many as four or five nested menus with four or five 
options each. We describe an alternative to touch-tone menus that allows users to 
interact with a call router in natural spoken English dialogues just as they would with 
a human operator. 

In a typical dialogue between a caller and a human operator, the operator responds 
to a caller request by either routing the call to an appropriate destination, or querying 
the caller for further information to determine where the call should be routed. Thus, 

* 600 Mountain Avenue, Murray Hill, NJ 07974. E-mail: jencc@research.belMabs.com 
t 600 Mountain Avenue, Murray Hill, NJ 07974. E-mail: carp@research.belMabs.com 

(~) 1999 Association for Computational Linguistics 



Computational Linguistics Volume 25, Number 3 

in developing an automatic call router, we select between these two options as well as 
a third option of sending the call to a human operator in situations where the router 
recognizes that to automatically handle the call is beyond its capabilities. The rest of 
this paper provides both a description and an evaluation of an automatic call router 
that consists of 1) a routing module driven by a novel application of vector-based 
information retrieval techniques, and 2) a disambiguation query generation module 
that utilizes the same vector representations as the routing module and dynamically 
generates queries tailored to the caller's request and the destinations with which it is 
consistent, based on our extension of the vector model. The overall call routing system 
has the following desirable characteristics: First, the training of the call router is domain 
independent and fully automatic, 1 allowing the system to be easily ported to new 
domains. Second, the disambiguation module dynamically generates queries based 
on caller requests and candidate destinations, allowing the system to tailor queries to 
specific circumstances. Third, the system is highly robust to speech recognition errors. 
Finally, the overall performance of the system is high, in particular when using noisy 
speech recognizer output. With transcription (perfect recognition), we redirect 10.2% 
of the calls to the operator, correctly routing 93.8% of the remainder either with or 
without disambiguation. With spoken input processed automatically with recognition 
performance at a 23% word error rate, the percentage of correctly routed calls drops 
by only 4%. 

2. Related Work 

Call routing is similar to text categorization in identifying which one of n topics (or 
in the case of call routing, destinations) most closely matches a caller's request. Call 
routing is distinguished from text categorization by requiring a single destination to 
be selected, but allowing a request to be refined in an interactive dialogue. The closest 
previous work to ours is Ittner, Lewis, and Ahn (1995), in which noisy documents 
produced by optical character recognition are classified against multiple categories. We 
are further interested in carrying out the routing process using natural, conversational 
language. 

The only work on natural language call routing to date that we are aware of is that 
by Gorin and his colleagues (Gorin, Riccardi, and Wright 1997; Abella and Gorin 1997; 
Riccardi and Gorin 1998), who designed an automated system to route calls to AT&T 
operators. They select salient phrase fragments from caller requests (in response to the 
system's prompt of How may I help you ?), such as made a long distance and the area code for, 
and sometimes including phrases that are not meaningful syntactic or semantic units, 
such as it on my credit. These salient phrase fragments, which are incorporated into 
their finite-state language model for their speech recognizer, are then used to compute 
likely destinations, which they refer to as call types. This is done by either computing 
a posteriori probabilities for all possible call types (Gorin 1996) or by passing the 
weighted fragments through a neural network classifier (Wright, Gorin, and Riccardi 
1997). Abella and Gorin (1997) utilized the Boolean formula minimization algorithm 
for combining the resulting set of call types based on a hand-coded hierarchy of call 
types. This algorithm provides the basis for determining whether or not the goal of the 
request can be uniquely identified, in order to select from a set of dialogue strategies 
for response generation. 

1 The training process is automatic except for minor editing of a standard stop list, which will be 
discussed in Section 4.1.2, and for the mapping between n-gram morphologically reduced noun phrases 
and their expanded forms in the disambiguation process, which will be discussed in Section 4.2. 
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Figure 1 
Histogram of call lengths. 

(b) Content words 

3. Corpus Analysis 

To examine h u m a n - h u m a n  dialogue behavior,  we ana lyzed  a set of 4,497 transcribed 
te lephone calls involving actual cus tomers  interacting with  h u m a n  call operators  at 
a large call center. In the vast  majori ty  of these calls, the first cus tomer  ut terance 
contained be tween  1 and  20 words ,  while the longest first ut terance had  131 words .  
However ,  these ut terances included only a few content w o r d s ,  2 with a lmost  all calls 
containing fewer  than  10 content  words  in the initial user  utterance. Figures l(a) and  
l(b) show his tograms of call lengths based on total words  and  content  words  in the 
initial user ut terance in each call, respectively. 

Figure 2 shows the distr ibution of calls to the top 23 dest inat ions on a log scale 
in our  corpus. 3 The perplexi ty  of a probabi l i ty  distr ibution provides  a measure  of the 
difficulty of classification of samples  d r awn  f rom that distribution. Using the est imate 
of call distr ibution based  on Figure 2, our  task perplexi ty  is 6.836. 4 

We further  analyzed our  corpus  of calls a long two dimensions:  the semantics  of 
caller requests and  the dialogue actions for operator  responses.  The analysis of the 
semantics of caller requests is in tended to examine the ways  in which  users typically 
express their goal w h e n  p rompted ,  and  is used to focus on an appropr ia te  subset  of the 
classes of user utterances that  the call router  should handle  automatical ly  (as opposed  
to t ransferr ing to a h u m a n  operator).  The analysis of the dialogue actions for opera tor  
responses,  on the other hand,  is in tended to de termine  the types  of responses  the call 
router  should be able to p rov ide  in response to user ut terances in order to help design 
the response generat ion componen t  of the call router. The analysis of the corpus  along 
both  d imensions  was  pe r fo rmed  by  the first author. 

3.1 Semantics of Caller Requests 
In our  corpus,  all callers r espond  to an initial open-ended  p r o m p t  of /ABC/ banking 
services call director; how may I direct your call? Their responses  var ied  greatly in their 

2 Content words are keywords automatically extracted from the training corpus that are considered 
relevant for routing purposes. For details on how the list of content words is selected, see Section 4.1.2. 

3 These are destinations that received more than 10 calls in the corpus we analyzed. 
4 Recall that the entropy of a distribution p is the expected value of the log probability, given by 

H(p) = - Y'~x p(x) log 2 p(x). The perplexity is given by 2 H(p) and can be thought of roughly as the 
number of equiprobable categories that would lead to the same classification difficulty. 
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Figure 2 
Distribution of calls. 

degree of specificity. We roughly classified the calls into the following three broad 
classes: 

Destination Name, in which the caller explicitly specifies the name of 
the department to which he wishes to be transferred. The requested 
destination can form an answer to the operator's prompt by itself, as in 
deposit services, or be part of a complete sentence, as in I would like to speak 
to someone in auto leasing please. 

Activity, in which the caller provides a description of the activity he 
wishes to perform, and expects the operator to transfer his call to the 
appropriate department that handles the given activity. Such descriptions 
may be ambiguous or unambiguous, depending on the level of detail the 
caller provides, which in turn depends on the caller's understanding of 
the organization of the call center. Because all transactions related to 
savings accounts are handled by the deposit services department in the 
call center we studied, the request I want to talk to someone about savings 
accounts will be routed to Deposit Services. On the other hand, the 
similar request I want to talk to someone about car loans is ambiguous 
between Consumer Lending, which handles new car loans, and Loan 
Services, which handles existing car loans. Queries can also be 
ambiguous due to the caller's providing more than one activity, as in I 
need to get my checking account balance and then pay a car loan. 

Indirect Request, in which the caller describes his goal in a roundabout 
way, often including irrelevant information. This typically occurs with 
callers who are unfamiliar with the call center organization, or those who 
have difficulty concisely describing their goals. An example of an actual 
indirect request is ah I'm calling "cuz ah a friend gave me this number and ah 
she told me ah with this number I can buy some cars or whatever but she didn't 
know how to explain it to me so I just called you you know to get that information. 

Table I shows the distribution of caller requests in our corpus with respect to these 
semantic types. Our analysis shows that in the vast majority of calls, the request was 
based on either destination name or activity. Since in our corpus there are only 23 dis- 
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Table 1 
Semantic types of caller requests. 

Destination Name Activity Indirect Request 

# of calls 949 3271 277 
% of all calls 21.1% 72.7% 6.2% 

/ 

Table 2 ..- 
Call operator dialogue actions. 

Notification Query 

NP Others 

# of calls 3,608 657 232 
% of all calls 80.2% 14.6% 5.2% 

tinct destinations, 5 and  each dest inat ion only handles  a fairly small  n u m b e r  (dozens 
to hundreds)  of activities, requests based  on dest inat ion names  and  activities are ex- 
pected  to be  more  predictable and  thus more  suitable for handl ing  by  an automat ic  
call router. However ,  our  sys tem does not directly classify calls in te rms of specificity; 
this classification was  only in tended to p rov ide  a sense of the distr ibution of calls 
received. 

3.2 Dialogue Actions for Operator Responses 
In addi t ion to analyzing h o w  the callers ph rased  their requests in response  to the 
opera to r ' s  initial p rompt ,  we  also ana lyzed  h o w  the operators  r e sponded  to the callers'  
requests. 6 We found that  in our  corpus,  the h u m a n  opera tor  either notifies the caller 
of a dest inat ion to which  the call will be transferred,  or queries the caller for fur ther  
information,  mos t  f requently w h e n  the original request  was  ambiguous  and,  m u c h  
less often, w h e n  the original request  was  not heard  or unders tood.  

Table 2 shows the f requency with  which  each dia logue action was  employed  by  
h u m a n  opera tors  in our  corpus. It shows that  near ly  20% of all caller requests require 
fur ther  disambiguat ion.  We further  analyzed these calls that  were  not  immedia te ly  
routed  and  noted  that  75% of them involve underspecif ied noun  phrases ,  such as re- 
quest ing car loans without  specifying whe ther  it is an  existing car loan or a new car 
loan. The remaining  25% mos t ly  involve underspecif ied verb  phrases,  such as asking 
to transfer funds without  specifying the accounts to and  f rom which the transfer  will 
take place, or miss ing verb  phrases,  such as asking for direct deposit without  specify- 
ing whe ther  the caller wan ts  to set up  a direct deposi t  or change an existing direct 
deposit .  

Based on our  analysis of opera tor  responses,  we  decided to first focus our  router  
responses  on notifying the caller of a selected dest inat ion in cases where  the caller 
request  is unambiguous ,  and  on formulat ing a query  for noun  phrase  d i sambigua-  
t ion in the case of noun  phrase  underspecif icat ion in the caller request. For calls that 

5 Although the call center had nearly 100 departments, in our corpus of 4,500 calls, only 23 departments 
received more than 10 calls. We chose to base our experiments on these 23 destinations. 

6 In most calls, we analyzed the utterances given in the operator's second turn in the dialogue. However, 
in situations where the operator generates an acknowledgment, such as uh-huh, midway through the 
caller's request, we analyzed utterances in the next operator turn. 
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Figure 3 
Call router architecture. 

do not  satisfy either criterion, the call router  should s imply  relay them to a h u m a n  
operator.  7 

4. Vector-based Call Routing 

In addi t ion to not ifying the caller of a selected dest inat ion or query ing  the caller for 
further  information,  an automat ic  call router  should  be able to identify w h e n  it is 
unable  to handle  a call and  route the call to a h u m a n  opera tor  for fur ther  processing. 
The process  of de te rmin ing  whe ther  to route a call, generate  a d i sambigua t ion  query, 
or redirect the call to an opera tor  is carried out  by  two modu les  in our  system, the 
routing m o d u l e  and  the disambiguation module, as shown  in Figure 3. Given a caller 
request,  the rout ing modu le  selects a set of candidate  dest inat ions to which  it bel ieves 
the call can reasonably  be routed. If there is exactly one such destination, the call is 
routed to that  dest inat ion and  the caller notified; if there is no appropr ia te  destination, 
the call is sent to an operator;  and  if there are mul t ip le  candidate  destinations, the dis- 
ambigua t ion  modu l e  is invoked.  In the last case, the d i sambigua t ion  modu le  a t tempts  
to formulate  a query  that  it bel ieves will solicit re levant  informat ion  f rom the caller to 
al low the revised request  to be routed to a unique destination. If such a query  is suc- 
cessfully formulated,  it is posed  to the caller, and  the sys tem makes  another  a t t empt  
at rout ing the revised request,  which  includes the original request  and  the cal ler 's  
response  to the fol low-up question; otherwise,  the call is sent to a h u m a n  operator.  

7 Note that the corpus analysis described in this section was conducted with the purpose of determining 
guidelines for system design in order to achieve reasonable coverage of phenomena in actual 
human-human dialogues. The call classification schemes presented in this section do not come into 
play in the actual training or testing of our system, nor do we discard any part of our training corpus 
as a result of this analysis. 
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Figure 4 
Two-dimensional vector representation for the routing module. 

Our approach to call routing is novel  in its application of vector-based informa- 
tion retrieval techniques to the routing process, and in its extension of the vector- 
based representat ion for dynamical ly generating disambiguation queries (Chu-Carroll 
and Carpenter  1998). The routing and disambiguation mechanisms are detailed in the 
following sections. 

4.1 The Routing Module 
4.1.1 Vector Representation for the Routing Module. In vector-based information 
retrieval, the database contains a large collection of documents ,  each of which is rep- 
resented as a vector in n-dimensional space. Given a query, a query vector is computed  
and compared  to the existing document  vectors, and those documents  whose vectors 
are similar to the query vector are returned.  We apply  this technique to call routing 
by  treating each destination as a document ,  and representing the destination as a vec- 
tor in n-dimensional  space. Given a caller request, an n-dimensional request  vector 
is computed.  The similarity be tween the request  vector and each destination vector 
is then computed  and those destinations that are close to the request  vector are then 
selected as the candidate destinations. This vector representat ion for destinations and 
query is illustrated in a simplified two-dimensional  space in Figure 4. 

In order  to carry out  call routing with the aforement ioned vector representation, 
three issues must  be addressed. First, we must  determine the vector representat ion 
for each destination within the call center. Once computed,  these destination vec- 
tors should remain constant as long as the organization of the call center remains 
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unchanged. 8 Second, we must determine how a caller request will be mapped to the 
same vector space for comparison with the destination vectors. Finally, we must de- 
cide how the similarity between the request vector and each destination vector will 
be measured in order to select candidate destinations. 

4.1.2 The Training Process. The goal of the training phase of the call router is to de- 
termine the values of the destination vectors (and term vectors) that will subsequently 
be used in the routing process. Our training process, depicted in Figure 5, requires a 
corpus of transcribed calls, each of which is routed to the appropriate destination. 9 
These routed calls are processed by five domain-independent procedures to obtain the 
desired document (destination) and term vectors. 

Document Construction. Since our goal is to represent each destination as an n-dimen- 
sional vector, we must create one (virtual) document per destination. The document for 
a destination contains the raw text of the callers' contributions in all calls routed to that 
destination, since these are the utterances that provided vital information for routing 
purposes. For instance, the document for deposit services may contain utterances such 
as I want to check the balance in my checking account and I would like to stop payment on a 
check. In our experiments, the corpus contains 3,753 calls routed to 23 destinations. 1° 

8 One may consider allowing the call router to constantly update the destination vectors as new data are 
being collected while the system is deployed. We leave adding learning capabilities to the call router 
for future work. 

9 The transcription process can be carried out by humans or by an automatic speech recognizer. In the 
experiments reported in this paper, we used human transcriptions. 

10 These calls are a subset of the 4,500 calls used in our corpus analysis. We included calls of all semantic 
types, but excluded calls to destinations that were not represented by more than 10 calls, as well as 
ambiguous calls that were not resolved by the operator. 
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Morphological Filtering and Stop Word Filtering. For rout ing purposes ,  we  are concerned 
wi th  the semantics  of the words  present  in a document ,  bu t  not  wi th  the morphologica l  
forms of the words  themselves.  Thus we  filter each (virtual) document ,  p roduced  by  
the documen t  construct ion process,  th rough  the morphologica l  processor  of the Bell 
Labs Text-to-Speech synthesizer  (Sproat 1998) to extract the root fo rm of each word  in 
the corpus. This process will reduce singulars,  plurals,  and  gerunds  to their root forms, 
such as reducing service, services, and  servicing to the root service. Also, the var ious  verb  
forms are also reduced  to their root forms, such as reducing going, went, and gone to go. 11 

Next, the root forms of caller ut terances are filtered th rough  two lists, the ignore  
list and  the s top list, in order  to bui ld more  accurate n -gram term models  for sub- 
sequent  processing. The ignore list consists of noise words ,  which  are c o m m o n  in 
spontaneous  speech and  can be r em oved  wi thout  altering the mean ing  of an utter- 
ance, such as um and uh. These words  somet imes  get in the w a y  of p roper  n -gram 
extraction, as in I'd like to speak to someone about a car uh loan. When the noise word  
uh is filtered out  of the utterance,  we  can then proper ly  extract the b ig ram car+loan. 
The stop list enumera tes  words  that  are ubiqui tous and therefore do not  contribute 
to discr iminat ing be tween  destinations, such as the, be, for, and morning. We modif ied  
the s tandard  stop list dis t r ibuted with  the SMART informat ion retrieval sys tem (Salton 
1971) to include domain-specif ic  te rms and  proper  names  that  occurred in our  training 
corpus.  12 Note  that w h e n  a word  on the ignore list is r emoved  f rom an utterance,  it 
al lows words  preceding  and  succeeding the r em ov ed  word  to fo rm n-grams,  such as 
car+loan in the example  above. On the other hand,  w h e n  a stop word  is r emoved  f rom 
an utterance, a p laceholder  is inserted into the ut terance to p revent  the words  preced-  
ing and  following the r em oved  stop word  f rom forming n-grams.  For instance, after 
stop word  filtering, the caller ut terance I want to check on an account becomes  (sw) (sw) 
(sw) check (sw) (sw) account, result ing in the two un ig rams  check and account. Without  
the placeholders,  we wou ld  extract the b ig ram check+account, just as if the caller had  
used the t e rm checking account in the utterance. 

In our  experiments ,  the ignore list contains 25 words ,  which  are variat ions of 
c o m m o n  transcript ions of speech disfluencies, such as ah, aah, and ahh. The stop list 
contains over  1,200 words ,  including function words ,  p roper  names,  greetings, etc. 

Term Extraction. The ou tpu t  of the filtering processes is a set of documents ,  one for 
each destination, containing the root forms of the content  words  extracted f rom the 
raw texts originally in each document .  In order  to capture word  co-occurrence, n -gram 
terms are extracted f rom the filtered texts. First, a list of n-gram terms and  their counts 
are genera ted  f rom all filtered texts. Thresholds  are then appl ied  to the n -gram counts  
to select as salient te rms those n -g ram terms that  occurred sufficiently frequently. Next,  
these salient te rms are used  to reduce the filtered text for each documen t  to a bag  of 
salient terms, i.e., a collection of n -gram terms along wi th  their respective counts. 
Note  that w h e n  an n-gram te rm is extracted, all of the lower order k-grams,  where  
1<k<n ,  are also extracted. For instance, the word  sequence checking account balance will 
result in the t r igram check+account+balance, as well  as the b ig rams  check+account and 
account+balance and the un ig rams  check, account, and balance. 

11 Not surprisingly, confusion among morphological variants was a source of substantial error from the 
recognizer. Details can be found in Reichl et al. (1998). 

12 The idea of a standard stop list in the information retrieval literature is to eliminate terms that do not 
contribute to discriminating among documents. We extend this notion to our application to include 
additional proper names such as Alaska and Houston, as well as domain- or application-specific terms 
such as bye and cadet. The modification to the standard stop list is performed by manually examining 
the unigram terms extracted from the training corpus. 
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In our  experiments,  we selected as salient terms unigrams that occurred at least 
twice and bigrams and trigrams that occurred at least three times. This resulted in 
62 trigrams, 275 bigrams, and 420 unigrams. In our  training corpus, no four-gram 
occurred three times. Manual  examination of these n-gram terms indicates that almost 
all of the selected salient terms are relevant for routing purposes.  13 

Term-Document Matrix Construction. Once the bag of salient terms for each destination 
is constructed, it is very  s traightforward to construct an m x n te rm-document  f requency 
matrix A, where  m is the number  of salient terms, n is the number  of destinations, 
and an element  at,d represents the number  of times the term t occurred in calls to 
destination d. This number  indicates the degree of association be tween term t and 
destination d, and our  under ly ing  assumption is that if a te rm occurred frequently in 
calls to a destination in our  training corpus, then occurrence of that term in a caller's 
request indicates that the call should be routed to that destination. 

In the te rm-document  f requency matrix A, a row At is an n-dimensional  vector 
representing the term t, while a column Ad is an m-dimensional vector representing the 
destination d. However ,  by  using the raw frequency counts as the elements of the ma- 
trix, more  weight  is given to terms that occurred more  often in the training corpus than 
to those that occurred less frequently. For instance, a unigram term such as account, 
which occurs frequently in calls to multiple destinations will have greater f requency 
counts than say, the t r igram term social+security+number. As a result, w h en  the two 
vectors representing account and social+security+number are combined,  as will be done 
in the routing process, the term vector for account contributes more  to the combined 
vector than that for social+security+number. In order  to balance the contr ibution of each 
term, the te rm-document  f requency matrix is normal ized  so that each term vector is 
of unit  length (later weightings do not  preserve this normalization,  though). Let B be 
the result of normalizing the te rm-document  f requency matrix, whose elements are 
given as follows: 

a t ,d  
Bt'd = iX-" A 2 "~1/2 

\z--.,l<eKn t,eJ 

Our second weight ing is based on the notion that a term that only occurs in a few 
documents  is more impor tant  in routing than a term that occurs in m an y  documents .  
For instance, the term stop+payment, which occurred only in calls to deposit  services, 
should be more impor tant  in discriminating among destinations than check, which 
occurred in m a ny  destinations. Thus, we adopted  the Inverse-document  f r equency  
(IDF) weight ing scheme (Sparck Jones 1972) whereby  a term is weighted inversely to 
the number  of documents  in which it occurs. This score is given by: 

n 
IDF(t) = l o g  2 d(t) 

where  t is a term, n is the number  of documents  in the corpus, and d(t) is the number  of 
documents  containing the term t. If t only occurred in one document ,  IDF(t) = log 2 n; if 
t occurred in every  document ,  IDF(t) = log 2 1 -- 0. Thus, using this weight ing scheme, 
terms that occur in every  document  will be eliminated. 14 We weight  the matrix B by  

13 It would  have been possible to hand-edit  the set of n-gram terms at this point  to remove unwanted  
terms. The results we report in this paper  use the automatically selected terms without  any 
hand-editing. 

14 To preserve all terms, we could have used a common variant of the IDF weighting where  IDF(t) = 
nq-e log2 ~(t) for some nonnegative ¢. 
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mul t ip ly ing  each row t by  IDF(t) to arr ive at the matr ix  C: 

Ct, d = IDF(t) • Bt,d 

Singular Value Decomposition and Vector Representation. In the weighted  t e rm-documen t  
f requency matr ix  C, te rms are represented as n-dimensional  vectors  (in our  system, 
n = 23), and  dest inat ions are represented as m-dimensional  vectors (in our  system, m 
= 757). In order  to p rov ide  a un i fo rm representat ion of t e rm and documen t  vectors 
and to reduce the d imensional i ty  of the documen t  vectors,  we  appl ied  the singular 
value decomposi t ion  to the m x n matr ix  C (Deerwester  et al. 1990) to obtain: 15 

C =  U . S . V  T, 

where  

. 

2. 

3. 

U is an m x m or thonormal  matrix;  

V is an n x n o r thonormal  matrix;  and  

S is an m x n posi t ive matr ix  whose  nonzero  values are Sl,1,. . . ,  Sr,r, 
where  r is the rank of C, and  they are a r ranged  in descending order  
S1,1 ~ S2,2 ~ ' ' '  ~ Sr, r ~ O. 

Figure 6 illustrates the results of singular value decomposi t ion  according to the 
above  equation. The shaded  por t ions  of the matr ices are wha t  we  use as the basis for 
our  t e rm and documen t  vector  representat ions,  as follows: 

. 

. 

. 

Ur is an m x r matrix,  in which  each row forms the basis of our  t e rm 
vector  representation;  

Vr is an n x r matrix,  in which each row forms the basis of our  documen t  
vector  representation;  and  

Sr is an r x r posi t ive diagonal  matr ix  whose  values are used for 
appropr ia te  scaling in the t e rm and documen t  vector  representations.  

The actual representat ions of the t e rm and documen t  vectors  are Ur and VF scaled 
(or not) by  e lements  in St, depend ing  on whe ther  the representat ion is in tended for 
compar i sons  be tween  terms, be tween  documents ,  or be tween  a t e rm and a docu-  
ment.  For instance, since the similarity be tween  two documents  can be measu red  b y  
the dot  p roduc t  be tween  vectors  represent ing the two documents  (Salton 1971), and  
C T • C contains the dot  p roducts  of all pai rwise  co lumn vectors  in the weighted  term- 
documen t  f requency matr ix  C, the similari ty be tween  the ith and  j th documents  can 

15 Our original intent was to apply singular value decomposition and to reduce the dimensionality of the 
resulting vectors below the rank of the original matrix in order to carry out latent semantic indexing 
(Deerwester et al. 1990). Benefits cited for latent semantic indexing include the clustering of 
"synonyms" leading to improved recall. In the end, dimensionality reduction degraded performance 
for our data. However, our method is not equivalent to the standard approach in vector-based 
information retrieval, which simply uses the rows or columns of the term-document matrix (see Salton 
[1971] for definitions of the standard case). The difference arises through the cosine measure of 
similarity, which is operating over different spaces in the standard vector case and with the result of 
SVD in our case. Although we did not run the experiments, we believe similar results would be 
obtained by using cosine to compare rows or columns of the term-document matrix directly. 
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X X 

Cm×n Um×m Sm×n T Vnxn 
Figure 6 
Singular value decomposition. 

simply be recovered by element ( C  T • C)/j. Since U is orthonormal, S is a diagonal 
matrix, we have: 

C T • C = ( U - S "  vT) T" ( U ' S "  V T) 

= V . S  T . U  T - U . S . V  T 

= V . S . S . V  T 

: ( V ' S ) "  ( V ' S )  w 

Because only the first r diagonal elements of S are nonzero, we have: 

(W. S).  (V.  S) T = ( W  r .  Sr)  . ( V  r • Sr)  T 

The above equations suggest that scaling the vectors Vr with elements in Sr, i.e., repre- 
senting documents as row vectors in Vr'Sr, facilitates comparisons between documents. 
The same reasoning holds for representing terms as row vectors in Ur" Sr for compar- 
isons between terms, although in this particular application, we are not interested in 
term-term comparisons. 

To measure the degree of association between a term and a document, we look up 
an element in the weighted term-document frequency matrix. Because S is a diagonal 
matrix with only the first r elements nonzero, we have: 

C ~- U . S .  V T 

= U - ( V - S )  w 

= Ur"  ( V r ' S r )  w 

Therefore, representing terms simply by row vectors in U r and documents by row 
vectors in Vr'Sr allows us to make comparisons between documents, as well as between 
terms and documents. 

4.1.3 Call Routing. As discussed earlier, two subprocesses need to be carried out 
during the call routing process. First, a pseudodocument  vector must be constructed to 
represent the caller's request in order to facilitate the comparisons between the request 
and each document vector. Second, a method for comparison must be established to 
measure the similarity between the pseudodocument vector and the document vectors 
i n  Vr • Sr, and a threshold must be determined to allow for the selection of candidate 
destinations. 
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Pseudodocument Generation. Given a caller utterance (either in text form from a key- 
board interface or as the output from an automatic speech recognizer), we first perform 
the morphological and stop word filtering and the term extraction procedures as in 
the training process to extract the relevant n-gram terms from the utterance. Since 
higher-level n-gram terms are, in general, better indicators of potential destinations, 
we further allow trigrams to contribute more to constructing the pseudodocument 
than bigrams, which in turn contribute more than unigrams. Thus we assign a weight 
w3 to trigrams, w2 to bigrams, and wl to unigrams, 16 and each extracted n-gram term is 
then weighted appropriately to create a bag of terms in which each extracted n-gram 
term occurs Wn times. As a result, when we construct a pseudodocument from the bag 
of terms, we get the effect of weighting each n-gram term by Wn. 

Given the extracted n-gram terms, we can present the request as an m x 1 vector 
Q where each element Qi in the vector represents the number of times the ith term 
occurred in the bag of terms. The vector Q is then added as an additional column vector 
in our original weighted term-document frequency vector C, as shown in Figure 7, and 
we want to find the new corresponding column vector in V, Vq, that represents the 
pseudodocument in the reduced r-dimensional space. Since U is orthonormal and S 
is a diagonal matrix, we can solve for Vq by setting 

Q - _  U .  S .  Vq T 

Because we want a representation of the query in the document space, we transpose 
Q, to yield: 

QT = Vq . S .  U T 

Finally, multiplying both sides on the right by U, we have: 

QT . u = Vq . S . UT . U 

= v q . s  

Finally, note that for our query representation in the document space, we have QT. U ---- 
QT . Ur and Vq . S = Vq • Sr. Vq • Sr is a pseudodocument representation for the caller 
utterance in r-dimensional space, and is scaled appropriately for comparison between 
documents. This vector representation is simply obtained by multiplying QT and Ur, 
or equivalently, summing the vector representing each term in the bag of n-gram 
terms. 

Candidate Destination Selection. Once the pseudodocument vector representing the caller 
request is computed, we measure the similarity between each document vector in VF' Sr 
and the pseudodocument vector. There are a number of ways one may measure the 
similarity between two vectors, such as using the cosine score between the vectors, the 
Euclidean distance between the vectors, the Manhattan distance between the vectors, 
etc. We follow the standard technique adopted in the information retrieval community 
and select the cosine score as the basis for our similarity measure. The cosine score 
between two n-dimensional vectors x and y is given as follows: 

cos(x, y) = x.  yT 

V / E l ( i K n  x2 " ~--~X(i(n y2 

16 I n  o u r  s y s t e m ,  w l  = 1; w 2 = 2; a n d  w3 = 4. 
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× X 

C m×(n+l) U m×r 

Figure 7 
Pseudodocument generation. 

.T 
S r:~r V(n+l)×r 

Using cosine reduces the contribution of each vector to its angle by normalizing for 
length. Thus the key in maximizing cosine between two vectors is to have them point 
in the same direction. However, although the raw vector cosine scores give some indi- 
cation of the closeness of a request to a destination, we noted that the absolute value 
of such closeness does not translate directly into the likelihood for correct routing. 
Instead, some destinations may require a higher cosine value, i.e., a closer degree of 
similarity, than others in order for a request to be correctly associated with those des- 
tinations. We applied the technique of logistic regression (see Lewis and Gale [1994]) 
in order to transform the cosine score for each destination using a sigmoid function 
specifically fitted for that destination. This allows us to obtain a score that represents 
the router's confidence that the call should be routed to that destination. 

From each call in the training data, we generate, for each destination, a cosine 
value/routing value pair, where the cosine value is that between the destination vec- 
tor and the request vector, and the routing value is 1 if the call was routed to that 
destination in the training data and 0 otherwise. Thus, for each destination, we have a 
set of cosine value/routing value pairs equal to the number of calls in the training data. 
The subset of these value pairs whose routing value is I will be equal to the number of 
calls routed to that destination in the training set. Then, we used least squared error to 
fit a sigmoid function, 1/(1 + e-(ax+b)), to the set of cosine value/routing value pairs. 17 
A s s u m i n g  da and db are the coefficients of the fitted sigmoid function for destination 
d, we have the following confidence function for a destination d and cosine value x: 

Conf(da, db, x) = 1/(1 + e -(dax+db)) 

Thus the score given a request and a destination, where d is the vector corresponding 
to destination d, and r is the vector corresponding to the request is Conf(da, db, cos(r, d)). 

To obtain a preliminary evaluation of the effectiveness of cosine vs. confidence 
scores, we tested routing performance on transcriptions of 307 unseen unambiguous 
requests. In each case, we selected the destination with the highest cosine/confidence 
score to be the target destination. Using raw cosine scores, 92.2% of the calls are routed 
to the correct destination. On the other hand, using sigmoid confidence fitting, 93.5% 
of the calls are correctly routed. This yields an error reduction rate of 16.7%, illustrating 
the advantage of transforming the raw cosine scores to more uniform confidence scores 
that allow for more accurate comparisons between destinations. 

17 Maximum likelihood fitting is often used rather than least squared error in logistic regression. 
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Figure 8 
Router performance vs. confidence threshold. 

We can compute  the kappa statistic for the pure  routing component  of our  sys- 
tem using the accuracies given above. 18 Recall that kappa is defined by  (a - e ) / ( 1  - e )  
where a is the system's accuracy and e is the expected agreement  by  chance. Select- 
ing destinations from the prior distribution and guessing destinations using the same 
distribution leads to a chance performance of e = Y~a P(d) 2 = 0.2858 where  the summa- 
tion is over  all destinations d and P(d) is the percentage of calls routed to destination 
d. The resulting kappa score is (0.935 - 0.2858)/(1 - 0.2858) = 0.909. 

Once we have obtained a confidence value for each destination, the final step in 
the routing process is to compare the confidence values to a prede termined  threshold 
and return those destinations whose  confidence values are greater than the threshold 
as candidate destinations. To determine the optimal value for this threshold, we ran 
a series of experiments  to compute  the upper  bound  and lower bound  of the router ' s  
performance by  varying the threshold from 0 to 0.9 at 0.1 intervals. The lower bound  
represents the percentage of calls that are routed correctly, while the upper  bound  
indicates that percentage of calls that have the potential  to be routed correctly after 
disambiguation (see Section 5 for details on upper  bound  and lower bound  measures). 
Figure 8 illustrates the results of this set of experiments  and shows that a threshold 
of 0.2 yields optimal performance.  Thus we adopt  0.2 as our  confidence threshold for 
selecting candidate destinations in the rest of our  discussion. 

4.1.4 Call Rout ing  Example. To illustrate the call routing process with an example,  
suppose the caller responds to the operator ' s  p rompt  with I am calling to apply for a new 
car loan. First the caller's ut terance is passed through morphological  filtering to obtain 
the root forms of the words  in the utterance, resulting in I am call to apply for a new 
car loan. Next,  words  on the stop list are removed  and replaced with a placeholder, 
resulting in (sw I (sw I call (sw I apply (sw I (sw I new car loan. From the filtered "utter- 
ance, the router extracts the salient n-gram terms to form a bag of terms as follows: 
new+car+loan, new+car, car+loan, call, apply, new, car, and loan. A request  vector is then 
computed  by  taking the weighted sum of the term vectors representing the salient 
n-gram terms, and the cosine value between this request  vector and each destination 
vector is computed.  The cosine value for each destination is subsequently t ransformed 

18 See Siegel and Castellan (1988), and Carletta (1996) for a definition or discussion of the kappa statistic, 
and Walker et al. (1998) for an application of the kappa statistic to dialogue evaluation. 
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1. Consumer  Lending 0.979 
2. Loan Services 0.260 
3. Home Loans 0.077 
4. Collateral Control 0.069 
5. Operator 0.038 

(a) Cosine Scores 
Figure 9 
Ranking of candidate destinations. 

1. Consumer  Lending 0.913 
2. Deposit Services 0.070 
3. PC Banking 0.049 
4. Loan Services 0.035 
5. Auto Leasing 0.032 

(b) Confidence Scores 

L ° a n ~ c :  Car loans please. 

~ Consumer Lending 

Figure 10 
Two-dimensional vector representation for the disambiguation module. 

using the destination-specific sigmoid function to obtain a confidence score for each 
destination. Figures 9(a) and 9(b) show the cosine scores and the confidence scores 
for the top five destinations, respectively. Given a confidence threshold of 0.2, the 
only candidate destination selected is Consumer Lending. Thus, the caller's request is 
routed unambiguously to that destination. 

4.2 The Disambiguation Module 
4.2.1 Vector Representation for the Disambiguation Module. When the routing mod- 
ule returns more than one candidate destination, the disambiguation module is in- 
voked. The disambiguation module attempts to formulate an appropriate query to 
solicit further information from the caller to determine a unique destination to which 
the call should be routed. As discussed earlier, this occurs when two or more destina- 
tion vectors are close to the request vector, as illustrated in reduced two-dimensional 
space in Figure 10. In the example, the caller's request car loans please is ambiguous 
since the caller does not specify whether he is interested in existing or new car loans. 
Therefore, the vector representation for the request falls between the vectors represent- 
ing the two candidate destinations, Consumer Lending and Loan Services, and is close 
to both of them. The goal of the disambiguation process is to solicit an n-gram term 
from the caller so that when the vector representing this new n-gram term is added to 
the original request vector, the refined request vector will be unambiguously routed 
to one of the two candidate destinations. In terms of our vector representation, this 
means that our goal is to find term vectors that are close to the differences between 
the candidate destination vectors and the request vector, i.e., the highlighted vectors 
in Figure 10. These difference vectors, which are simply the pairwise differences of el- 
ements in each vector and are dynamically generated from the destination and request 
vectors, form the basis from which the disambiguation queries will be generated. 
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The disambiguation process. 
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4.2.2 Q u e r y  Formulation. Our  d isambigua t ion  modu le  selects a subset  of the salient 
n -gram terms f rom which the query  will be  generated.  The subset  of n -g ram te rms  
are those related to the original query  that  can likely be  used  to d isambiguate  a m o n g  
the candidate  destinations. They are chosen by  filtering all n -gram terms based  on the 
following three criteria, as shown  in Figure 11: 

Closeness  Since the goal of the d isambiguat ion  process is to solicit te rms 
whose  cor responding  vectors  are close to the difference vectors,  the first 
step in the t e rm selection process is to compare  each n-gram te rm vector  
wi th  the difference vectors  and  select those n -gram te rm vectors  that  are 
close to the difference vectors  b y  the cosine measure .  Since bo th  the 
dest inat ion vectors  and  the request  vector  are scaled for 
documen t -docum en t  compar i son  in Vr • Sr space, the difference vectors  
are also represented in Vr • SF space. As discussed in Section 4.1.2, 
documents  represented in Vr • Sr space are suitable for compar i son  wi th  
te rms represented in Ur space. In our  system, for each difference vector, 
we  compute  the cosine score be tween  the difference vector  and  each 
te rm vector, and  select the 30 te rms  wi th  the highest  cosine scores as the 
set of close terms. The reasons for selecting a threshold on the n u m b e r  of 
t e rms  instead of on the cosine score are twofold.  First, in situations 
where  m a n y  t e rm vectors are close to the difference vector, we  avoid  
generat ing an overly large set of close te rms but  instead focus on a 
smaller  set of mos t  p romis ing  terms. Second, in situations where  few 
te rm vectors  are close to the difference vector, we  still select a set of close 
te rms in the hope  that they m a y  contribute to formula t ing  a reasonable 
query, instead of giving up  on the d i sambigua t ion  process outright.  

Relevance From the set of close terms, we  select a set of re levant  terms, 
which  are te rms that further  specify a t e rm in the original request.  If a 
t e rm in the set of close te rms can be combined  wi th  a t e rm in the 
original request  to fo rm a valid n -g ram term, then the result ing n -g ram 
te rm is considered a relevant  term. For instance, if car+loan is a t e rm in 
the original request,  then bo th  new and new+car would  p roduce  the 
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relevant  t e rm new+car+loan. This mechan i sm for selecting relevant  te rms 
al lows us to focus on selecting n-gram terms for noun  phrase  
d i sambigua t ion  by  el iminating close te rms that  are semantical ly related 
to underspecif ied n-gram noun  phrases  in the original request  but  do not  
contr ibute to fur ther  d i sambigua t ing  the noun  phrases.  

D i s a m b i g u a t i n g  p o w e r  The final criterion that  we  use for t e rm selection 
is to restrict at tention to relevant  te rms that can be added  to the original 
request  to result  in an u n a m b i g u o u s  rout ing decision using the rout ing 
mechan i sm described in Section 4.1.3. In other words ,  we  augmen t  the 
bag  of n -gram terms extracted f rom the original request  wi th  each 
relevant  term, and  the rout ing modu le  is invoked  to de te rmine  if this 
a u g m e n t e d  set of n -gram terms can be u n a m b i g u o u s l y  routed  to a 
unique destination. The set of re levant  te rms wi th  d i sambigua t ing  p o w e r  
then forms  the set of selected te rms f rom which the sys tem ' s  query  will 
be  formulated.  If none  of the relevant  te rms satisfy this criterion, then we  
include all re levant  terms. Thus, instead of giving up  the d i sambigua t ion  
process w h e n  no one te rm is predic ted to resolve the ambiguity,  the 
sys tem poses  a quest ion to solicit informat ion  f rom the caller to m o v e  
the original request  one step toward  being an u n a m b i g u o u s  request. 
After the first d i sambigua t ion  query  is answered,  the sys tem 
subsequent ly  selects a new set of te rms f rom the refined, though  still 
ambiguous ,  request  and  formulates  a fo l low-up d i sambigua t ion  q u e ry .  19 

The result  of this selection process is a finite set of t e rms  that  are relevant  to the 
original ambiguous  request  and,  w h e n  added  to it, are likely to resolve the ambiguity.  
The actual query  is fo rmula ted  based  on the n u m b e r  of te rms in this set as well  as 
features of the selected terms. As shown  in Figure 11, if the three selection criteria ruled 
out  all n -g ram terms,  then the call is sent to a h u m a n  opera tor  for fur ther  processing.  
If there is only one selected term, then a yes-no quest ion is fo rmula ted  based  on this 
term. If there is more  than  one selected te rm in the set, and  a significant n u m b e r  
of these te rms share a c o m m o n  headword ,  2° X, the sys tem generalizes the query  to 
ask the wh-question For what type of X? Otherwise,  a yes-no quest ion is fo rmed  based  
on the t e rm in the selected set that  occurred mos t  f requent ly  in the training data, 
based  on the heuristic that  a more  c o m m o n  t e rm is more  likely to be relevant  than  
an obscure term. 21 A third al ternative wou ld  be to ask a disjunctive question, but  we  
have  not  yet  explored this possibility. Figure 3 shows that  after the sys tem poses  its 
query, it a t tempts  to route the refined request,  which  is the cal ler 's  original request  
plus the response  to the d i sambigua t ion  query  posed  by  the system. In the case of wh- 
questions, n -g ram terms are extracted f rom the response.  For instance, if the sys tem 
asks For what type of loan? and the user responds  It's a car loan, then the b ig r am car+loan 

19 Although it captures a similar property of each term, this criterion is computationally much more 
expensive than the closeness criterion. Thus, we adopt the closeness criterion to select a fixed number 
of candidate terms and then apply the more expensive, but more accurate, criterion to the much 
smaller set of candidate terms. 

20 In our implemented system, this path is selected if 1) there are five or less selected terms and they all 
share a common headword, or 2) there are more than five terms and at least five of them share a 
common headword. 

21 The generation of natural language queries is based on templates for wh-questions and yes-no 
questions. The generation process consults a manually constructed mapping between n-gram 
morphologically reduced noun phrases and their expanded forms. For instance, it maps the n-gram 
term exist + car + loan to an existing car loan. This mapping is the only manual effort needed to port the 
disambiguation module to a new domain. 
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is extracted f rom the response.  In the case of yes-no questions,  the sys tem determines  
whe ther  a yes or no answer  is given. 22 In the case of a yes response,  the t e rm selected 
to formulate  the d i sambigua t ion  query  is considered the caller 's  response,  while  in 
the case of a no response,  the response is t reated as in responses  to wh-questions. For 
instance, if the user  says yes in response to the sys tem's  query  Is this an existing car 
loan?, then the t r igram te rm exist+car+loan in the sys tem's  query  is considered the 
use r ' s  response.  

Note  that  our  d isambiguat ion  mechanism,  like our training process for basic rout-  
ing, is domain - independen t  (except for the manua l  construct ion of a m a p p i n g  be tween  
n-gram noun  phrases  and  their expanded  forms). It utilizes the set of n -g ram terms, as 
well  as t e rm and documen t  vectors that  were  obtained by  the training of the call router. 
Thus, the call router  can be por ted  to a new task wi th  only very  minor  domain-specif ic  
work  on the d i sambigua t ion  module .  

4.2.3 Disambiguation Example. To illustrate the d isambiguat ion  module  of our  call 
router, consider the request  Loans please. This request  is amb iguous  because the call 
center we  s tudied handles  mor tgage  loans separate ly  f rom all other types  of loans, 
and  for all other loans, existing loans and  new loans are also handled  b y  different 
depar tments .  

Given this request,  the call router  first pe r fo rms  morphological ,  ignore word ,  and  
stop word  filterings on the input,  result ing in the filtered ut terance of loan Iswl. N- 
gram terms are then extracted f rom the filtered utterance,  result ing in the un ig ram 
te rm loan. Next,  the router  computes  a p s e u d o d o c u m e n t  vector  that  represents  the 
cal ler 's  request,  which  is compared  in turn wi th  the dest inat ion vectors. The cosine 
values be tween  the request  vector  and  each dest inat ion vector  are then m a p p e d  into 
confidence values. Using a confidence threshold of 0.2, we  have  two candidate  des- 
tinations, Loan Services and  Consumer  Lending; thus the d i sambigua t ion  modu le  is 
invoked.  

Our  d i sambigua t ion  modu le  first selects f rom all n -gram terms those whose  te rm 
vectors are close to the difference vectors,  i.e., the differences be tween  each candidate  
dest inat ion vector  and  the request  vector. This results in a list of 60 close terms, the 
vast  majori ty of which  are semantical ly close to loan, such as auto+loan, payoff, and owe. 
Next,  the relevant  te rms are constructed f rom the set of close te rms by  selecting those 
close te rms that  fo rm a valid n -gram te rm with  loan. This results in a list of 27 relevant  
terms, including auto+loan and loan+payoff, but  excluding owe, since neither loan+owe 
nor  owe+loan consti tutes a valid bigram.  The third step is to select those relevant  te rms 
wi th  d i sambigua t ing  power,  result ing in 18 d isambigua t ing  terms. Since 11 of these 
te rms share a head  noun  loan, a wh-question is genera ted  based  on this headword ,  
result ing in the query  For what type of loan? 

Suppose  in response to the sys tem's  query, the user  answers  Car loan. The router  
then adds  the new b ig ram car+loan and the two un ig rams  car and loan to the orig- 
inal request  and  a t tempts  to route the refined request. This refined request  is again 
ambiguous  be tween  Loan Services and  Consumer  Lending because the caller d id  not  
specify whe ther  it was  an existing or new car loan. Again,  the d i sambigua t ion  modu le  
selects the close, relevant,  and  d isambigua t ing  terms, result ing in a unique t r igram 
exist+car+loan. Thus, the sys tem generates  the yes-no quest ion Is this about an existing 

22 In our current system, a response is considered a yes response only if it explicitly contains the word 
yes. However, as discussed in Green and Carberry, (1994) and Hockey et al. (1997), responses to yes-no 
questions may not explicitly contain a yes or no term. We leave incorporating a more sophisticated 
response understanding model, such as Green and Carberry (1994), into our system for future work. 
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car loan? 23 If the user responds  yes, then the t r igram exist+car+loan is added  to the 
refined request  and  the call unam bi guous l y  routed to Loan Services; if the user says 
No,  it's a n e w  car loan, then the t r igram new+car+loan is extracted f rom the response  and  
the call routed  to Consumer  Lending. 24 

5. Evaluation of the Call Router 

5.1 Routing Module Performance 
We pe r fo rmed  an evaluat ion of the rout ing modu le  of our  call router  on a set of 389 
calls disjoint f rom the training corpus.  Of  the 389 requests,  307 were  u n a m b i g u o u s  and  
routed  to their correct destinations,  and  82 were  a m b i g u o u s  and  annota ted  wi th  a list 
of potent ial  destinations. Unfortunately,  in this test set, only the cal ler 's  ut terance in 
response  to the sys tem's  initial p r o m p t  of H o w  m a y  I direct your  call? was  recorded and  
transcribed; thus we  have  no informat ion  about  where  the ambiguous  calls should  be 
routed  after disambiguat ion.  We evalua ted  the rout ing modu le  pe r fo rmance  on bo th  
transcript ions of caller ut terances as well  as ou tpu t  of the Bell Labs Automat ic  Speech 
Recognizer  (Reichl et al. 1998) based  on speech input  of caller ut terances  (Carpenter  
and  Chu-Carrol l  1998). 

5.1.1 Term Extraction Performance. Since the vector  representa t ion for caller requests  
is c o m p u t e d  based  on the t e rm vectors  represent ing the n -g ram terms extracted f rom 
the requests,  the pe r fo rmance  of our  call router  is directly tied to the the accuracy of 
te rms extracted f rom each caller utterance. Given  the set of n -g ram te rms  obta ined f rom 
the training process,  the accuracy of extraction of such te rms  based  on transcript ions 
of caller ut terances is 100%. However ,  w h e n  using the ou tpu t  of an automat ic  speech 
recognizer  as input  to our  call router, deletions of t e rms  present  in the cal ler 's  request  
as well  as insert ions of te rms that  did not  occur in the request  affect the t e rm extraction 
accuracy and  thus the rout ing per formance .  

We evalua ted  the ou tpu t  of the automat ic  speech recognizer  based  on bo th  word  
accuracy and  te rm accuracy, as shown  in Table 3. 25 Word accuracy is measu red  by  
taking into account  all words  in the transcript  and  in the recognized string. Two sets 
of results are g iven for word  accuracy, one based  on raw forms of words  and  the other 
based  on compar i sons  of the root forms  of words ,  i.e., after bo th  the t ranscript  and  the 
recognized string are sent th rough  the morphologica l  filter. Term accuracy is measu red  
by  taking into account  only the set of ac tua l / r ecogn ized  words  that  contr ibute  to 
rout ing per formance ,  i.e., after bo th  the t ranscript  and  the recognized str ing are sent 
th rough  the t e rm extraction process. 

For each evaluat ion dimension,  we  measured  the recognizer  pe r fo rmance  b y  calcu- 
lating the precision and  recall. Precision is the percentage  of w o r d s / t e r m s  in the recog- 
nizer  ou tpu t  that  are actually in the transcription,  i.e., percentage  of found  w o r d s / t e r m s  

23 Recall that our current system uses simple template filling for response generation by utilizing 
manually constructed mappings from n-gram terms to their inflected forms, such as from exist+car+loan 
to an existing car loan. 

24 The current implementation of the system requires that the user specify the correct answer when 
providing a no answer to a yes-no question, in order for the call to be properly disambiguated. However, 
it is possible that a system may attempt to disambiguate given a simple no answer by considering the 
n-gram term being queried (exist+car+loan in the above example) as a negative feature, subtracting its 
vector representation from the query, and attempting to route the resulting vector representation. 

25 In computing the precision and recall figures, we did not take into account multiple occurrences of the 
same word. In other words, we consider a word in the recognized string correct if the word occurs in 
the transcribed text. For comparison purposes, the standard speech recognition accuracy on raw ASR 
output is 69.94%. 
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Table 3 
Word accuracy vs. term accuracy on ASR output. 

Word Accuracy Term Accuracy 

Raw Rooted Unigram Bigram Trigram 

Precision 78.6% 79.8% 9 3 . 7 %  9 6 . 5 %  98.5% 
Recall 76.0% 77.2% 8 8 . 4 %  8 5 . 5 %  83.6% 

that are correct, while recall is the percentage of words/terms in the transcription that 
are correctly returned by the recognizer, i.e., percentage of actual words/terms that 
are found. Table 3 shows that using the root forms of words results in a 1% absolute 
improvement (approximately 5% error reduction) in both precision and recall over 
using the raw forms of words. 

A comparison of the rooted word accuracy and the unigram accuracy shows that 
the recognizer performs much better on content words than on all words combined. 
Furthermore, comparisons among term accuracies for various n-gram terms show that 
as n increases, precision increases while recall decreases. This is because finding a 
correct trigram requires that all three unigrams that make up the trigram be correctly 
recognized in order, hence the low recall. On the other hand, this same feature makes it 
less likely for the recognizer to postulate a trigram by chance, hence the high precision. 
An overall observation in the results presented in Table 3 is that the speech recognizer 
misses between 12-17% of the n-gram terms used by the call router, and introduces 
an extra 1-6% of n-gram terms that should not have existed. In the next section, 
we show how these deletions and insertions of n-gram terms affect the call router's 
performance. 

5.1.2 Destination Selection Performance. In evaluating the performance of the routing 
module, we compare the list of candidate destinations with the manually annotated 
correct destination(s) for each call. The routing decision for each call is classified into 
one of eight classes, as shown in Figure 12. For instance, class 2a contains those calls 
that 1) are actually unambiguous, 2) are considered ambiguous by the router, and 
3) have the potential to be routed to the correct destination, i.e., the correct destination 
is one of the candidate destinations. On the other hand, class 3b contains those calls 
that 1) are actually ambiguous, 2) are considered unambiguous by the router, and 3) 
are routed to a destination that is not one of the potential destinations. 

We evaluated the router's performance on three subsets of our test data: unam- 
biguous requests alone, ambiguous requests alone, and all requests combined. For 
each set of data, we calculated a lower bound performance, which measures the per- 
centage of calls that are correctly routed, and an upper bound performance, which 
measures the percentage of calls that are either correctly routed or have the potential 
to be correctly routed. Table 4 shows how the upper bounds and lower bounds are 
computed based on the classification in Figure 12 for each of the three data sets. For 
instance, for unambiguous requests (classes 1 and 2), the lower bound is the number 
of calls actually routed to the correct destination (class la) divided by the number of 
total unambiguous requests, while the upper bound is the number of calls actually 
routed to the correct destination (class la) plus the number of calls that the router 
finds to be ambiguous between the correct destination and some other destination(s) 
(class 2a), divided by the number of unambiguous requests. The calls in 2a are con- 
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Is request actually unambiguous? 

yes// 
Is call routed by router? 

y e /  NN~o 

L 
Is call routed by router? 

yes//// NXx~o 

correct? contains correct? one of possible? overlaps with possible? 
yes///  XN~o yes// /  NN~o yes// /  NN~o yes// /  NN~o 

la lb 2a 2b 3a 3b 4a 4b 

Figure 12 
Classification of routing module outcome. 

Table 4 
Calculation of upper bounds and lower bounds. 

Unambiguous Requests Ambiguous Requests All Requests 

Lower bound la/(1+2) 4a/(3+4) (la+4a)/all 
Upper bound (la+2a)/(1+2) (3a+4a)/(3+4) (la+2a+3a+4a)/all 

Table 5 
Routing results with threshold = 0.2. 

Class a Class b Class a Class b 

Class 1 246 5 Class 1 239 9 
Class 2 51 5 Class 2 49 10 
Class 3 33 1 Class 3 30 3 
Class 4 48 0 Class 4 42 7 

(a) Results on transcriptions (b) Results on ASR output 

sidered potentially correct because it is likely that the call will be routed to the correct 
destination after disambiguation. 

Tables 5(a) and 5(b) show the number of calls in our testing corpus that fell into the 
classes illustrated in Figure 12 based on transcriptions of caller requests and the output 
of an automatic speech recognizer, respectively. Tables 6(a) and 6(b) show the upper 
bound and lower bound performance for the three test sets based on the results in 
Tables 5(a) and (b), as well as the evaluation mechanism in Table 4. These results show 
that the system's overall performance in the case of perfect recognition falls somewhere 
between 75.6% and 97.2%, while the performance using our current automatic speech 
recognizer (ASR) output falls between 72.2% and 92.5%. The actual performance of 
the system is determined by two factors: 1) the performance of the disambiguation 
module, which determines the correct routing rate of the unambiguous calls that are 
considered ambiguous by the router (class 2a, 16.6% of all unambiguous calls with 
transcription and 15.9% with ASR output), and 2) the percentage of calls that were 
routed correctly out of the ambiguous calls that were considered unambiguous by 
the router (class 3a, 40.4% of all ambiguous calls with transcription and 36.6% with 
ASR output). Note that the performance figures given in Tables 6(a) and 6(b) are 
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Table 6 
Router performance with threshold = 0.2. 

Unambiguous Requests Ambiguous Requests All Requests 

Lower bound 80.1% 58.5% 75.6% 
Upper bound 96.7% 98.8% 97.2% 

(a) Performance on transcriptions 

Unambiguous Requests Ambiguous Requests All Requests 

Lower bound 77.9% 51.2% 72.2% 
Upper bound 93.8% 87.8% 92.5% 

(b) Performance on ASR output 

based on 100% automatic routing. In the next section, we discuss the performance of 
the disambiguation module,  which determines the overall system performance, and 
show how allowing calls to be redirected to h u m a n  operators affects the system's  
performance. 

5.2 Disambiguation Module Performance 
To evaluate our disambiguation module,  we needed dialogues that satisfy two criteria. 
First, the caller's first utterance must  be ambiguous.  Second, the operator must  have 
asked a follow-up question to disambiguate the request and have subsequently routed 
the call to the appropriate destination. We used 157 calls that met  these two criteria 
as our test set for the disambiguation module.  Note that this test set is disjoint from 
the test set used in the evaluation of the call router, since none of the calls in that set 
satisfied the second criterion (those calls were not recorded or transcribed beyond  the 
caller's response to the operator ' s  prompt).  Furthermore, for this test set, we only had  
access to the transcriptions of the calls but  not the original speech files. 

For each ambiguous  call, the first caller utterance was given to the router as input. 
The outcome of the router was classified as follows: 

Unambiguous if the call was routed to the selected destination. This 
routing was considered correct if the selected destination was the same 
as the actual destination and incorrect otherwise. 

Ambiguous if the router at tempted to initiate disambiguation. The 
outcome of the routing of these calls was determined as follows: 

Correct if a disambiguation query was generated which, when  
answered, led to the correct destination. 26 
Incorrect if a disambiguation query was generated which, when  
answered, could not lead to a correct destination. 

26 Since our corpus consists of human-human dialogues, we do not have human responses to the exact 
disambiguation questions that our system generates. We consider a disambiguation query correct if it 
attempts to solicit the same type of information as the human operator, regardless of syntactic 
phrasing, and if answered based on the user's response to the human operator's question, led to the 
correct destination. 
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Table 7 
Performance of disambiguation module on ambiguous 
calls. 

Routed As Unambiguous Routed As Ambiguous 

Correct Incorrect Correct Incorrect Reject 

40 12 60 3 42 

Reject if the router  could not  fo rm a sensible query  or was  
unable  to gather  sufficient informat ion f rom the user  after its 
queries and  routed  the call to a h u m a n  operator.  

Table 7 shows the n u m b e r  of calls that  fall into each of the five categories. Out  
of the 157 calls, the router  automat ica l ly  routed  115 either wi th  or wi thout  d i sam-  
biguat ion (73.2%). Fur thermore ,  87.0% of these automat ical ly  routed  calls were  sent 
to the correct destination. Notice that  out  of the 52 ambiguous  calls that  the router  
considered unambiguous ,  40 were  routed  correctly (76.9%). This is because our  sta- 
tistically t ra ined call router  is able to dist inguish be tween  cases where  a semantical ly 
amb iguous  request  is equal ly  likely to be  routed  to two or more  destinations, and  
situations where  the l ikelihood of one potent ia l  dest inat ion ove rwhe lms  that  of the 
other(s). In the latter case, the router  routes the call to the mos t  likely dest inat ion in- 
stead of initiating disambiguat ion,  which  has  been  s h o w n  to be  an effective strategy; 
not  surprisingly, h u m a n  opera tors  are also p rone  to guess  the dest inat ion based  on 
l ikelihood and  route calls wi thout  disambiguat ion.  

5.3 Overall Performance 
Our  final evaluat ion of the overall  pe r fo rmance  of the call router  is calculated by  
app ly ing  the results for evaluat ing the d i sambigua t ion  modu le  in Section 5.2 to the 
results for the rout ing m odu l e  in Section 5.1. Tables 8(a) and  8(b) show the percentage  
of calls that  will be  correctly routed,  incorrectly routed,  and  rejected, if we  app ly  the 
pe r fo rmance  of the d i sambigua t ion  m odu l e  (Table 7) to the calls that  fall into each class 
in the evaluat ion of the rout ing m odu l e  (Table 5). 27 For instance, the pe r fo rmance  of 
t ranscribed class 2 calls (unambiguous  calls that  the router  considered ambiguous)  is 
compu ted  as follows: 

Correct  percentage  

Incorrect  percentage 

= c o r r e c t ~ t o t a l  

= (51 ,60 /105 ) /389  

= 7.5% 

= i n c o r r e c t ~ t o t a l  

= (5 + 51 • 3/105)/389 

= 1.7% 

27 Note that the results in Table 8(b) are only a rough upper bound for the system's overall performance 
on recognizer output, since the performance of the disambiguation module presented in Table 7 is 
evaluated on transcribed texts (because we were not able to obtain any speech data that were recorded 
and transcribed beyond the caller's initial response to the system's prompt). In reality, the insertions 
and deletions of n-gram terms in the recognizer output may lead to some inappropriate 
disambiguation queries or more rejections to human operators. In addition, users may provide useful 
information not solicited by the system's query. 
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Table 8 
Overall performance of call router. 

Correct Incorrect Reject 

Class 1 63.2% 1.3% 0% 
Class 2 7.5% 1.7% 5.3% 
Class 3 6.5% 2.2% 0% 
Class 4 7.0% 0.4% 4.9% 

Total 84.2% 5.6% 10.2% 

(a) Performance on transcriptions 

Correct Incorrect Reject 

Class 1 61.4% 2.3% 0% 
Class 2 7.2% 2.9% 5.0% 
Class 3 5.9% 2.6% 0% 
Class 4 6.3% 2.1% 4.3% 

Total 80.8% 9.9% 9.3% 

(b) Performance on ASR output 

Rejected percentage = re j ec t ed~ to ta l  

= (51 ,42 /105) /389  

= 5.3% 

The results in Table 8(a) show that, wi th  perfect  recognition, our  call router  sends 
84.2% of all calls in our  test set to the correct dest inat ion either wi th  or wi thout  
disambiguat ion,  sends 5.6% of all calls to the incorrect destination, and  redirects 10.2% 
of the calls to a h u m a n  operator.  In other words ,  our  sys tem a t tempts  to automat ical ly  
handle  89.8% of the calls, of which  93.8% are routed to their correct destinations. When  
speech recognit ion errors are in t roduced to the rout ing module ,  the percentage of calls 
correctly routed decreases while  that  of calls incorrectly routed  increases. However ,  
it is interesting to note that the rejection rate decreases, indicating that  the sys tem 
a t t empted  to handle  a larger por t ion  of calls automatically. 

5.4 Performance Comparison with Existing Systems 
As discussed in Section 2, Gorin  and  his colleagues have  exper imented  wi th  var ious  
methodologies  for relating caller ut terances wi th  call types  (destinations). Their sys tem 
per fo rmance  is evaluated by  compar ing  the mos t  likely dest inat ion re turned by  their 
call type classifier g iven the first caller ut terance with  a manua l ly  annota ted  list of 
dest inat ions labeled based  again  on the first caller utterance. A call is considered 
correctly classified if the dest inat ion re turned by  their classifier is present  in the list of 
possible destinations. In other words ,  their evaluat ion scheme is similar to our  me thod  
for comput ing  the u p p e r  b o u n d  per fo rmance  of our  router  discussed in Section 5.1.2. 
We evaluated our  router  us ing their evaluat ion scheme wi th  a rejection threshold 
of 0.2 on bo th  transcript ions and  recognit ion ou tpu t  on our  original set of 389 calls 
used  in evaluat ing the rout ing module .  Table 9 shows a compar i son  of our  sys tem's  
pe r fo rmance  and  the bes t -per forming  vers ion of their sys tem as repor ted  in Wright, 
Gorin, and  Riccardi (1997); henceforth WGR97Y 

Without  other measures  of task complexity, it is impossible  to directly compare  our  
results wi th  those of WGR97. In several  respects,  their task is substantial ly different 
than ours. Their task is s impler  in that there are fewer  possible activities that  a caller 
migh t  request  and  fewer overall  destinations; but  it is more  complex in that  vocabula ry  

28 Wright, Gorin, and Riccardi (1997) presents system performance in the form of a rejection rate vs. 
correct classification rate graph, with rejection rate ranging between 10-55% and correct classification 
rate ranging between 63-94%. We report on two sets of results from their graph in Table 9, one with the 
lowest rejection rate and one that they chose to emphasize in their paper. 
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Table 9 
Evaluation of our system and WGR97. 

# of Destinations On Transcription On ASR Output 

Rejection Rate Correct Rate Rejection Rate Correct Rate 

Our system 23 0% 94% 3% 92% 
WGR97 14 10% 84% 12% 78% 
WGR97 14 40% 94% 40% 83% 

items like cities are far more open-ended. Furthermore, it appears that they have many 
more instances of callers requesting services from more than one destination. 

Comparison with human operators was not possible for our task as their routing 
accuracy has not been evaluated. Our transcriptions clearly indicate that they all make 
a substantial number of routing errors (5-10% or more), with a large degree of variation 
among operators. 

6. Future Work 

In our current system, we perform morphological reduction context-independently 
without regard to word class. Ideally, we would have distinguished the uses of the 
word check as a verb from its uses as a noun, requiring both training and run-time 
category disambiguation. 

We are also interested in further clustering words that are similar in meaning, such 
as car, auto, and automobile, even though they are not related by regular morphological 
processes. For our application, digits or sequences of digits might be conflated into a 
single term, as might states, car makes and models, and so on. This kind of application- 
specific lexical clustering, whether done by hand or with the help of resources such as 
thesauri or semantic networks, should improve performance by overcoming inherent 
data sparseness problems. Classes might also prove helpful in dealing with changing 
items such as movie titles. In our earlier experiments, we used latent semantic analysis 
(Deerwester et al. 1990) for dimensionality reduction in an attempt to automatically 
cluster words that are semantically similar. This involved selecting dimensionality 
k, which is less than the rank r of the original term-document matrix. We found 
performance degrades for any k < r. 

In the current version of our system, the interface between the automatic speech 
recognizer and the call router is the top hypothesis of the speech recognizer for the 
speech input. As reported in Table 3, this top hypothesis has an approximately 10% 
error rate on salient unigrams. One way to improve this error rate is to allow the 
speech recognizer to produce an n-best list of the top n recognition hypotheses or 
even a probabilistic word graph rather than a single best hypothesis. The n-gram 
terms can then be extracted from the graph in a straightforward manner and weighted 
according to their scores from the recognizer. Our prediction is that this will lead 
to increased recall, with perhaps a slight degradation in precision. However, since 
increased recall will, at the very least, increase the chance that the disambiguation 
module can formulate reasonable queries, we expect the system's overall performance 
to improve as a result. 
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7. Conclusions 

We described and evaluated a domain- independent ,  automatically trained call router  
that takes one of three actions in response to a caller's request. It can route the call to 
a destination within the call center, a t tempt  to dynamical ly formulate a disambigua- 
tion query, or route the call to a human  operator. The routing module  selects a set of 
candidate destinations based on n-gram terms extracted from the caller's request  and 
a vector-based comparison between these n-gram terms and each possible destination. 
If disambiguation is necessary, a yes-no question or a wh-question is dynamical ly  gen- 
erated from among n-gram terms automatically extracted from the training data based 
on closeness, relevance, and disambiguating power. This query formulat ion process 
allows the system to tailor the disambiguating query  to the caller's original request  
and the candidate destinations. 

We have further demonst ra ted  the effectiveness of our  call router  by  evaluating 
the call router on both transcriptions of caller requests and the output  of an automatic 
speech recognizer on these requests. When the input  to the call router  is free of recog- 
nition errors, our  system correctly routes 93.8% of the calls after redirecting 10.2% of 
all calls to a h u m a n  operator. When using the output  of a speech recognizer with an 
approximately  23% word  error rate, the rejection rate drops to 9.3%, the upper  bound  
of the router  performance drops from 97.2% to 92.5%, and the lower bound  of the 
performance drops from 75.6% to 72.2%, illustrating the robustness of our  call router 
in the face of speech recognition errors. 
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