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To find an appropriate utterance for a semantic representation is a problem normally 
treated in the domain of (tactical) natural language generation. For unification-based 
approaches, like LFG, PATR, or HPSG (Kaplan and Bresnan 1982; Shieber et al. 1983; 
Pollard and Sag 1994), this problem turns out to be a formal problem of the underlying 
grammar formalism, when the mapping between strings and semantic representations 
is defined by the grammar. Semantic representations are then encoded in a separate 
part of the feature structures (henceforth f-structures) that are assigned to the sen- 
tences by the grammar. This is normally achieved by a distinct attribute SF.M (or an 
additional a-projection that is formally reconstructable by such an attribute) whose 
value is intended to represent the semantics of the sentence the f-structure is assigned 
to. The f-structure given in (1), which might be assigned to the sentence John arrives 
by a unification grammar for English, is a simple example. 

(1) 

'I "PREDTENSE 'ARRIVE((SUBJ))"PRES 

subs [PREp 
L SEM [REL arrive] 

[ARG1 john ] 

Since the f-structures assigned to the sentences are always subsumed by the se- 
mantic representations they contain, a semantic-driven generator has to compute for a 
given semantic representation ~ a sentence with an f-structure q~ that is subsumed by 
the input (in the following, notated by ~ r- ~). To state the underlying decidability 
problem more formally, we need the fact that a unification grammar G defines a binary 
relation Ac between terminal strings w and f-structures/I~, as given in (2) 

(2) Ac (w, ~) iff G assigns • to w. 

The problem of determining for a given semantic representation ~r whether there is a 
sentence with an f-structure ~ that is subsumed by the input turns out then to be an 
instance of the problem of whether we can decide (3) 

(3) 3w3~(~' r- ~ A Ac(w,q~)) 

for any given input ~ .  
The undecidability of the generation problem in (3) was shown for definite clause 

grammars by Dymetman (1991), who reduced the problem to Hilbert's Tenth Prob- 
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lem. Van Noord (1993) provided a proof for PATR-style grammars using a reduction to 
Post's Correspondence Problem. Moreover, a reduction to Hilbert's Tenth Problem was 
also used by Roach (1983) to show the undecidability of the emptiness problem of lexical- 
functional languages, a result that was later shown by Nishino (1991) using a reduction 
to Post's Correspondence Problem. In this brief note, we want to investigate the close 
relationship between the emptiness problem of lexical-functional and PATR languages 
and the generation problem in (3). We give a much simpler undecidability proof of the 
emptiness problem using a reduction to the emptiness problem of the intersection of 
arbitrary context-free languages, a reduction that Wedekind and Kaplan (1996) used 
to show the undecidability of ambiguity-preserving generation. The close connection 
of the problems--already indicated by the fact that their undecidability proofs were 
achieved by the same reductions--results, then, from the fact that the undecidability 
of the emptiness problem trivially implies the undecidability of semantic-driven gen- 
eration. This result also applies to other unification-based formalisms such as HPSG, 
since they are powerful enough to simulate context-free derivations. 

We begin our construction by defining for each context-free language L a unifica- 
tion grammar that generates L and that associates with each derivable terminal string 
an f-structure consisting of the string's difference list encoding (plus concatenation 
information). 1 For the association of the annotated information with the constituents 
described by a context-free rule of the form A --* w, we use---similar to PATR--a set 
of distinct metavariables {x0 . . . . .  Xiw I }; x0 refers to the mother and xi (i = 1 . . . .  , ]w[) to 
the ith daughter. 

Definition 
Let G be a context-free grammar in Chomsky normal form whose nonterminal vo- 
cabular)5 terminal vocabulary, start-symboL and rules are given by (VN, VT, S, R). I.e., 
each rule has the form A --* e, A --* a or A --+ BC with A, B, C E VN, a E VT and c de- 
noting the empty string. A string grammar String(G) for G is a unification grammar 
(VN, VT, S, Rs> whose rule set is determined as follows. In the first step we construct 
for each context-free rule r -- A --* w a set of annotations Sr: 

{(x0 IN) ~ (X0 OUT)} if W = C 

Sr = {(X0 IN FIRST) ~ a, (X0 IN REST) ~ (X 0 OUT)} if w = a 

{(x0 IN) ~,~ (Xl IN), (Xl OUT) ~ (X2 IN), (x 0 OUT) ~, (x2 OUT)} if w = BC. 

The set of rules is then given by Rs = {(r, St> [ r C R}. 2 

Figure 1 illustrates the f-structure encoding of a terminal string generated by a 
simple string grammar. By induction on the depth of the derivation trees, it can eas- 
ily be shown that G and String(G) have the same language and that the f-structure 
assigned to a terminal string w encodes w, as stated more precisely in the following 
Lemma: 

1 We separated this construction out of the main proof, since it might be useful for analyzing other 
problems. 

2 We used PATR-style notation, since it facilitates the construction of string grammars. For LFG 
grammars where we do not have the possibility to refer from one daughter to her sister (necessary for 
(Xl OUT) ~ (x2 IN)) we need a slightly more complex construction. If w ~-- BC then B has to be 
annotated by (T B1) '~ ~ and (T IN) ~ (~ IN) and C by (T c2) ~,~ ~, (T OUT) ~ (~ OUT), and 
(T B1 OUT) ~ (J, IN). If W = a we need (T In FIRST) ~ a and (T In REST) ~-~ (T OUT) and for w = e 
the equation (T IN) ~ (T OUT). With this construction we get the same undecidability results for 
classical LFG grammars. The only difference is that the constructed grammars are tree grammars rather 
than string grammars. 
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Figure 1 
A sample constituent structure and the associated f-structure provided by a simple string 
grammar. The metavariables of the rules are instantiated by the variables attached to the 
nodes of the constituent structure. To each variable xi is assigned the f-structure element ai. 

L e m m a  
Let String(G) be a string grammar. Then L(G) = L(String(G)) and if there is a deriva- 
tion of a terminal string w with root Sx0 and f-structure • then the substructure of 

which comprises the elements accessible from a0 in • is a minimal solution of 
{(X0 IN REST i -1  FIRST) ~ W i l  1 <_ i <_ [wl} U {(Xo OUT) ~ (X0 IN RESTIWl)}. 3 

If we combine two arbitrary string grammars in such a way that the string encod- 
ings of the derived terminal strings get unified, we can show the undecidability of the 
emptiness problem by a simple reduction to the emptiness problem of the intersection 
of arbitrary context-free languages. 

Theorem 
It is undecidable for an arbitrary unification grammar G whether L(G) -- O. 

Proof 
Let G 1 = (V~, V 1, S 1, R 1) and G2= (~flN, V2, $2, R2} be context-free grammars for two 
arbitrary context-free languages. Without loss of generality, we can assume that 
V~ n V2N -- 0 and that each rule in R i (i = 1, 2) is in Chomsky normal form. On the ba- 
sis of String(G 1) and String(G 2) we construct a unification grammar G = (VN, VT, S, R) 
with 

VN = V I u  • u {S} and S ~ V~U~fl N 

v:=v uv 2 

f Xo ~ X l ,  XO ,~, X2,  
R :  {(S SlS 2,[(x0 OUT FIRST) 1UR  

"x 

such that # is a new atomic value not in VT. If we assume for G constant-consistency 
(i.e., axioms of the form t- a ~ b for all atomic values a, b E VT U {# } with a ~ b) then 
the problem whether  L(G)= 0 reduces to the undecidable problem whether 
L(G 1) N L(G 2) = 0. In order to get a derivation of a well-formed terminal string w l w  2 

from S with w 1 derived from S 1 and w 2 from S 2, w I must  be identical with w 2, since 
both string encodings get unified by the S-rule and (xo OUT FIRST) ~ # ensures that 
one string is not a proper prefix of the other. 4 Thus, L(G) = {ww I w E L(G 1) n L(G2)} 
and L(G) = 0 iff L(G 1) N L(G 2) -- 0. • 

3 The whole  f-structure encodes  the complete  difference list der ivat ion of w x  - x, which  is induced  by  
the derivat ion tree by  relabeling each (nonterminal)  node  domina t ing  subs t r ing  v of u v z  = w by  
vzx  - zx ,  since the annota t ions  of each rule of the form A --* BC encode the  difference list of the 
mo the r  as the  concatenat ion of the  lists of its daugh te r s  (X - X2 = X - X1 + X1 - X2). 

4 The annota t ion  (xo o u t  FroST) ~ # is not  necessary  if acyclicity is a s sumed .  
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By taking the smallest f-structure _L as an input the undecidability of our generation 
problem reduces trivially to the undecidability of the emptiness problem, since 

L(G) = {w I = (w 13 (± _E A aG(w, 

That is, if the emptiness problem of L(G) is undecidable for a unification grammar G 
then G's generation problem in (3) must be undecidable too. (The other direction does 
not hold, of course.) 

Corollary 
For an arbitrary unification grammar G and an arbitrary f-structure @P it is undecidable 
whether there is an f-structure @ and a terminal string w such that @' u ~ and 

Although it might be argued that we show the undecidability on the basis of a 
rather special case, namely the smallest f-structure, the undecidability of the empti- 
ness problem is nevertheless sufficient, since we always get a (superficially) less triv- 
ial direct proof of the corollary by using any proof of the theorem and adding some 
(new) nontrivial input informati0ri to the S-rule. If we add, for example, the equation 
(x0 SEM) ~ 1 to the S-rule of Our proof 

f X ,~ Xl, X 0 ,~ X2, 
(S --+ 8182 , ~ (x0 OUT FIRST) ~, # ' / )  

((x0 SEa) ~ 1 

then the problem whether we can find for [SEM 1] (= ~') an f-structure • and a 
terminal string w such that [SEM 1] __G ~ and AG(w, ~) reduces to the undecidable 
problem whether L(G) = 0 as well. s 

Our construction shows that an LFG or PATR grammar G can simulate the valid 
computations of an arbitrary Turing machine M, since they are known to be speci- 
fiable by the intersection of two context-free languages. Since L(M) = 0 is undecid- 
able, the emptiness problem of L(G) must be undecidable too. By adding a bit of 
semantic representation ~' to the S-rule these properties are trivially carried over 
from L(G) to the set of possible realizations assigned to ~ by G, given by the lan- 
guage {w I 3~(q)' _G ~ A A~(w, (I)))}. Our proof construction works, of course, even if 
the grammatical formalisms satisfy the off-line parsability restriction. 6 Thus, the decid- 
ability of the membership problem--similar to context-sensitive grammars--does not 
imply the decidability of the emptiness (and the semantic-driven generation) problem. 7 

From a cognitive point of view it seems quite unrealistic that our language gen- 
eration capabilities require mathematical models of Turing machine power. Hence, 
natural language grammars (of the LFG and PATR formalisms) must satisfy condi- 
tions that do not allow us to show the undecidability of the problem. We assumed 
the semantic representations to be structurally unrelated to the f-structures they sub- 
sume. It seems more plausible that there is a proportion k that bounds the size of an 

5 Van Noord (1993) used the equation (x0 SOLUTION) ,~ yes in his proof. 
6 If the context-free grammars G 1 and G 2 are off-line parsable then the unification grammars G used in 

the undecidability proofs are off-line parsable as well. Since we can decide e E L(G') for any 
context-free grammar G r and can reduce G' to an off-line parsable grammar G" with 
L(G') - {e} = L(G"), L(G 1) N L(G 2) = 0 and hence L(G) = 0 must  be undecidable even if the 
grammars satisfy the off-line parsability restriction. 
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f-structure q~ assigned to a string by  the size of its subsuming semantic representa- 
tion • ': ]~l < kl~'I. This would  force the f-structures of the surface realizations of a 
semantic representat ion ~ '  given by  {q~ I ~ '  G ~ A 3w(Ac(w,  ~))} to be included in a 
finite and computable  set of structurally related f-structures {q~ I ~ '  _G q~ A I~I < kI~'I}- 
Since the generation problem is decidable (Wedekind 1995), i.e., {w I At (w,  ~)} = 0 is 
decidable for any given f-structure {b, and only a finite number  of structurally related 
f-structures q~ has to be tested for {w I At(w,  ~)} ---- 0, semantic-driven generation must  
be decidable. But we must, of course, admit  that it is far f rom being evident  yet, how 
this structural relation is realized in natural  language grammars.  
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