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In this paper, we have proposed novel methods for robust parsing that integrate the flexibility 
of linguistically motivated lexical descriptions with the robustness of statistical techniques. Our 
thesis is that the computation of linguistic structure can be localized iflexical items are associated 
with rich descriptions (supertags) that impose complex constraints in a local context. The su- 
pertags are designed such that only those elements on which the lexical item imposes constraints 
appear within a given supertag. Further, each lexical item is associated with as many supertags 
as the number of different syntactic contexts in which the lexical item can appear. This makes 
the number of different descriptions for each lexical item much larger than when the descriptions 
are less complex, thus increasing the local ambiguity for a parser. But this local ambiguity can 
be resolved by using statistical distributions of supertag co-occurrences collected from a corpus 
of parses. We have explored these ideas in the context of the Lexicalized Tree-Adjoining Gram- 
mar (LTAG) framework. The supertags in LTAG combine both phrase structure information and 
dependency information in a single representation. Supertag disambiguation results in a repre- 
sentation that is effectively a parse (an almost parse), and the parser need "only" combine the 
individual supertags. This method of parsing can also be used to parse sentence fragments such as 
in spoken utterances where the disambiguated supertag sequence may not combine into a single 
structure. 

1. Introduction 

In this paper, we present a robust parsing approach called supertagging that integrates 
the flexibility of linguistically motivated lexical descriptions with the robustness of 
statistical techniques. The idea under lying the approach is that the computat ion of 
linguistic structure can be localized if lexical items are associated with rich descriptions 
(supertags) that impose complex constraints in a local context. This makes the number  
of different descriptions for each lexical item much larger than when  the descriptions 
are less complex, thus increasing the local ambiguity for a parser. However, this local 
ambiguity can be resolved by using statistical distributions of supertag co-occurrences 
collected from a corpus of parses. Supertag disambiguation results in a representation 
that is effectively a parse (an almost parse). 

In the linguistic context, there can be many  ways of increasing the complexity of 
descriptions of lexical items. The idea is to associate lexical items with descriptions that 
allow for all and only those elements on which the lexical item imposes constraints to 
be within the same description. Further, it is necessary to associate each lexical item 
with as many  descriptions as the number  of different syntactic contexts in which the 
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lexical item can appear. This, of course, increases the local ambiguity for the parser. 
The parser has to decide which complex description out of the set of descriptions 
associated with each lexical item is to be used for a given reading of a sentence, even 
before combining the descriptions together. The obvious solution is to put the burden 
of this job entirely on the parser. The parser will eventually disambiguate all the de- 
scriptions and pick one per lexical item, for a given reading of the sentence. However, 
there is an alternate method of parsing that reduces the amount of disambiguation 
done by the parser. The idea is to locally check the constraints that are associated 
with the descriptions of lexical items to filter out incompatible descriptions. 1 During 
this disambiguation, the system can also exploit statistical information that can be 
associated with the descriptions based on their distribution in a corpus of parses. 

We first employed these ideas in the context of Lexicalized Tree Adjoining gram- 
mars (LTAG) in Joshi and Srinivas (1994). Although presented with respect to LTAG, 
these techniques are applicable to other lexicalized grammars as well. In this paper, we 
present vastly improved supertag disambiguation results--from previously published 
68% accuracy to 92% accuracy using a larger training corpus and better smoothing 
techniques. The layout of the paper is as follows: In Section 2, we present an overview 
of the robust parsing approaches. A brief introduction to Lexicalized Tree Adjoining 
grammars is presented in Section 3. Section 4 illustrates the goal of supertag disam- 
biguation through an example. Various methods and their performance results for 
supertag disambiguation are discussed in detail in Section 5 and Section 6. In Sec- 
tion 7, we discuss the efficiency gained in performing supertag disambiguation before 
parsing. A robust and lightweight dependency analyzer that uses the supertag out- 
put is briefly presented in Section 8. In Section 9, we will discuss the applicability of 
supertag disambiguation to other lexicalized grammars. 

2. Related A p p r o a c h e s  

In recent years, there have been a number of attempts at robust parsing of natural lan- 
guage. They can be broadly categorized under two paradigms--finite-state-grammar- 
based parsers and statistical parsers. We briefly present these two paradigms and 
situate our approach to robust parsing relative to these paradigms. 

2.1 Fin i te -State-Grammar-based Parsers 
Finite-state-grammar-based approaches to parsing are exemplified by the parsing sys- 
tems in Joshi, (1960), Abney (1990), Appelt et al. (1993), Roche (1993), Grishman (1995), 
Hobbs et al. (1997), Joshi and Hopely (1997), and Karttunen et al. (1997). These sys- 
tems use grammars that are represented as cascaded finite-state regular expression 
recognizers. The regular expressions are usually hand-crafted. Each recognizer in the 
cascade provides a locally optimal output. The output of these systems is mostly in the 
form of noun groups and verb groups rather than constituent structure, often called 
a s h a l l o w  parse. There are no clause-level attachments or modifier attachments in the 
shallow parse. These parsers always produce one output, since they use the longest- 
match heuristic to resolve cases of ambiguity when more than one regular expression 

1 The use of descriptions for primitives to capture constraints locally has a precursor in AI. The Waltz 
algorithm (Waltz 1975) for labeling vertices of polygonal solid objects can be thought of in these terms. 
Waltz made the description of vertices more complex by including information about the incident 
edges, associated surfaces and other information. This increases the local ambiguity but the local 
constraints on the complex descriptions are strong enough to efficiently disambiguate the descriptions. 
Of course, Waltz did not use statistical information for disambiguation. See also Joshi (1998). 
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matches the input string at a given position. At present none of these systems use 
any statistical information to resolve ambiguity. The grammar itself can be partitioned 
into domain-independent and domain-specific regular expressions, which implies that 
porting to a new domain would involve rewriting the domain-dependent expressions. 
This approach has proved to be quite successful as a preprocessor in information 
extraction systems (Hobbs et al. 1995; Grishman 1995). 

2.2 Statistical Parsers 
Pioneered by the IBM natural language group (Fujisaki et al. 1989) and later pursued 
by, for example, Schabes, Roth, and Osborne (1993), Jelinek et al. (1994), Magerman 
(1995), Collins (1996), and Charniak (1997), this approach decouples the issue of well- 
formedness of an input string from the problem of assigning a structure to it. These 
systems attempt to assign some structure to every input string. The rules to assign a 
structure to an input are extracted automatically from hand-annotated parses of large 
corpora, which are then subjected to smoothing to obtain reasonable coverage of the 
language. The resultant set of rules are not linguistically transparent and are not easily 
modifiable. Lexical and structural ambiguity is resolved using probability information 
that is encoded in the rules. This allows the system to assign the most-likely structure 
to each input. The output of these systems consists of constituent analysis, the degree 
of detail of which is dependent on the detail of annotation present in the treebank that 
is used to train the system. 

There are also parsers that use probabilistic (weighting) information in conjunction 
with hand-crafted grammars, for example, Black et al. (1993), Nagao (1994), Alshawi 
and Carter (1994), and Srinivas, Doran, and Kulick (1995). In these cases the proba- 
bilistic information is primarily used to rank the parses produced by the parser and 
not so much for the purpose of robustness of the system. 

3. Lexicalized Grammars 

Lexicalized grammars are particularly well-suited for the specification of natural lan- 
guage grammars. The lexicon plays a central role in linguistic formalisms such as LFG 
(Kaplan and Bresnan 1983), GPSG (Gazdar et al. 1985), HPSG (Pollard and Sag 1987), 
CCG (Steedman 1987), Lexicon Grammar (Gross 1984), LTAG (Schabes and Joshi 1991), 
Link Grammar (Sleator and Temperley 1991), and some version of GB (Chomsky 1992). 
Parsing, lexical semantics, and machine translation, to name a few areas, have all ben- 
efited from lexicalization. Lexicalization provides a clean interface for combining the 
syntactic and semantic information in the lexicon. We discuss the merits of lexical- 
ization and other related issues in the context of partial parsing and briefly discuss 
Feature-based Lexicalized Tree Adjoining Grammars (LTAGs) as a representative of 
the class of lexicalized grammars. 

Feature-based Lexicalized Tree Adjoining Grammar (FB-LTAG) (Joshi, Levy, and 
Takahashi 1975; Vijay-Shanker 1987; Schabes, AbeillG and Joshi 1988; Vijay-Shanker 
and Joshi 1991; Joshi and Schabes 1996) is a tree-rewriting grammar formalism unlike 
context-free grammars and head grammars, which are string-rewriting formalisms. 
The primitive elements of FB-LTAGs are called elementary trees. Each elementary tree 
is associated with at least one lexical item on its frontier. The lexical item associated 
with an elementary tree is called the anchor of that tree. An elementary tree serves as a 
complex description of the anchor and provides a domain of locality over which the an- 
chor can specify syntactic and semantic (predicate argument) constraints. Elementary 
trees are of two kinds: (a) initial trees and (b) auxiliary trees. In an FB-LTAG gram- 
mar for natural language, initial trees are phrase structure trees of simple sentences 
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containing no recursion, while recursive structures are represented by auxiliary trees. 
Elementary trees are combined by substitution and adjunction operations. The result 
of combining the elementary trees is the derived tree and the process of combining the 
elementary trees to yield a parse of the sentence is represented by the derivation tree. 
The derivation tree can also be interpreted as a dependency tree with unlabeled arcs 
between words of the sentence. A more detailed discussion of LTAGs with an example 
and some of the key properties of elementary trees is presented in Appendix A. 

4. Supertags 

Part-of-speech disambiguation techniques (POS taggers) (Church 1988; Weischedel et 
al. 1993; Brill 1993) are often used prior to parsing to eliminate (or substantially reduce) 
the part-of-speech ambiguity. The POS taggers are all local in the sense that they use 
information from a limited context in deciding which tag(s) to choose for each word. 
As is well known, these taggers are quite successful. 

In a lexicalized grammar such as the Lexicalized Tree Adjoining Grammar (LTAG), 
each lexical item is associated with at least one elementary structure (tree). The elemen- 
tary structures of LTAG localize dependencies, including long-distance dependencies, 
by requiring that all and only the dependent elements be present within the same 
structure. As a result of this localization, a lexical item may be (and, in general al- 
most always is) associated with more than one elementary structure. We will call these 
elementary structures supertags, in order to distinguish them from the standard part- 
of-speech tags. Note that even when a word has a unique standard part of speech, say 
a verb (V), there will usually be more than one supertag associated with this word. 
Since there is only one supertag for each word (assuming there is no global ambiguity) 
when the parse is complete, an LTAG parser (Schabes, Abeill6, and Joshi 1988) needs 
to search a large space of supertags to select the right one for each word before com- 
bining them for the parse of a sentence. It is this problem of supertag disambiguation 
that we address in this paper. 

Since LTAGs are lexicalized, we are presented with a novel opportunity to elimi- 
nate or substantially reduce the supertag assignment ambiguity by using local informa- 
tion, such as local lexical dependencies, prior to parsing. As in standard part-of-speech 
disambiguation, we can use local statistical information in the form of n-gram models 
based on the distribution of supertags in an LTAG parsed corpus. Moreover, since 
the supertags encode dependency information, we can also use information about the 
distribution of distances between a given supertag and its dependent supertags. 

Note that as in standard part-of-speech disambiguation, supertag disambiguation 
could have been done by a parser. However, carrying out part-of-speech disambigua- 
tion prior to parsing makes the job of the parser much easier and therefore speeds 
it up. Supertag disambiguation reduces the work of the parser even further. After 
supertag disambiguation, we would have effectively completed the parse and the 
parser need "only" combine the individual structures; hence the term "almost pars- 
ing." This method can also be used to associate a structure to sentence fragments and 
in cases where the supertag sequence after disambiguation may not combine into a 
single structure. 

4.1 Example of Supertagging 
LTAGs, by virtue of possessing the Extended Domain of Locality (EDL) property, 2 as- 
sociate with each lexical item, one elementary tree for each syntactic environment that 

2 EDL is described in Appendix B. 
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Table 1 
Examples of syntactic environments where the supertags shown in Figure 1 would be used. 

Supertag Construction Example 

al Nominal Predicative 
a 2  Noun Phrase 
a 3 Topicalization 
a4 Adjectival Predicative 
as Noun Phrase 
fll Determiner 
t2 Nominal Modifier 
a 6  Nominal Predicative 

Subject Extraction 
a 7  Imperative 
t3 Determiner 
t4 Adjectival Modifier 
as Nominal Predicative 

Subject Extraction 
a 9  Noun Phrase 
al0 Nominal Predicative 
c~11 Transitive Verb 
a12  Adjectival Predicative 

Subject Extraction 
a13  Noun Phrase 

this is the purchase 
the price 
Almost everything, the price includes 
this is ancillary 
the company 
the company 
purchase order 
what is the price 

include the share price 
two hundred men 
ancillary unit 
which are the companies 

purchases have not increased. 
this is the price 
the price includes everything 
what is ancillary 

companies have not been profitable 

the lexical i tem m a y  appear  in. As a result, each lexical i tem is invar iably associated 
with  more  than one e lementary  tree. We call the e lementary  structures associated wi th  
each lexical i tem super  par ts-of-speech (super POS) or supertags.  3 Figure 1 illustrates 
a few e lementary  trees associated wi th  each word  of the sentence: the purchase price 
includes two ancillary companies. Table 1 provides  an example  context in which  each 
super tag  shown  in Figure 1 wou ld  be used. 

The example  in Figure 2 illustrates the initial set of super tags  assigned to each 
word  of the sentence: the purchase price includes two ancillary companies. The order  of the 
super tags  for each lexical i tem in the example  is not  relevant.  Figure 2 also shows 
the final super tag  sequence assigned by  the supertagger,  which picks the best  su- 
per tag  sequence using statistical informat ion (described in Section 6) about  individual  
super tags  and  their dependencies  on other supertags.  The chosen super tags  are com- 
b ined to derive a parse.  Without  the supertagger,  the parser  wou ld  have  to process 
combinat ions of the entire set of trees (at least the 17 trees shown); wi th  it the parser  
need  only process combinat ions  of 7 trees. 

5. Reducing Supertag Ambiguity Using Structural Information 

The structure of the super tag  can be best  seen as provid ing  admissibil i ty constraints 
on syntactic env i ronments  in which it m a y  be used. Some of these constraints can be 
checked locally. The following are a few constraints that  can be used  to de termine  the 
admissibil i ty of a syntactic env i ronment  for a supertag:  4 

3 For the purpose of this paper, we suppress the features associated with the supertags. 
4 Mitch Marcus pointed out that these tests are similar to the generalized shaper tests used in the 

Harvard Predictive Analyzer (Kuno 1966). 
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p u r c h a s e  pr ice  i n c l u d e s  two  a n c i l l a r y  c o m p a n i e s .  

Figure 1 
A selection of the supertags associated with each word of the sentence: the purchase price 
includes two ancillary companies. 

Span of the supertag: Span of a supertag is the min imum number of 
lexical items that the supertag can coven Each substitution site of a 
supertag will  cover at least one lexical item in the input. A simple rule 
can be used to eliminate supertags based on the span constraint: if the 
span of a supertag is larger than the input string, then the supertag 
cannot be used in any parse of the input  string. 
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Sent: the purchase price includes two ancillary companies. 

Initial al OL2 0~3 a4  a5  
Assignment fll f12 (3¢6 a7  f13 f14 a8  

O~9 OL10 C~¢11 OL12 OL13 

Final 
Assignment 131 f12 a2 au /33 f14 a13 

Figure 2 
Supertag disambiguation for the sentence: the purchase price includes two ancillary 
companies. 

Table 2 
Supertag ambiguity with and without the use of structural constraints. 

System Total # of Words Average # of Supertags/Word 

Without Structural Constraints 48,783 47.0 
With Structural Constraints 48,783 25.0 

• Left (Right) span constraint: If the span of the supertag to the left (right) 
of the anchor is larger than the length of the string to the left (right) of 
the word that anchors the supertag, then the supertag cannot be used in 
any parse of the input string. 

• Lexical items in the supertag: A supertag can be eliminated if the 
terminals appearing on the frontier of the supertag do not appear in the 
input string. 

Supertags with the built-in lexical item by, that represent passive constructions are 
typically eliminated from being considered during the parse of an active sentence. 

More generally, these constraints can be used to eliminate supertags that cannot 
have their features satisfied in the context of the input string. An example of this is 
the elimination of supertag that requires a wh+ NP when the input string does not 
contain wh-words. 

Table 2 indicates the decrease in supertag ambiguity for 2,012 WSJ sentences 
(48,763 words) by using the structural constraints relative to the supertag ambigu- 
ity without the structural constraintsP 

These filters prove to be very effective in reducing supertag ambiguity. The graph 
in Figure 3 plots the number of supertags at the sentence level for sentences of length 
2 to 50 words with and without the filters. As can be seen from the graph, the supertag 
ambiguity is significantly lower when the filters are used. The graph in Figure 4 shows 
the percentage drop in supertag ambiguity due to filtering for sentences of length 2 to 
50 words. As can be seen, the average reduction in supertag ambiguity is about 50%. 
This means that given a sentence, close to 50% of the supertags can be eliminated 
even before parsing begins by just using structural constraints of the supertags. This 
reduction in supertag ambiguity speeds up the parser significantly. In fact, the supertag 

5 WSJ Section 20 of the Penn Treebank. 
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words .  

ambiguity in XTAG system is so large that the parser is prohibitively slow without 
the use of these filters. 

Table 3 tabulates the reduction of supertag ambiguity due to the filters against 
various parts of speech:  Verbs in all their forms contribute most to the problem of 
supertag ambiguity and most of the supertag ambiguity for verbs is due to light verbs 
and verb particles. The filters are very effective in eliminating over 50% of the verb 
anchored supertags. 

Even though structural constraints are effective in reducing supertag ambiguity, 
the search space for the parser is still sufficiently large. In the next few sections, we 
present stochastic and rule-based approaches to supertag disambiguation. 

6 The description of the part-of-speech tags is provided in Marcus, Santorini, and Marcinkiewicz (1993). 
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Figure 4 
Percentage drop in the number of supertags with and without filtering for sentences of length 
2 to 50 words. 

6. Models, Data, Experiments, and Results 

Before proceeding to discuss the various models for supertag disambiguation, we 
would like to trace the time course of development of this work. We do this not only 
to show the improvements made to the early work reported in our 1994 paper (Joshi 
and Srinivas 1994), but also to explain the rationale for choosing certain models of 
supertag disambiguation over others. We summarize the early work in the following 
subsection. 

6.1 Early Work 
As reported in Joshi and Srinivas (1994), we experimented with a trigram model as 
well as the dependency model for supertag disambiguation. The trigram model that 
was trained on (part-of-speech, supertag) pairs, instead of (words, supertag) pairs, 
collected from the LTAG derivations of 5,000 WSJ sentences and tested on 100 WSJ 
sentences produced a correct supertag for 68% of the words in the test set. We have 
since significantly improved the performance of the trigram model by using a larger 
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Table 3 
The effect of filters on supertag ambiguity tabulated against part of speech. 

POS Average # of Supertags Average # of Supertags Percentage Drop 
without Filters with Filters in Supertag Ambiguity 

VBP 516.5 250.0 51.6 
VB 435.8 224.9 48.4 

VBD 209.0 100.7 51.8 
VBN 188.2 74.7 60.3 
MD 167.2 121.0 27.6 
VBZ 165.1 71.6 56.6 
VBG 100.7 49.8 50.5 
RP 34.5 30.9 10.5 
IN 24.3 20.9 14.0 
JJS 23.8 12.7 46.9 

WRB 23.1 14.3 38.2 
JJR 22.7 14.2 37.7 
JJ 21.7 13.5 37.9 

20.0 10.7 46.6 
NN 19.8 10.7 46.0 

NNS 17.0 10.5 38.6 
NNP 15.0 10.2 31.9 
NNPS 15.0 10.2 32.1 

LS 15.0 15.0 0.0 
FW 15.0 15.0 0.0 

-RRB- 15.0 10.7 28.4 
-LRB- 15.0 12.3 18.0 
RBR 14.9 9.5 36.3 
RBS 14.9 6.1 59.2 
CC 14.8 3.4 76.9 
EX 14.0 5.8 58.7 
CD 13.3 9.9 25.8 
TO 11.3 10.8 4.5 
PRP 10.7 5.3 50.2 
UH 10.0 3.0 70.0 
RB 10.0 5.3 46.4 
" 6.0 3.2 46.7 
: 5.5 3.2 42.1 

PDT 5.4 4.9 9.0 
WP 4.6 2.9 35.8 
WP$ 4.0 1.8 56.2 
DT 3.9 3.1 21.8 

PRP$ 3.8 2.9 22.2 
3.0 1.0 65.4 

POS 2.5 2.1 13.9 
WDT 1.2 1.1 5.5 

training set and incorporating smoothing techniques. We present a detailed discussion 
of the model  and its performance on a range of corpora in Section 6.5. In Section 6.2, 
we briefly mention the dependency  model  of supertagging that was reported in the 
earlier work. 

6.2 Dependency Model  
In an n-gram model  for disambiguat ing supertags, dependencies between supertags 
that appear  beyond  the n-word w i n d o w  cannot be incorporated. This limitation can 
be overcome if no a priori bound  is set on the size of the w i n d o w  but  instead a 
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probability distribution of the distances of the dependent supertags for each supertag 
is maintained. We define dependency between supertags in the obvious way: A su- 
pertag is dependent on another supertag if the former substitutes or adjoins into the 
latter. Thus, the substitution and the foot nodes of a supertag can be seen as specify- 
ing dependency requirements of the supertag. The probability with which a supertag 
depends on another supertag is collected from a corpus of sentences annotated with 
derivation structures. Given a set of supertags for each word and the dependency 
information between pairs of supertags, the objective of the dependency model is to 
compute the most likely dependency linkage that spans the entire string. The result 
of producing the dependency linkage is a sequence of supertags, one for each word 
of the sentence along with the dependency information. 

Since first reported in Joshi and Srinivas (1994), we have not continued experiments 
using this model of supertagging, primarily for two reasons. We are restrained by 
the lack of a large corpus of LTAG parsed derivation structures that is needed to 
reliably estimate the various parameters of this model. We are currently in the process 
of collecting a large LTAG parsed WSJ corpus, with each sentence annotated with 
the correct derivation. A second reason for the disuse of the dependency model for 
supertagging is that the objective of supertagging is to see how far local techniques can 
be used to disambiguate supertags even before parsing begins. The dependency model, 
in contrast, is too much like full parsing and is contrary to the spirit of supertagging. 

6.3 N-gram Models with Smoothing 
We have improved the performance of the trigram model by incorporating smoothing 
techniques into the model and training the model on a larger training corpus. We 
have also proposed some new models for supertag disambiguation. In this section, 
we discuss these developments in detail. 

Two sets of data are used for training and testing the models for supertag dis- 
ambiguation. The first set has been collected by parsing the Wall Street Journal 7, IBM 
Manual, and ATIS corpora using the wide-coverage English grammar being developed 
as part of the XTAG system (Doran et al. 1994). The correct derivation from all the 
derivations produced by the XTAG system was picked for each sentence from these 
corpora. 

The second and larger data set was collected by converting the Penn Treebank 
parses of the Wall Street Journal sentences. The objective was to associate each lexical 
item of a sentence with a supertag, given the phrase structure parse of the sentence. 
This process involved a number of heuristics based on local tree contexts. The heuris- 
tics made use of information about the labels of a word's dominating nodes (parent, 
grandparent, and great-grandparent), labels of its siblings (left and right) and siblings 
of its parent. An example of the result of this conversion is shown in Figure 5. It 
must be noted that this conversion is not perfect and is correct only to a first order 
of approximation owing mostly to errors in conversion and lack of certain kinds of 
information such as distinction between adjunct and argument preposition phrases, 
in the Penn Treebank parses. Even though the converted supertag corpus can be re- 
fined further, the corpus in its present form has proved to be an invaluable resource 
in improving the performance of the supertag models as is discussed in the following 
sections. 

7 Sentences of length < 15 words. 
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( ("S" 
("NP-SBJ" ("NNP .... Mr.") ("NNP .... Vinken") ) 
("VP" ("VBZ .... is") 
("NP-PRD" 
("NP" ("NN .... chairman") ) 
("PP" ("IN .... of") 
("NP" 
("NP" ("NNP .... Elsevier") ("NNP .... N.V.") ) 
(- .... ,,) 

("NP" ("DT .... the") ("NNP .... Dutch") ("VBG" 
") )))))  

(,,. .... .,,) )) 

"publishing") ("NN" "group 

Mr.//NNP//B_Nn 
Vinken//NNP//A_NXN 
is//VBZ//B_Vvx 
chairman//NN//A_nx0Nl 
of//IN//B nxPnx 
Elsevier//NNP//B_Nn 
N.V.//NNP//A_NXN 
,//,//B_nxPUnxpu 
the//DT//B_Dnx 
Dutch//NNP//B_Nn 
publishing//VBG//B_Vn 
group//NN//A_NXN 
.//.//B_sPU 

(noun modifier) 
(head noun) 
(auxiliary verb) 
(predicative noun) 
(noun-attached preposition) 
(noun modifier) 
(head noun) 
(appositive comma) 
(determiner) 
(noun modifier) 
(participle verb, nominal modifier) 
(head noun) 
(sentence punctuation) 

Figure 5 
The phrase structure tree and the supertags obtained from the phrase structure tree for the 
WSJ sentence: Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group. 

6.4 Unigram Model 
Using structural information to filter out supertags that cannot be used in any parse 
of the input string reduces the supertag ambiguity but obviously does not eliminate 
it completely. One method of disambiguating the supertags assigned to each word 
is to order the supertags by the lexical preference that the word has for them. The 
frequency with which a certain supertag is associated with a word is a direct measure 
of its lexical preference for that supertag. Associating frequencies with the supertags 
and using them to associate a particular supertag with a word is clearly the simplest 
means of disambiguating supertags. Therefore a unigram model is given by: 

where 

Supertag(wi) -- tk 9 argmaxtkPr(tk I wi). (1) 

frequency( tk, wi) 
Pr(tk l wi) = frequency(wi) (2) 

Thus, the most frequent supertag that a word is associated with in a training 
corpus is selected as the supertag for the word according to the unigram model. For 
the words that do not appear in the training corpus we back off to the part of speech 
of the word and use the most frequent supertag associated with that part of speech 
as the supertag for the word. 
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Table 4 
Results from the unigram supertag model. 

Data Set Training Set Test Set Top n Supertags % Success 

XTAG Parses 8,000 3,000 n = 1 73.4% 
n = 2 80.2% 
n = 3 80.8% 

Converted Penn Treebank Parses 1,000,000 47,000 n = I 77.2% 
n = 2 87.0% 
n = 3 91.5% 

6.4.1 Experiments and Results. We tested the performance of the unigram model on 
the previously discussed two sets of data. The words are first assigned standard parts 
of speech using a conventional tagger (Church 1988) and then are assigned supertags 
according to the unigram model. A word in a sentence is considered correctly su- 
pertagged if it is assigned the same supertag as it is associated with in the correct 
parse of the sentence. The results of these experiments are tabulated in Table 4. 

Although the performance of the unigram model for supertagging is significantly 
lower than the performance of the unigram model for part-of-speech tagging (91% 
accuracy), it performed much better than expected considering the size of the supertag 
set is much larger than the size of part-of-speech tag set. One of the reasons for this 
high performance is that the most frequent supertag for the most frequent words--  
determiners, nouns, and auxiliary verbs--is the correct supertag most of the time. 
Also, backing off to the part of speech helps in supertagging unknown words, which 
most often are nouns. The bulk of the errors committed by the unigram model is 
incorrectly tagged verbs (subcategorization and transformation), prepositions (noun 
attached vs. verb attached) and nouns (head vs. modifier noun). 

6.5 N-gram Model 
We first explored the use of trigram model of supertag disambiguation in Joshi and 
Srinivas (1994). The trigram model was trained on (part-of-speech, supertag) pairs 
collected from the LTAG derivations of 5,000 WSJ sentences and tested on 100 WSJ 
sentences. It produced a correct supertag for 68% of the words in the test set. A major 
drawback of this early work was that it used no lexical information in the supertagging 
process as the training material consisted of (part-of-speech, supertag) pairs. Since that 
early work, we have improved the performance of the model by incorporating lexical 
information and sophisticated smoothing techniques, as well as training on larger 
training sets. In this section, we present the details and the performance evaluation of 
this model. 

In a unigram model, a word is always associated with the supertag that is most 
preferred by the word, irrespective of the context in which the word appears. An 
alternate method that is sensitive to context is the n-gram model. The n-gram model 
takes into account the contextual dependency probabilities between supertags within 
a window of n words in associating supertags to words. Thus, the most probable 
supertag sequence for an n-word sentence is given by: 

= argmaxTPr(T1, T2 . . . . .  TN) * Pr(W1, W2,... ,  WN I T1, T2 . . . . .  TN) (3) 

where Ti is the supertag for word Wi. 
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To compute this using only local information, we approximate, assuming that the 
probability of a word depends only on its supertag 

N 

Pr(W1, W2 . . . . .  WN I T1, T2 . . . . .  TN) ~ I I  Pr(Wi l Ti) (4) 
i=1 

and also use an n-gram (trigram, in this case) approximation 

N 

Pr(T1, T2 . . . . .  TN) ,,~ 1-I Pr(Ti I Zi-2, Zi-1) (5) 
i=1 

The term Pr(Ti I Ti-2, Ti-1) is known as the contextual probability since it indicates 
the size of the context used in the model and the term Pr(Wi I Ti) is called the word 
emit probability since it is the probability of emitting the word Wi given the tag Ti. 
These probabilities are estimated using a corpus where each word is tagged with its 
correct supertag. 

The contextual probabilities were estimated using the relative frequency estimates 
of the contexts in the training corpus. To estimate the probabilities for contexts that 
do not appear in the training corpus, we used the Good-Turing discounting technique 
(Good 1953) combined with Katz's back off model (Katz 1987). The idea here is to 
discount the frequencies of events that occur in the corpus by an amount related to 
their frequencies and utilize this discounted probability mass in the back off model to 
distribute to unseen events. Thus, the Good-Turing discounting technique estimates 
the frequency of unseen events based on the distribution of the frequency of the counts 
of observed events in the corpus. If r is the observed frequency of an event, and Nr 
is the number of events with the observed frequency r, and N is the total number 
of events, then the probability of an unseen event is given by N1/N. Furthermore, 
the frequencies of the observed events are adjusted so that the total probability of all 
events sums to one. The adjusted frequency for observed events, r*, is computed as 

Nr+l 
r * = ( r + l ) *  Nr (6) 

Once the frequencies of the observed events are discounted and the frequencies 
for unseen events are estimated, Katz's back off model is used. In this technique, if the 
observed frequency of an < n-gram, supertag> sequence is zero then its probability 
is computed based on the observed frequency of an (n - 1)-gram sequence. Thus, 

15r(T3IT1, T2) = Pr(T3]T1, T2) if Pr(T31T1, T2) > 0 

= a(T1, T2) * Pr(T31T2) if Pr(T21T1) > 0 
= Pr(T31T2) otherwise 

Pr(T2IT1) = Pr(T2IT1) if Pr(T2IT1) > 0 
= fl(T1) * Prl(T2) otherwise 

where a(Ti, Tj) and fl(Tk) are constants to ensure that the probabilities sum to one. 
The word emit probability for the (word, supertag) pairs that appear in the training 

corpus is computed using the relative frequency estimates as shown in Equation 7. For 
the (word, supertag) pairs that do not appear in the corpus, the word emit probability 
is estimated as shown in Equation 8. Some of the word features used in our imple- 
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mentation include prefixes and suffixes of length less than or equal to three characters, 
capitalization, and digit features. 

N(Wi, Ti) 
Pr(WdTi) - N(Ti) if N(Wi, Ti) > 0 (7) 

= Pr(UNKITi) • Pr(word_features(Wi)[Ti) otherwise (8) 

The counts for the (word, supertag) pairs for the words that do not appear in the 
corpus is estimated using the leaving-one-out technique (Niesler and Woodland 1996; 
Ney, Essen, and Kneser 1995). A token UNK is associated with each supertag and its 
count NUN K is estimated by: 

NI(Tj) 
Pr(UNK[Tj) - 

N(Tj) + ~] 

Pr(UNKITj) • N(Tj) 
NUNK(Tj) = 1 -- PF(UNKITj) 

where NI(Tj) is the number of words that are associated with the supertag Tj that 
appear in the corpus exactly once. N(Tj) is the frequency of the supertag Tj and 
NUNK(Tj) is the estimated count of UNK in Tj. The constant 7/is introduced so as to 
ensure that the probability is not greater than one, especially for supertags that are 
sparsely represented in the corpus. 

We use word features similar to the ones used in Weischedel et al. (1993), such 
as capitalization, hyphenation, and endings of words, for estimating the word emit 
probability of unknown words. 

6.5.1 Experiments and Results. We tested the performance of the trigram model on 
various domains such as the Wall Street Journal (WSJ), the IBM Manual corpus and the 
ATIS corpus. For the IBM Manual corpus and the ATIS domains, a supertag annotated 
corpus was collected using the parses of the XTAG system (Doran et al. 1994) and 
selecting the correct analysis for each sentence. The corpus was then randomly split 
into training and test material. Supertag performance is measured as the percentage 
of words that are correctly supertagged by a model when compared with the key for 
the words in the test corpus. 

Experiment 1: (Performance on the Wall Street Journal corpus). We used the two sets of 
data, from the XTAG parses and from the conversion of the Penn Treebank parses to 
evaluate the performance of the trigram model. Table 5 shows the performance on the 
two sets of data. The first data set, data collected from the XTAG parses, was split 
into 8,000 words of training and 3,000 words of test material. The data collected from 
converting the Penn Treebank was used in two experiments differing in the size of the 
training corpus--200,000 words 8 and 1,000,000 words9--and tested on 47,000 words 1°. 
A total of 300 different supertags were used in these experiments. 

Experiment 2: (Performance on the IBM Manual Corpus and ATIS). For testing the perfor- 
mance of the trigram supertagger on the IBM Manual corpus, a set of 14,000 words 

8 Sentences in wsJ Sections 15 through 18 of Penn Treebank. 
9 Sentences in WSJ Sections 00 through 24, except Section 20 of Penn Treebank. 

10 Sentences in WSJ Section 20 of Penn Treebank. 
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Table 5 
Performance of the supertagger on the WSJ corpus. 

Data Set Size of Training Size of 
Training Set Test Set 

(Words) (Words) 

% Correct 

XTAG Parses 8,000 Unigram 3,000 73.4% 
(Baseline) 
Trigram 3,000 86.0% 

Converted 200,000 Unigram 
Penn Treebank (Baseline) 47,000 75.3% 

Parses Trigram 47,000 90.9% 
1,000,000 Unigram 

(Baseline) 47,000 77.2% 
Trigram 47,000 92.2% 

Table 6 
Performance of the supertagger on the IBM Manual corpus and ATIS corpus. 

Corpus Size of Training Set (Words) Training Size of Test Set (Words) % Correct 

IBM Manual 14,000 Unigram 
(Baseline) 1,000 77.8% 
Trigram 1,000 90.3% 

ATIS 1,500 Unigram 
(Baseline) 400 85.7% 
Trigram 400 93.8% 

correctly supertagged was used as the training corpus and a set of 1,000 words was 
used as a test corpus. The performance of the supertagger on this corpus is shown 
in Table 6. Performance on the ATIS corpus was evaluated using a set of 1,500 words 
correctly supertagged as the training corpus and a set of 400 words as a test corpus. 
The performance of the supertagger on the ATIS corpus is also shown in Table 6. 

As expected, the performance on the ATIS corpus is higher than that of the WSJ 
and the IBM Manual corpus despite the extremely small training corpus. Also, the 
performance of the IBM Manual corpus is better than the WSJ corpus when the size 
of the training corpus is taken into account. The baseline for the ATIS domain is 
remarkably high due to the repetitive constructions and limited vocabulary in that 
domain. This is also true for the IBM Manual corpus, although to a lesser extent. 
The trigram model of supertagging is attractive for limited domains since it performs 
quite well with relatively insignificant amounts of training material. The performance 
of the supertagger can be improved in an iterative fashion by using the supertagger 
to supertag larger amounts of training material, which can be quickly hand-corrected 
and used to train a better-performing supertagger. 

6.5.2 Effect  o f  Lexica l  v e r s u s  C o n t e x t u a l  I n f o r m a t i o n .  Lexical information contributes 
most to the performance of a POS tagger, since the baseline performance of assigning 
the most likely POS for each word produces 91% accuracy (Brill 1993). Contextual 
information contributes relatively a small amount towards the performance, improv- 
ing it from 91% to 96-97%, a 5.5% improvement. In contrast, contextual information 
has greater effect on the performance of the supertagger. As can be seen, from the 
above experiments, the baseline performance of the supertagger is about 77% and the 
performance improves to about 92% with the inclusion of contextual information, an 
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improvement of 19.5%. The relatively low baseline performance for the supertagger 
is a direct consequence of the fact that there are many more supertags per word than 
there are POS tags. Further, since many combinations of supertags are not possible, 
contextual information has a larger effect on the performance of the supertagger. 

6.6 Error-driven Transformation-based Tagger 
In an error-driven transformation-based (EDTB) tagger (Brill 1993), a set of pattern- 
action templates that include predicates that test for features of words appearing in 
the context of interest are defined. These templates are then instantiated with the ap- 
propriate features to obtain transformation rules. The effectiveness of a transformation 
rule to correct an error and the relative order of application of the rules are learned 
using a corpus. The learning procedure takes a gold corpus in which the words have 
been correctly annotated and a training corpus that is derived from the gold corpus by 
removing the annotations. The objective in the learning phase is to learn the optimum 
ordering of rule applications so as to minimize the number of tag mismatches between 
the training and the reference corpus. 

6.6.1 Experiments and Results. A EDTB model has been trained using templates 
defined on a three-word window. We trained the templates on 200,000 words 11 and 
tested on 47,000 words 12 of the WSJ corpus. The model performed at an accuracy of 
90%. The EDTB model provides a great deal of flexibility to integrate domain-specific 
and linguistic information into the model. However, a major drawback of this approach 
is that the training procedure is extremely slow, which prevented us from training on 
the 1,000,000 word corpus. 

7. Supertagging before Parsing 

The output of the supertagger, an almost parse, has been used in a variety of applica- 
tions including information retrieval (Chandrasekar and Srinivas 1997b, 1997c, 1997d) 
and information extraction (Doran et al. 1997), text simplification (Chandrasekar, Do- 
ran, and Srinivas 1996, Chandrasekar and Srinivas 1997a), and language modeling 
(Srinivas 1996) to illustrate that supertags provide an appropriate level of lexical de- 
scription needed for most applications. 

The output of the supertagger has also been used as a front end to a lexicalized 
grammar parser. As mentioned earlier, a lexicalized grammar parser can be conceptu- 
alized to consist of two stages (Schabes, AbeillG and Joshi 1988). In the first stage, the 
parser looks up the lexicon and selects all the supertags associated with each word of 
the sentence to be parsed. In the second stage, the parser searches the lattice of selected 
supertags in an attempt to combine them using substitution and adjunction operations 
so as to yield a derivation that spans the input string. At the end of the second stage, 
the parser would not only have parsed the input, but would have associated a small 
set of (usually one) supertags with each word. 

The supertagger can be used as a front end to a lexicalized grammar parser so 
as to prune the search-space of the parser even before parsing begins. It should be 
clear that by reducing the number of supertags that are selected in the first stage, the 
search-space for the second stage can be reduced significantly and hence the parser 
can be made more efficient. Supertag disambiguation techniques, as discussed in the 

11 WSJ Sections 15 to 18 of the Penn Treebank. 
12 WSJ Section 20 of the Penn Treebank. 
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Table 7 
Performance improvement of 3-best supertagger over the 1-best supertagger on the WSJ 
corpus. 

Data Set Size of Size of Training % Correct 
Test Set Training Set 
(Words) (Words) 

Converted 
Penn Treebank 

Parses 

47,000 200,000 

1,000,000 

Trigram 90.9% 
(Best Supertag) 

Trigram 95.8% 
(3-Best Supertags) 

Trigram 92.2% 
(Best Supertag) 

Trigram 97.1% 
(3-Best Supertags) 

previous sections, attempt to disambiguate the supertags selected in the first pass, 
based on lexical preferences and local lexical dependencies, so as to ideally select one 
supertag for each word. Once the supertagger selects the appropriate supertag for 
each word, the second stage of the parser is needed only to combine the individual 
supertags to arrive at the parse of the input. Tested on about 1,300 WSJ sentences with 
each word in the sentence correctly supertagged, the LTAG parser took approximately 
4 seconds per sentence to yield a parse (combine the supertags and perform feature 
unification). In contrast, the same 1,300 WSJ sentences without the supertag annotation 
took nearly 120 seconds per sentence to yield a parse. Thus the parsing speedup gained 
by this integration is a factor of about 30. 

In the XTAG system, we have integrated the trigram supertagger as a front end to 
an LTAG parser to pick the appropriate supertag for each word even before parsing 
begins. However, a drawback of this approach is that the parser would fail completely 
if any word of the input is incorrectly tagged by the supertagger. This problem could be 
circumvented to an extent by extending the supertagger to produce n-best supertags 
for each word. Although this extension would increase the load on the parser, it 
would certainly improve the chances of arriving at a parse for a sentence. In fact, 
Table 7 presents the performance of the supertagger that selects, at most, the top three 
supertags for each word. The optimum number of supertags to output to balance 
the success rate of the parser against the efficiency of the parser must be determined 
empirically. 

A more serious limitation of this approach is that it fails to parse ill-formed and 
extragrammatical strings such as those encountered in spoken utterances and unre- 
stricted texts. This is due to the fact that the Earley-style LTAG parser attempts to 
combine the supertags to construct a parse that spans the entire string. In cases where 
the supertag sequence for a string cannot be combined into a unified structure, the 
parser fails completely. One possible extension to account for ill-formed and extra- 
grammatical strings is to extend the Earley parser to produce partial parses for the 
fragments whose supertags can be combined. An alternate method of computing de- 
pendency linkages robustly is presented in the next section. 

8. Lightweight Dependency Analyzer 

Supertagging associates each word with a unique supertag. To establish the depen- 
dency links among the words of the sentence, we exploit the dependency requirements 
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encoded in the supertags. Substitution nodes and foot nodes in supertags serve as slots 
that must be filled by the arguments of the anchor of the supertag. A substitution slot 
of a supertag is filled by the complements of the anchor while the foot node of a 
supertag is filled by a word that is being modified by the supertag. These argument 
slots have a polarity value reflecting their orientation with respect to the anchor of 
the supertag. Also associated with a supertag is a list of internal nodes (including 
the root node) that appear in the supertag. Using the structural information coupled 
with the argument requirements of a supertag, a simple heuristic-based, linear time, 
deterministic algorithm (which we call a lightweight dependency analyzer (LDA)) 
produces dependency linkages not necessarily spanning the entire sentence. The LDA 
can produce a number of partial linkages, since it is driven primarily by the need to 
satisfy local constraints without being driven to construct a single dependency link- 
age that spans the entire input. This, in fact, contributes to the robustness of LDA and 
promises to be a useful tool for parsing sentence fragments that are rampant in speech 
utterances, as exemplified by the Switchboard corpus. 

Tested on section 20 of the Wall Street Journal corpus, which contained 47,333 
dependency links in the gold standard, the LDA, trained on 200,000 words, produced 
38,480 dependency links correctly, resulting in a recall score of 82.3%. Also, a total of 
41,009 dependency links were produced by the LDA, resulting in a precision score of 
93.8%. A detailed evaluation of the LDA is presented in Srinivas (1997b). 

9. Applicability of Supertagging to other Lexicalized Grammars 

Although we have presented supertagging in the context of LTAG, it is applicable to 
other lexicalized grammar formalisms such as CCG (Steedrnan 1997), HPSG (Pollard 
and Sag 1987), and LFG (Kaplan and Bresnan 1983). We have implemented a broad 
coverage CCG grammar (Doran and Srinivas 1994) containing about 80 categories 
based on the XTAG English grammar. These categories have been used to tag the 
same training and test corpora used in the supertagging experiments discussed in this 
paper and a supertagger to disambiguate the CCG categories has been developed. We 
are presently analyzing the performance of the supertagger using the LTAG trees and 
the CCG categories. 

The idea of supertagging can also be applied to a grammar in HPSG formalism 
indirectl~ by compiling the HPSG grammar into an LTAG grammar (Kasper et al. 
1995). A more direct approach would be to tag words with feature structures that 
represent supertags (Kempe 1994). For LFG, the lexicalized subset of fragments used 
in the LFG-DOP model (Bod and Kaplan 1998) can be seen as supertags. 

An approach that is closely related to supertagging is the reductionist approach to 
parsing that is being carried out under the Constraint Grammar framework (Karlsson 
et al. 1994; Voutilainen 1994; Tapanainen and J/irvinen 1994). In this framework, each 
word is associated with the set of possible functional tags that it may be assigned 
in the language. This constitutes the lexicon. The grammar consists of a set of rules 
that eliminate functional tags for words based on the context of a sentence. Parsing 
a sentence in this framework amounts to eliminating as many implausible functional 
tags as possible for each word, given the context of the sentence. The resultant out- 
put structure might contain significant syntactic ambiguity, which may not have been 
eliminated by the rule applications, thus producing almost parses. Thus, the reduc- 
tionist approach to parsing is similar to supertagging in that both view parsing as 
tagging with rich descriptions. However, the key difference is that the tagging is done 
in a probabilistic setting in the supertagging approach while it is rule based in the 
constraint grammar approach. 
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We are currently developing supertaggers for other languages. In collaboration 
with Anne Abeill~ and Marie-Helene Candito of the University of Paris, using their 
French TAG grammar, we have developed a supertagger for French. We are currently 
working on evaluating the performance of this supertagger. Also, the annotated cor- 
pora necessary for training supertaggers for Korean and Chinese are under develop- 
ment at the University of Pennsylvania. 

A version of the supertagger trained on the WSJ corpus is available under GNU 
Public License from http: / / www.cis.upenn.edu / ~xtag / swrelease.html. 

10. Conclusions 

In this paper, we have presented a novel approach to robust parsing distinguished from 
the previous approaches to robust parsing by integrating the flexibility of linguistically 
motivated lexical descriptions with the robustness of statistical techniques. By associat- 
ing rich descriptions (supertags) that impose complex constraints in a local context, we 
have been able to use local computational models for effective supertag disambigua- 
tion. A trigram supertag disambiguation model, trained on 1,000,000 (word, supertag) 
pairs of the Wall Street Journal corpus, performs at an accuracy level of 92.2%. After 
disambiguation, we have effectively completed the parse of the sentence, creating an 
almost parse, in that the parser need only combine the selected structures to arrive at 
a parse for the sentence. We have presented a lightweight dependency analyzer (LDA) 
that takes the output of the supertagger and uses the dependency requirements of the 
supertags to produce a dependency linkage for a sentence. This method can also serve 
to parse sentence fragments in cases where the supertag sequence after disambigua- 
tion may not combine to form a single structure. This approach is applicable to all 
lexicalized grammar parsers. 

Appendix A: Feature-based Lexicalized Tree Adjoining Grammar 

Feature-based Lexicalized Tree Adjoining Grammar (FB-LTAG) is a tree-rewriting gram- 
mar formalism, unlike context-free Grammars and head grammars, which are string- 
rewriting formalisms. FB-LTAGs trace their lineage to Tree Adjunct Grammars (TAGs), 
which were first developed in Joshi, Lev36 and Takahashi (1975) and later extended 
to include unification-based feature structures (Vijay-Shanker 1987; Vijay-Shanker and 
Joshi 1991) and lexicalization (Schabes, AbeillG and Joshi 1988). For a more recent and 
comprehensive reference, see Joshi and Schabes (1996). 

The primitive elements of FB-LTAGs are called elementary trees. Each elemen- 
tary tree is associated with at least one lexical item on its frontier. The lexical item 
associated with an elementary tree is called the anchor of that tree. An elementary 
tree serves as a complex description of the anchor and provides a domain of locality 
over which the anchor can specify syntactic and semantic (predicate argument) con- 
straints. Elementary trees are of two kinds: (a) Initial Trees and (b) Auxiliary Trees. In 
an FB-LTAG grammar for natural language, initial trees are phrase structure trees of 
simple sentences containing no recursion, while recursive structures are represented 
by auxiliary trees. 

Examples of initial trees (c~s) and auxiliary trees (fls) are shown in Figure 6. Nodes 
on the frontier of initial trees are marked as substitution sites by a "1", while exactly 
one node on the frontier of an auxiliary tree, whose label matches the label of the root 
of the tree, is marked as a foot node by a ",".  The other nodes on the frontier of an 
auxiliary tree are marked as substitution sites. 

Each node of an elementary tree is associated with two feature structures (FS), 
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Figure 6 
Elementary trees for the sentence: the company is being acquired. 

B2 

the top and the bottom. The bot tom FS contains information relating to the subtree 
rooted at the node,  and the top FS contains information relating to the supertree at 
that node.  13 Features may  get their values f rom three different sources: 

• Morphology  of anchor: f rom the morphological  information of the lexical 
items that anchor the tree. 

• Structural characteristics: from the structure of the tree itself (for 

13 N o d e s  m a r k e d  for  subs t i t u t i on  are  assoc ia ted  w i t h  on ly  the  top  FS. 
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(b) 

Figure 7 
Substitution and adjunction in LTAG. 

example, the mode = ind/ imp feature on the root node in the c~3 tree in 
Figure 6). 

The derivation process: from unification with features from trees that 
adjoin or substitute. 

Elementary trees are combined by substitution and adjunction operations. Sub- 
stitution inserts elementary trees at the substitution nodes of other elementary trees. 
Figure 7(a) shows two elementary trees and the tree resulting from the substitution 
of one tree into the other. In this operation, a node marked for substitution in an 
elementary tree is replaced by another elementary tree whose root label matches the 
label of the node. The top FS of the resulting node is the result Of unification of the 
top features of the two original nodes, while the bottom FS of the resulting node is 
simply the bottom features of the root node of the substituting tree. 

In an adjunction operation, an auxiliary tree is inserted into an elementary tree. 
Figure 7(b) shows an auxiliary tree adjoining into an elementary tree and the result 
of the adjunction. The root and foot nodes of the auxiliary tree must match the node 
label at which the auxiliary tree adjoins. The node being adjoined to splits, and its top 
FS unifies with the top FS of the root node of the auxiliary tree, while its bottom FS 
unifies with the bottom FS of the foot node of the auxiliary tree. Figure 7(b) shows 
an auxiliary tree and an elementary tree, and the tree resulting from an adjunction 
operation. For a parse to be well-formed, the top and bottom FS at each node should 
be unified at the end of a parse. 

The result of combining the elementary trees shown in Figure 6 is the derived 
tree, shown in Figure 8(a). The process of combining the elementary trees to yield a 
parse of the sentence is represented by the derivation tree, shown in Figure 8(b). The 
nodes of the derivation tree are the tree names that are anchored by the appropriate 
lexical items. The combining operation is indicated by the type of the arcs (a broken 
line indicates substitution and a bold line indicates adjunction) while the address of 
the operation is indicated as part of the node label. The derivation tree can also be 
interpreted as a dependency tree with unlabeled arcs between words of the sentence, 
as shown in Figure 8(c). 

A broad-coverage grammar system, XTAG, has been implemented in the LTAG 
formalism. In this section, we briefly discuss some aspects related to XTAG for the 
sake of completeness. A more detailed report on XTAG can be found in XTAG-Group 
(1995). The XTAG system consists of a morphological analyzer, a part-of-speech tag- 
ger, a wide-coverage LTAG English grammar, a predictive left-to-right Earley-style 
parser for LTAG (Schabes 1990), and an X-windows interface for grammar develop- 
ment (Doran et al. 1994). The input sentence is subjected to morphological analysis 
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Sr [agr : <1> [ 3rdsing : 4 
/ I " m :  singll 

[mode : <2> lnd J 

[agr: <1>] llrPr [agr: <1> 1 
[mode : <2:>] 

DeIP [agr: <1>] N [agr: <1>] V [agr: <1> ] VP [ :~ ,  <.3> c~ 1 
[mode : <2>J tmode : <4> ge~ 

[mode : <4>J [mode : <6> ppartJ 

[ i I 
[mode : <6>J 

I 
acquired 

(~) 

~nx lV [acquired] acquired 

aNXdxN [company] ~Vvx [being] company being 

! I I I 
~DXD [the] fWvx [is] the is 

(b) (c) 

Figure 8 
(a) Derived tree, (b) derivation tree, and (c) dependency tree for the sentence: the company is 
being acquired. 

and is tagged with parts of speech before being sent to the parser. The parser retrieves 
the elementary trees that the words of the sentence anchor and combines them by 
adjunction and substitution operations to derive a parse of the sentence. The gram- 
mar of XTAG has been used to parse sentences from ATIS, IBM Manual and WSJ 
corpora (TAG-Group 1995). The resulting XTAG corpus contains sentences from these 
domains along with all the derivations for each sentence. The derivations provide 
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predicate argument relationships for the parsed sentences. 

Appendix B: Key Properties of LTAGs 

In this section, we define the key properties of LTAGs: lexicalization, Extended Domain 
of Locality (EDL), and factoring of recursion from the domain of dependency (FRD), 
and discuss how these properties are realized in natural language grammars written 
in LTAGs. A more detailed discussion about these properties is presented in Joshi 
(1985, 1987), Kroch and Joshi (1985), Schabes, AbeillG and Joshi (1988), and Joshi and 
Schabes (1996). 

Definition 
A grammar is lexicalized if it consists of: 

• a finite set of elementary structures (strings, trees, directed acyclic 
graphs, etc.), each structure anchored on a lexical item. 

• lexical items, each associated with at least one of the elementary 
structures of the grammar 

• a finite set of operations combining these structures. 

This property proves to be linguistically crucial since it establishes a direct link 
between the lexicon and the syntactic structures defined in the grammar. In fact, in lex- 
icalized grammars all we have is the lexicon, which projects the elementary structures 
of each lexical item; there is no independent grammar. 

Definition 
The Extended Domain of Locality (EDL) property has two parts: 

. 

. 

Every elementary structure must contain all and only the arguments of 
the anchor in the same structure. 

For each lexical item, the grammar must contain an elementary structure 
for each syntactic environment the lexical item might appear in. 

Part (1) of EDL allows the anchor to impose syntactic and semantic constraints on 
its arguments directly since they appear in the same elementary structure that it an- 
chors. Hence, all elements that appear within one elementary structure are considered 
to be local. This property also defines how large an elementary structure in a grammar 
can be. Figure 9 shows trees for the following example sentences: 

(1) 

(2) 

(3) 

John seems to like Mary. 

John hit Mary. 

Who did John hit? 

Figure 9(a) shows the elementary tree anchored by s e e m  that is used to derive a raising 
analysis for sentence 1. Notice that the elements appearing in the tree are only those 
that serve as arguments to the anchor and nothing else. In particular, the subject NP 
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Sq 

Sr RI~ Sr 

nV0~ VP 
V~n NTo~ VP 

~ v / " NP1 
V NPI$ 1~ V Vl~mf* 

I I I 
seems hit  hit  E 

(a) (b) (c) 

Figure 9 
(a) Tree for raising analysis, anchored by seems; (b) transitive tree; (c) object extraction tree for 
the verb hit. 

(John in  sentence 1) does not appear in the elementary tree for seem since it does not 
serve as an argument for seem. Figure 9(b) shows the elementary tree anchored by the 
transitive verb hit in which both the subject NP and object NP are realized within the 
same elementary tree. 

LTAG is distinguished from other grammar formalisms by possessing part (2) of 
the EDL property. In LTAGs, there is one elementary tree for every syntactic environ- 
ment that the anchor may appear in. Each elementary tree encodes the linear order 
of the arguments of the anchor in a particular syntactic environment. For example, a 
transitive verb such as hit is associated with both the elementary tree shown in Fig- 
ure 9(b) for a declarative transitive sentence such as sentence 2, and the elementary 
tree shown in Figure 9(c) for an object extracted transitive sentence such as sentence 3. 
Notice that the object noun phrase is realized to the left of the subject noun phrase in 
the object extraction tree. 

As a consequence of the fact that LTAGs possess the part (2) of the EDL property, 
the derivation structures in LTAGs contain the information of a dependency structure. 
Another aspect of EDL is that the arguments of the anchor can be filled in any order. 
This is possible because the elementary structures allocate a slot for each argument of 
the anchor in each syntactic environment that the anchor appears in. 

There can be many ways of constructing the elementary structures of a grammar so 
as to possess the EDL property. However, by requiring that the constructed elementary 
structures be "minimal," the third property of LTAGs namely, factoring of recursion 
from the domain of dependencies, follows as a corollary of EDL. 

Definit ion 
Factoring of recursion from the domain of dependencies (FRD): Recursion is factored 

away from the domain for the statement of dependencies. 

In LTAGs, recursive constructs are represented as auxiliary trees. They combine 
with elementary trees by the operation of adjunction. Elementary trees define the 
domain for stating dependencies such as agreement, subcategorization, and filler-gap 
dependencies. Auxiliary trees, by adjunction to elementary trees, account for the long- 
distance behavior of these dependencies. 
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An additional advantage of a g rammar  possessing FRD and EDL propert ies is that 
feature structures in these grammars  are extremely simple. Since the recursion has been 
factored out  of the domain  of dependency,  and since the domain  is large enough for 
agreement,  subcategorizafion, and filler-gap dependencies,  feature structures in such 
systems do not  involve any recursion. In fact they reduce to typed  terms that can be 
combined by  simple term-like unification. 
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