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This paper proposes an efficient example sampling method for example-based word sense disam- 
biguation systems. To construct a database of practical size, a considerable overhead for manual 
sense disambiguation (overhead for supervision) is required. In addition, the time complexity of 
searching a large-sized database poses a considerable problem (overhead for search). To counter 
these problems, our method selectively samples a smaller-sized effective subset from a given ex- 
ample set for use in word sense disambiguation. Our method is characterized by the reliance on 
the notion of training utility: the degree to which each example is informative for future example 
sampling when used for the training of the system. The system progressively collects examples 
by selecting those with greatest utility. The paper reports the effectiveness of our method through 
experiments on about one thousand sentences. Compared to experiments with other example 
sampling methods, our method reduced both the overhead for supervision and the overhead for 
search, without the degeneration of the performance of the system. 

1. Introduction 

Word sense disambiguation is a potentially crucial task in many NLP applications, such 
as machine translation (Brown, Della Pietra, and Della Pietra 1991), parsing (Lytinen 
1986; Nagao 1994) and text retrieval (Krovets and Croft 1992; Voorhees 1993). Various 
corpus-based approaches to word sense disambiguation have been proposed (Bruce 
and Wiebe 1994; Charniak 1993; Dagan and Itai 1994; Fujii et al. 1996; Hearst 1991; 
Karov and Edelman 1996; Kurohashi and Nagao 1994; Li, Szpakowicz, and Matwin 
1995; Ng and Lee 1996; Niwa and Nitta 1994; Sch~itze 1992; Uramoto 1994b; Yarowsky 
1995). The use of corpus-based approaches has grown with the use of machine-readable 
text, because unlike conventional rule-based approaches relying on hand-crafted selec- 
tional rules (some of which are reviewed, for example, by Hirst [1987]), corpus-based 
approaches release us from the task of generalizing observed phenomena through a set 
of rules. Our verb sense disambiguation system is based on such an approach, that is, 
an example-based approach. A preliminary experiment showed that our system per- 
forms well when compared with systems based on other approaches, and motivated 
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us to further explore the example-based approach (we elaborate on this experiment 
in Section 2.3). At the same time, we concede that other approaches for word sense 
disambiguation are worth further exploration, and while we focus on example-based 
approach in this paper, we do not wish to draw any premature conclusions regarding 
tlhe relative merits of different generalized approaches. 

As with most example-based systems (Fujii et al. 1996; Kurohashi and Nagao 
1994; Li, Szpakowicz, and Matwin 1995; Uramoto 1994b), our system uses an example 
database (database, hereafter) that contains example sentences associated with each 
verb sense. Given an input sentence containing a polysemous verb, the system chooses 
the most plausible verb sense from predefined candidates. In this process, the system 
computes a scored similarity between the input and examples in the database, and 
choses the verb sense associated with the example that maximizes the score. To realize 
this, we have to manually disambiguate polysemous verbs appearing in examples, 
prior to their use by the system. We shall call these examples supervised examples. 
A preliminary experiment on eleven polysemous Japanese verbs showed that (a) the 
more supervised examples we provided to the system, the better it performed, and 
(b) in order to achieve a reasonable result (say over 80% accuracy), the system needed 
a hundred-order supervised example set for each verb. Therefore, in order to build an 
operational system, the following problems have to be taken into account1: 

given human resource limitations, it is not reasonable to supervise every 
example in large corpora ("overhead for supervision"), 

given the fact that example-based systems, including our system, search 
the database for the examples most similar to the input, the 
computational cost becomes prohibitive if one works with a very large 
database size ("overhead for search"). 

These problems suggest a different approach, namely to select a small number of opti- 
mally informative examples from given corpora. Hereafter we will call these examples 
samples. 

Our example sampling method, based on the utility maximization principle, de- 
cides on the preference for including a given example in the database. This decision 
procedure is usually called selective sampling (Cohn, Atlas, and Ladner 1994). The 
overall control flow of selective sampling systems can be depicted as in Figure 1, where 
"system" refers to our verb sense disambiguation system, and "examples" refers to an 
unsupervised example set. The sampling process basically cycles between the word 
sense disambiguation (WSD) and training phases. During the WSD phase, the system 
generates an interpretation for each polysemous verb contained in the input exam- 
ple ("WSD outputs" of Figure 1). This phase is equivalent to normal word sense 
disambiguation execution. During the training phase, the system selects samples for 
training from the previously produced outputs. During this phase, a human expert 
supervises samples, that is, provides the correct interpretation for the verbs appearing 
in the samples. Thereafter, samples are simply incorporated into the database without 
any computational overhead (as would be associated with globally reestimating pa- 
rameters in statistics-based systems), meaning that the system can be trained on the 
remaining examples (the "residue") for the next iteration. Iterating between these two 

1 Note that these problems are associated with corpus-based approaches in general, and have been 
identified by a number of researchers (Engelson and Dagan 1996; Lewis and Gale 1994; Uramoto 1994a; 
Yarowsky 1995). 
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Figure 1 
Flow of control of the example sampling system. 

phases, the system progressively enhances the database. Note that the selective sam- 
piing procedure gives us an optimally informative database of a given size irrespective 
of the stage at which processing is terminated. 

Several researchers have proposed this type of approach for NLP applications. 
Engelson and Dagan (1996) proposed a committee-based sampling method, which 
is currently applied to HMM training for part-of-speech tagging. This method sets 
several models (the committee) taken from a given supervised data set, and selects 
samples based on the degree of disagreement among the committee members as to 
the output. This method is implemented for statistics-based models. How to formalize 
and map the concept of selective sampling into example-based approaches has yet to 
be explored. 

Lewis and Gale (1994) proposed an uncertainty sampling method for statistics- 
based text classification. In this method, the system always samples outputs with an 
uncertain level of correctness. In an example-based approach, we should also take 
into account the training effect a given example has on other unsupervised examples. 
This is introduced as training utility in our method. We devote Section 4 to further 
comparison of our approach and other related works. 

With respect to the problem of overhead for search, possible solutions would in- 
clude the generalization of similar examples (Kaji, Kida, and Morimoto 1992; Nomi- 
yama 1993) or the reconstruction of the database using a small portion of useful in- 
stances selected from a given supervised example set (Aha, Kibler, and Albert 1991; 
Smyth and Keane 1995). However, such approaches imply a significant overhead for 
supervision of each example prior to the system's execution. This shortcoming is pre- 
cisely what our approach aims to avoid: we aim to reduce the overhead for supervision 
as well as the overhead for search. 

Section 2 describes the basis of our verb sense disambiguation system and pre- 
liminary experiment, in which we compared our method with other disambiguation 
methods. Section 3 then elaborates on our example sampling method. Section 4 reports 
on the results of our experiments through comparison with other proposed selective 
sampling methods, and discusses theoretical differences between those methods. 

2. Example-based Verb Sense Disambiguation System 

2.1 The Basic Idea 
Our verb sense disambiguation system is based on the method proposed by Kurohashi 
and Nagao (1994) and later enhanced by Fujii et al. (1996). The system uses a database 
containing examples of collocations for each verb sense and its associated case frame(s). 
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I kane (money) } {suri(pickpocket)} sa0eu (wallet) 
kanojo (she) ga otoko (man) wo toru (to take/steal) ani (brother) urea (horse) aidea (idea) 

I kare (he) menkyoshou (license) kanojo(she)}ga {shikaku (qualification)}wotoru(toattain) gakusei (student) biza (visa) 
kare (he) } {shinbun(newspaper)} chichi (father) ga zasshi (journal) wo toru (to subscribe) kyaku (client) 

{kare ( h e )  {k ippu( t icke t )}  
dantai (group) ga heya (room) wo toru (to reserve) ryokoukyaku (passenger) joshu (assistant) hikouki (airplane) 

Figure 2 
A fragment of the database, and the entry associated with the Japanese verb toru. 

Figure 2 shows a fragment of the entry associated with the Japanese verb toru. The 
verb toru has multiple senses, a sample of which are 'to take/steal, ' 'to attain,' 'to 
subscribe,' and 'to reserve.' The database specifies the case frame(s) associated with 
each verb sense. In Japanese, a complement of a verb consists of a noun phrase (case 
filler) and its case marker suffix, for example ga (nominative) or wo (accusative). The 
database lists several case filler examples for each case. The task of the system is to 
"interpret" the verbs occurring in the input text, i.e., to choose one sense from among a 
set of candidates. 2 All verb senses we use are defined in IPAL (information-technology 
Promotion Agency, 1987), a machine-readable dictionary. IPAL also contains example 
case fillers as shown in Figure 2. Given an input, which is currently limited to a simple 
sentence, the system identifies the verb sense on the basis of the scored similarity 
between the input and the examples given for each verb sense. Let us take the sentence 
below as an example input: 

hisho ga shindaisha wo toru. 
(secretary-NOM) (sleeping car-ACC) (?) 

In this example, one may consider hisho ('secretary') and shindaisha ('sleeping car') 
to be semantically similar to joshu ('assistant') and hikouki ('airplane') respectively, and 
since both collocate with the 'to reserve' sense of toru, one could infer that toru should 
be interpreted as 'to reserve.' This resolution originates from the analogy principle 
(Nagao 1984), and can be called nearest neighbor resolution because the verb in the 
input is disambiguated by superimposing the sense of the verb appearing in the exam- 
ple of highest similarity. 3 The similarity between an input and an example is estimated 
based on the similarity between case •lers marked with the same case. 

Furthermore, since the restrictions imposed by the case fillers in choosing the verb 
sense are not equally selective, Fujii et al. (1996) proposed a weighted case contribution 
to disambiguation (CCD) of the verb senses. This CCD factor is taken into account 

2 Note that unlike the automatic acquisition of word sense definitions (Fukumoto and Tsujii 1994; 
Pustejovsky and Boguraev 1993; Utsuro 1996; Zernik 1989), the task of the system is to identify the best 
matched category with a given input, from predefined candidates. 

3 In this paper, we use "example-based systems" to refer to systems based on nearest neighbor resolution. 
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© 
nominative accusative 

Figure 3 
The semantic ranges of the nominative and accusative for the verb toru. 

database 

n q - m c ~ n c  nc3-rnllc3 v (?) 
Cs~,c~ G,c2 &,;3 - -  v 

(s~)l 
- -  ~s3,c2 ~s3,C3 - - -  V (S3)  J 

Figure 4 
An input and the database. 

when  comput ing  the score for each sense of the verb in question. Consider  again the 
case of toru  i n  Figure 2. Since the semantic range of nouns  collocating with the verb 
in the nominat ive does not  seem to have a strong delinearization in a semantic sense 
(in Figure 2, the nominat ive of each verb sense displays the same general concept, i.e., 
HUMAN), it would  be difficult, or even risky, to proper ly  interpret  the verb sense based 
on similarity in the nominative.  In contrast, since the semantic ranges are disparate in 
tile accusative, it would  be feasible to rely more strongly on similarity here. 

This argument  can be illustrated as in Figure 3, in which the symbols el and e2 
denote  example case fillers of different case frames, and an input  sentence includes two 
case fillers denoted by  x and y. The figure shows the distribution of example case fillers 
for the respective case frames, denoted  in a semantic space. The semantic similarity 
between two given case fillers is represented by  the physical distance between the 
two symbols. In the nominative,  since x happens  to be much  closer to an e2 than any 
el, x may  be est imated to belong to the range of e2's, al though x actually belongs to 
both sets of el's and e2's. In the accusative, however,  y would  be proper ly  est imated 
to belong to the set of el's due  to the disjunction of the two accusative case filler sets, 
even though examples do not  fully cover each of the ranges of el's and e2's. Note  
that this difference would  be critical if example data were sparse. We will explain the 
method  used to compute  CCD in Section 2.2. 

2.2 Methodology 
To illustrate the overall algorithm, we will consider an abstract specification of both  
an input  and the database (Figure 4). Let the input  be {no1 - reel, nc2 - mc2, nc3 - rnc3, v}, 
where  nci denotes the case filler for the case ci, and mci denotes the case marker  for ci, 

and assume that the interpretation candidates for v are der ived from the database as 
sl, s2 and s3. The database also contains a set Gi,cj of case filler examples for each case 
cj of each sense si ( " - - "  indicates that the corresponding case is not  allowed). 

During the verb sense disambiguation process, the system first discards those 
candidates whose case frame does not  fit the input. In the case of Figure 4, s3 is 
discarded because the case frame of v (s3) does not  subcategorize for the case cl. 
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Table 1 
The relation between the length of the path 
between two nouns nl and n2 in the 
Bunruigoihyo thesaurus (len(nl, n2)), and 
their relative similarity (sire(n1, n2)). 

fen(n1, n2) 0 2 4 6 8 10 12 
sire(n1, n2) 11 10 9 8 7 5 0 

In the next step the system computes the score of the remaining candidates and 
chooses as the most plausible interpretation the one with the highest score. The score 
of an interpretation is computed by considering the weighted average of the similarity 
degrees of the input case fillers with respect to each of the example case •lers (in the 
corresponding case) listed in the database for the sense under evaluation. Formally, 
this is expressed by Equation (1), where Score(s) is the score of sense s of the input 
verb, and SIM(nc, G,c) is the maximum similarity degree between the input case filler nc 
and the corresponding case fillers in the database example set ~s,c (calculated through 
Equation (2)). CCD(c) is the weight factor of case c, which we will explain later in this 
section. 

Score(s) = ~c SIM(n¢, &,c)' CCD(c) (1) 
CCD(c) 

SIM(nc, &,c) = max sim(nc, e) (2) 
eC G,c 

With regard to the computation of the similarity between two different case fillers 
(sim(n~, e) in Equation (1)), we experimentally used two alternative approaches. The 
first approach uses semantic resources, that is, hand-crafted thesauri (such as the Ro- 
ger's thesaurus [Chapman 1984] or WordNet [Miller et al. 1993] in the case of English, 
and Bunruigoihyo [National Language Research Institute 1964] or EDR [Japan Electronic 
Dictionary Research Institute 1995] in the case of Japanese), based on the intuitively 
feasible assumption that words located near each other within the structure of a the- 
saurus have similar meaning. Therefore, the similarity between two given words is 
:represented by the length of the path between them in the thesaurus structure (Fujii 
et al. 1996; Kurohashi and Nagao 1994; Li, Szpakowicz, and Matwin 1995; Uramoto 
1994b). 4 We used the similarity function empirically identified by Kurohashi and Na- 
gao in which the relation between the length of the path in the Bunruigoihyo thesaurus 
and the similarity between words is defined as shown in Table 1. In this thesaurus, 
each entry is assigned a seven-digit class code. In other words, this thesaurus can be 
considered as a tree, seven levels in depth, with each leaf as a set of words. Figure 5 
shows a fragment of the Bunruigoihyo thesaurus including some of the nouns in both 
Figure 2 and the input sentence above. 

The second approach is based on statistical modeling. We adopted one typical 
implementation called the "vector space model" (VSM) (Frakes and Baeza-Yates 1992; 
Leacock, Towell, and Voorhees 1993; Salton and McGill 1983; Sch/itze 1992), which has 
a long history of application in information retrieval (IR) and text categorization (TC) 
tasks. In the case of IR/TC, VSM is used to compute the similarity between documents, 
which is represented by a vector comprising statistical factors of content words in a 
document. Similarly, in our case, each noun is represented by a vector comprising 

4 Different types of application of hand-crafted thesauri to word sense disambiguation have been 
proposed, for example, by Yarowsky (1992). 
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I I 
kare kanojo 
(he) (she) 

I I I I I  

otoko joshu hisho kane heya kippu uma 
(man) (assistant) (secretary)(money) (room) (ticket) (horse) 

Figure 5 
A fragment of the Bunruigoihyo thesaurus. 

statistical factors, although statistical factors are calculated in terms of the predicate 
argument structure in which each noun appears. Predicate argument structures, which 
consist of complements (case filler nouns and case markers) and verbs, have also 
been used in the task of noun classification (Hindle 1990). This can be expressed by 
Equation (3), where ff is the vector for the noun in question, and items ti represent the 
statistics for predicate argument structures including n. 

ff = (h,  t 2 , . . . ,  ti . . . .  ) (3) 

In regard to ti, we used the notion of TF. IDF (Salton and McGill 1983). TF (term 
frequency) gives each context (a case marker/verb pair) importance proportional to 
the number of times it occurs with a given noun. The rationale behind IDF (inverse 
document frequency) is that contexts that rarely occur over collections of nouns are 
valuable, and that therefore the IDF of a context is inversely proportional to the number 
of noun types that appear in that context. This notion is expressed by Equation (4), 
w h e r e f ( ( n ,  c, v)) is the frequency of the tuple (n, c, v), nf((c, v)) is the number of noun 
types which collocate with verb v in the case c, and N is the number of noun types 
within the overall co-occurrence data. 

N 
ti =d((n, c, v)). log nf((c, v)) (4) 

We compute the similarity between nouns nt and n2 by the cosine of the angle between 
the two vectors t~ and n2. This is realized by Equation (5). 

/ I / 1  " n2 
sire(n1, n2) - ~ ]]~21 (5) 

We extracted co-occurrence data from the RWC text base RWC-DB-TEXT-95-1 (Real 
World Computing Partnership 1995). This text base consists of four years worth of 
Mainichi Shimbun newspaper articles (Mainichi Shimbun 1991-1994), which have been 
automatically annotated with morphological tags. The total morpheme content is about 
one hundred million. Since full parsing is usually expensive, a simple heuristic rule 
was used to obtain collocations of nouns, case markers, and verbs in the form of tuples 
(n, c, v). This rule systematically associates each sequence of noun and case marker to 
the verb of highest proximity, and produced 419,132 tuples. This co-occurrence data 
was used in the preliminary experiment described in Section 2.3. s 

5 Note that each verb in co-occurrence data should ideally be annotated with its verb sense. However,  
there is no existing Japanese text base wi th  sufficient volume of word  sense tags. 
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In Equation (1), CCD(c) expresses the weight factor of the contribution of case c to 
(current) verb sense disambiguation. Intuitively, preference should be given to cases 
displaying case fillers that are classified in semantic categories of greater disjunction. 
Thus, c's contribution to the sense disambiguation of a given verb, CCD(c), is likely 
to be higher if the example case filler sets {gsi,c I i = 1 , . . . ,  n} share fewer elements, as 
in Equation (6). 

C' 1 r ~ - I  _ _  ~ CCD(c) = ~,7~ ~ ~ Igs''¢l + ]£s,,cl 2[£s~,c r"l £s,,~l 
j=i+l I&,,I 7 I'G*I ) (6) 

Here, o~ is a constant for pararneterizing the extent to which CCD influences verb 
sense disambiguation. The larger oe is, the stronger is CCD's influence on the system 
output. To avoid data sparseness, we smooth each element (noun example) in gsi,c. In 
practice, this involves generalizing each example noun into a five-digit class based on 
the Bunruigoihyo thesaurus, as has been commonly used for smoothing. 

2.3 Preliminary Experimentation 
We estimated the performance of our verb sense disambiguation method through an 
experiment, in which we compared the following five methods: 

• lower bound (LB), in which the system systematically chooses the most 
frequently appearing verb sense in the database (Gale, Church, and 
Yarowsky 1992), 

• rule-based method (RB), in which the system uses a thesaurus to 
(automatically) identify appropriate semantic classes as selectional 
restrictions for each verb complement, 

• Naive-Bayes method (NB), in which the system interprets a given verb 
based on the probability that it takes each verb sense, 

• example-based method using the vector space model (VSM), in which 
the system uses the above mentioned co-occurrence data extracted from 
the RWC text base, 

• example-based method using the Bunruigoihyo thesaurus (BGH), in 
which the system uses Table 1 for the similarity computation. 

In the rule-based method, selectional restrictions are represented by thesaurus 
classes, and allow only those nouns dominated by the given class in the thesaurus 
structure as verb complements. In order to identify appropriate thesaurus classes, 
we used the association measure proposed by Resnik (1993), which computes the 
information-theoretic association degree between case fillers and thesaurus classes, 
for each verb sense (Equation (7)). 6 

P(rls, c) 
A(s,c,r) = P(rls, c ) • log p(rlc) (7) 

6 Note that previous research has applied this technique to tasks other than verb sense disambiguation, 
such as syntactic disambiguation (Resnik 1993) and disambiguation of case filler noun senses (Ribas 
1995). 
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Here, A(s, c, r) is the association degree between verb sense s and class r (selectional 
restriction candidate) with respect to case c. P(rls, c) is the conditional probabil i ty that 
a case filler example associated with case c of sense s is dominated  by  class r in the 
thesaurus. P(rlc ) is the conditional probabili ty that a case filler example for case c 
(disregarding verb sense) is dominated  by  class r. Each probabili ty is est imated based 
on training data. We used the semantic classes defined in the Bunruigoihyo thesaurus. 
In practice, every  r whose association degree is above a certain threshold is chosen 
as a selectional restriction (Resnik 1993; Ribas 1995). By decreasing the value of the 
threshold, system coverage can be broadened,  but  this opens the way  for irrelevant 
(noisy) selectional rules. 

The Naive-Bayes me thod  assumes that each case filler included in a given input  is 
conditionally independent  of other case fillers: the system approximates the probabili ty 
that an input  x takes a verb sense s (P(slx)), simply by  comput ing  the produc t  of the 
probabili ty that each verb sense s takes nc as a case filler for case c. The verb sense 
with maximal probabili ty is then selected as the interpretation (Equation (8)). 7 

arg msax P(slx) 
P(s )  . P (x l s )  

= arg msax P(x) 

= argn~axP(s) .  P(xls) 

argmaxP(s )  I I  P(ncls) 
c 

(8) 

Here, P(ncls) is the probabili ty that a case filler associated with sense s for case c in the 
training data is nc. We estimated P(s) based on the distribution of the verb senses in the 
training data. In practice, data sparseness leads to not  all case fillers nc appearing in 
the database, so we generalize each nc into a semantic class defined in the Bunruigoihyo 
thesaurus. 

All methods  except the lower bound  method  involve a parametr ic  constant: the 
threshold value for the association degree (RB), a generalization level for case filler 
nouns  (NB), and a in Equation (6) (VSM and BGH). For these parameters ,  we con- 
ducted several trials prior to the actual comparat ive experiment,  to determine the 
optimal parameter  values over  a range of data sets. For our  method,  we set a ex- 
t remely large, which is equivalent to relying almost solely on the SIM of the case with 
the greatest CCD. However ,  note that when  the SIM of the case with the greatest CCD 
is equal for multiple verb senses, the system computes  the SIM of the case with the 
second highest CCD. This process is repeated until only one verb sense remains. When 
more than one verb sense is selected for any given method  (or none of them remains, 
for the rule-based method),  the system simply selects the verb sense that appears  most  
frequently in the database, s 

In the experiment,  we conducted sixfold cross-validation, that is, we divided the 
t ra ining/ tes t  data into six equal parts, and conducted six trials in which a different 

7 A number  of experimental results have shown the effectiveness of the Naive-Bayes method for word 
sense disambiguation (Gale, Church, and Yarowsky 1993; Leacock, Towell, and Voorhees 1993; Mooney 
1996; Ng 1997; Pedersen, Bruce, and Wiebe 1997). 

8 One may argue that this goes against the basis of the rule-based method, in that, given a proper 
threshold value for the association degree, the system could improve on accuracy (potentially 
sacrificing coverage), and that the trade-off between coverage and accuracy is therefore a more 
appropriate evaluation criterion. However, our trials on the rule-based method with different threshold 
values did not show significant correlation between the improvement of accuracy and the degeneration 
of coverage. 
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Table 2 
The verbs contained in the corpus used, and the accuracy of the different verb sense 
disambiguation methods (LB: lower bound, RB: rule-based method, NB: Naive-Bayes 
method, VSM: vector space model, BGH: the Bunruigoihyo thesaurus). 

Verb 

# of # of Accuracy (%) 

English Gloss Sentences Senses LB RB NB VSM BGH 

ataeru give 136 4 66.9 62 .1  75.8 84.1 86.0 
kakeru hang 160 29 25.6 24.6 67.6 73.4 76.2 

kuwaeru add 167 5 53.9 65.6 82.2 84.0 86.8 
motomeru require 204 4 85.3 82.4 87.0 85.5 85.5 

noru ride 126 10 45.2 52.8 81.4 80.5 85.3 
osameru govern 108 8 30.6 45.6 66.0 72.0 74.5 
tsukuru make 126 15 25.4 24.9 59.1 56.5 69.9 

toru take 84 29 26.2 1 6 . 2  56.1 71.2 75.9 
umu bear offspring 90 2 83.3 94.7 95.5 92.0 99.4 

wakaru understand 60 5 48.3 40.6 71.4 62.5 70.7 
yameru stop 54 2 59.3 89.9 92.3 96.2 96.3 

total - -  1,315 - -  51.4 54.8 76.6 78.6 82.3 

par t  was  used  as test data  each time, and  the rest as training data (the database).  9 We 
evalua ted  the pe r fo rmance  of each m e t hod  according to its accuracy, that  is, the ratio 
of the n u m b e r  of correct outputs  com pa red  to the total n u m b e r  of inputs.  The train- 
i ng / t e s t  data  used  in the exper iment  contained about  one thousand  s imple  Japanese 
sentences collected f rom news  articles. Each sentence in the t ra in ing / tes t  data  con- 
tained one or more  complement(s)  fol lowed by  one of the eleven verbs  described in 
Table 2. In Table 2, the co lumn "English Gloss" describes typical English translat ions 
of the Japanese verbs.  The co lumn "# of Sentences" denotes  the n u m b e r  of sentences 
in the corpus,  and  "# of Senses" denotes  the n u m b e r  of verb  senses contained in IPAL. 
The co lumn "accuracy" shows the accuracy of each method.  

Looking at Table 2, one can see that our  example-based  me thod  p e r f o r m e d  bet- 
ter than  the other me thods  (irrespective of the similarity computat ion) ,  a l though the 
Naive-Bayes me th od  is relatively comparab le  in performance .  Surprisingly, despite  the 
relatively ad hoc similarity definition used  (see Table 1), the Bunruigoihyo thesaurus  
led to a greater  accuracy gain than the vector  space model .  In order  to est imate the 
u p p e r  b o u n d  (limitation) of the d i sambigua t ion  task, that  is, to wha t  extent a h u m a n  
exper t  makes  errors  in d i sambigua t ion  (Gale, Church,  and  Yarowsky 1992), we  ana- 
lyzed incorrect outputs  and  found  that  roughly  30% of the sys tem errors us ing the 
Bunruigoihyo thesaurus  fell into this category. It should  be no ted  that  while  the vector  
space mode l  requires computa t iona l  cost ( t i m e / m e m o r y )  of an order  propor t iona l  to 
the size of the vector, de terminat ion  of pa ths  in the Bunruigoihyo thesaurus  comprises  
a trivial cost. 

We also invest igated errors made  by  the rule-based me thod  to find a rational ex- 
planat ion for its inferiority. We found that  the association measure  in Equat ion (7) 
tends to give a greater  value to less frequently appear ing  verb  senses and  lower  level 

9 Ideally speaking, training and test data should be drawn from different sources, to simulate a real 
application. However, the sentences were already scrambled when provided to us, and therefore we 
could not identify the original source corresponding to each sentence. 
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(more specified) classes, and therefore chosen rules are generally overspecified. 1° Con- 
sequently, frequently appearing verb senses are likely to be rejected. On the other 
hand, when attempting to enhance the rule set by setting a smaller threshold va lue  
for the association score, overgeneralization can be a problem. We also note that one 
of the theoretical differences between the rule-based and example-based methods is 
that the former statically generalizes examples (prior to system usage), while the lat- 
ter does so dynamically. Static generalization would appear to be relatively risky for 
sparse training data. 

Although comparison of different approaches to word sense disambiguation should 
be further investigated, this experimental result gives us good motivation to explore 
example-based verb sense disambiguation approaches, i.e., to introduce the notion of 
selective sampling into them. 

2.4 Enhancement of Verb Sense Disambiguation 
Let us discuss how further enhancements to our example-based verb sense disam- 
biguation system could be made. First, since inputs are simple sentences, information 
for word sense disambiguation is inadequate in some cases. External information such 
as the discourse or domain dependency of each word sense (Guthrie et al. 1991; Na- 
sukawa 1993; Yarowsky 1995) is expected to lead to system improvement. Second, 
some idiomatic expressions represent highly restricted collocations, and overgener- 
alizing them semantically through the use of a thesaurus can cause further errors. 
Possible solutions would include one proposed by Uramoto, in which idiomatic ex- 
pressions are described separately in the database so that the system can control their 
overgeneralization (Uramoto 1994b). Third, a number of existing NLP tools such as 
JUMAN (a morphological analyzer) (Matsumoto et al. 1993) and QJP (a morphological 
and syntactic analyzer) (Kameda 1996) could broaden the coverage of our system, as 
inputs are currently limited to simple, morphologically analyzed sentences. Finally, it 
should be noted that in Japanese, case markers can be omitted or topicalized (for exam- 
ple, marked with postposition wa), an issue which our framework does not currently 
consider. 

3. Example Sampling Algorithm 

3.1 Overview 
Let us look again at Figure 1 in Section 1. In this figure, "WSD outputs" refers to a 
corpus in which each sentence is assigned an expected verb interpretation during the 
WSD phase. In the training phase, the system stores supervised samples (with each 
interpretation simply checked or appropriately corrected by a human) in the database, 
to be used in a later WSD phase. In this section, we turn to the problem of which 
examples should be selected as samples. 

Lewis and Gale (1994) proposed the notion of uncertainty sampling for the training 
of statistics-based text classifiers. Their method selects those examples that the system 
classifies with minimum certainty, based on the assumption that there is no need for 
teaching the system the correct answer when it has answered with sufficiently high 
certainty. However, we should take into account the training effect a given example has 
on other remaining (unsupervised) examples. In other words, we would like to select 
samples so as to be able to correctly disambiguate as many examples as possible in the 
next iteration. If this is successfully done, the number of examples to be supervised will 

10 This problem has also been identified by Charniak (1993). 
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el: seito ga (student-NOM) shitsumon wo (question-ACC) yameru (sl) 
e2: ani ga (brother-NOM) kaisha wo (company-ACC) yameru (s2) 
Xl: shain ga (employee-NOM) eigyou wo (sales-ACC) yameru (?) 
x2: shouten ga (store-NOM) eigyou wo (sales-ACC) yameru (?) 
x3: koujou ga (factory-NOM) sougyou wo (operation-ACC) yameru (?) 
x4: shisetsu ga (facility-NOM) unten wo (operation-ACC) yameru (?) 
xs: senshu ga (athlete-NOM) renshuu wo (pracfice-ACC) yameru (?) 
x6: musuko ga (son-NOM) kaisha wo (company-ACC) yameru (?) 
x7: kangofu ga (nurse-NOM) byouin wo (hospital-ACC) yameru (?) 
x8: hikoku ga (defendant-NOM) giin wo (congressman-ACC) yameru (?) 
xg: chichi ga (father-NOM) kyoushi wo (teacher-ACC) yameru (?) 

Figure 6 
Example of a given corpus associated with the verb yameru. 

decrease. We consider maximization of this effect by means of a training utility function 
aimed at ensuring that the most useful example at a given point in time is the example 
with the greatest training utility factor. Intuitively speaking, the training utility of an 
example is greater when we can expect greater increase in the interpretation certainty 
of the remaining examples after training using that example. 

To explain this notion intuitively, let us take Figure 6 as an example corpus. In 
this corpus, all sentences contain the verb yameru, which has two senses according 
to IPAL, sl ('to stop (something)') and s2 ('to quit (occupation)'). In this figure, sen- 
tences el and e2 are supervised examples associated with senses Sl and s2, respectively, 
and xi's are unsupervised examples. For the sake of enhanced readability, the exam- 
ples xi's are partitioned according to their verb senses, that is, xl to x5 correspond 
to sense Sl, and x6 to x9 correspond to sense s2. In addition, note that examples in 
the corpus can be readily categorized based on case similarity, that is, into clusters 
{Xl, X2, X3, X4} ( 'someone/something stops service'), {Ca, X6, X7} ('someone leaves orga- 
nization'), {Xs, X9} ('someone quits occupation'), {el}, and {Xs}. Let us simulate the 
sampling procedure with this example corpus. In the initial stage with {el, e2} in the 
database, x6 and x7 can be interpreted as s2 with greater certainty than for the other 
xi's, because these two examples are similar to e2. Therefore, uncertainty sampling 
selects any example except x6 and x7 as the sample. However, any one of examples Xl 
to x4 is more desirable because by way of incorporating one of these examples, we can 
obtain more xi's with greater certainty. Assuming that Xl is selected as the sample and 
incorporated into the database with sense Sl, either of x8 and x9 will be more highly 
desirable than other unsupervised xi's in  the next stage. 

Let S be a set of sentences, i.e., a given corpus, and D be the subset of supervised 
examples stored in the database. Further, let X be the set of unsupervised examples, 
realizing Equation (9). 

S = D u X (9) 

The example sampling procedure can be illustrated as: 

1. W S D ( D ,  X) 

2. e ~ arg maxx~x TU(x)  

3. D ~--D U {e}, X ~-- X n {e} 

4. goto 1 

where W S D ( D ,  X) is the verb sense disambiguation process on input X using D as 
the database. In this disambiguation process, the system outputs the following for 
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Figure 7 
The concept of interpretation certainty. The case where the interpretation certainty of the 
enclosed x's is great is shown in (a). The case where the interpretation certainty of the x's 
contained in the intersection of senses 1 and 2 is small is shown in (b). 

each input: (a) a set of verb sense candidates with interpretation scores, and (b) an 
interpretation certainty. These factors are used for the computat ion of TU(x), newly 
introduced in our method. TU(x) computes the training utility factor for an example 
x. The sampling algorithm gives preference to examples of maximum utility. 

We will explain in the following sections how TU(x) is estimated, based on the 
estimation of the interpretation certainty. 

3.2 Interpretation Certainty 
Lewis and Gale (1994) estimate certainty of an interpretation as the ratio between the 
probability of the most plausible text category and the probability of any other text 
category, excluding the most probable one. Similarly, in our verb sense disambiguation 
system, we introduce the notion of interpretation certainty of examples based on the 
following preference conditions: 

. 

2. 

the highest interpretation score is greater, 

the difference between the highest and second highest interpretation 
scores is greater. 

The rationale for these conditions is given below. Consider Figure 7, where each sym- 
bol denotes an example in a given corpus, with symbols x as unsupervised examples 
and symbols e as supervised examples. The curved lines delimit the semantic vicini- 
ties (extents) of the two verb senses 1 and 2, respectively. 11 The semantic similarity 
between two examples is graphically portrayed by the physical distance between the 
two symbols representing them. In Figure 7(a), x's located inside a semantic vicinity 
are expected to be interpreted as being similar to the appropriate example e with high 
certainty, a fact which is in line with condition 1 above. However, in Figure 7(b), the 
degree of certainty for the interpretation of any x located inside the intersection of 
the two semantic vicinities cannot be great. This occurs when  the case fillers associ- 

11 Note that this method can easily be extended for a verb with more than two senses. In Section 4, we 
describe an experiment using multiply polysemous verbs. 
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Figure 8 
The relation between coverage and accuracy with different A's. 

ated with two or more verb senses are not selective enough to allow for a clear-cut 
delineation between them. This situation is explicitly rejected by condition 2. 

Based on the above two conditions, we compute interpretation certainties using 
Equation (10), where C(x) is the interpretation certainty of an example x, Scorel(x) and 
Score2(x) are the highest and second highest scores for x, respectively, and ,~, which 
ranges from 0 to 1, is a parametric constant used to control the degree to which each 
condition affects the computation of C(x). 

C(x )=A.  Scorel(x)+(1 - ~).(Scorel(x) - Score2(x)) (10) 

Through a preliminary experiment, we estimated the validity of the notion of 
interpretation certainty, by the trade-off between accuracy and coverage of the system. 
Note that in this experiment, accuracy is the ratio of the number of correct outputs 
and the number of cases where the interpretation certainty of the output is above a 
certain threshold. Coverage is the ratio of the number of cases where the interpretation 
certainty of the output is above a certain threshold and the number of inputs. By 
raising the value of the threshold, accuracy also increases (at least theoretically), while 
coverage decreases. 

The system used the Bunruigoihyo thesaurus for the similarity computation, and 
was evaluated by way of sixfold cross-validation using the same corpus as that used 
for the experiment described in Section 2.3. Figure 8 shows the result of the experiment 
with several values of ,~, from which the optimal )~ value seems to be in the range 
around 0.5. It can be seen that, as we assumed, both of the above conditions are 
essential for the estimation of interpretation certainty. 
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Figure 9 
The concept of training utility. The case where the training utility of a is greater than that of b 
because a has more unsupervised neighbors is shown in (a); (b) shows the case where the 
training utility of a is greater than that of b because b closely neighbors e, contained in the 
database. 

3.3 Training Utility 
The training utility of an example a is greater than that of another example b when  the 
total interpretation certainty of unsupervised examples increases more after training 
with example a than with example b. Let us consider Figure 9, in which the x-axis 
mono-dimensionally denotes the semantic similarity between two unsupervised ex- 
amples, and the y-axis denotes the interpretation certainty of each example. Let us 
compare the training utility of the examples a and b in Figure 9(a). Note that in this 
figure, whichever example we use for training, the interpretation certainty for each 
unsupervised example (x) neighboring the chosen example increases based on its sim- 
ilarity to the supervised example. Since the increase in the interpretation certainty of 
a given x becomes smaller as the similarity to a or b diminishes, the training utility 
of the two examples can be represented by the shaded areas. The training utility of 
a is greater as it has more neighbors than b. On the other hand,  in Figure 9(b), b has 
more neighbors than a. However, since b is semantically similar to e, which is already 
contained in the database, the total increase in interpretation certainty of its neighbors, 
i.e. the training utility of b, is smaller than that of a. 

Let AC(x = s,y) be the difference in the interpretation certainty of y c X after 
training with x c X, taken with the sense s. TU(x = s), which is the training utility 
function for x taken with sense s, can be computed by Equation (11). 

TU(x = s) = E AC(x = s,y) (11) 
y E X  

It should be noted that in Equation (11), we can replace X with a subset of X that 
consists of neighbors of x. However, in order to facilitate this, an efficient algorithm 
to search for neighbors of an example is required. We will discuss this problem in 
Section 3.5. 

Since there is no guarantee that x will be supervised with any given sense s, it can 
be risky to rely solely on TU(x = s) for the computation of TU(x). We estimate TU(x), 
by the expected value of x, calculating the average of each TU(x = s), weighted by the 
probability that x takes sense s. This can be realized by Equation (12), where P(slx ) is 
the probability that x takes the sense s. 

TU(x) = E P(slx) " TU(x = s) (12) 
s 

Given the fact that (a) P(sIx ) is difficult to estimate in the current formulation, and (b) 
the cost of computation for each TU(x = s) is not trivial, we temporarily approximate 
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TU(x) as in Equation (13), where K is a set of the k-best verb sense(s) of x with respect 
to the interpretation score in the current state. 

1 E TU(x = s) (13) TU(x) ; 
sEK 

3.4 Enhancement of Computation 
In this section, we discuss how to enhance the computation associated with our ex- 
ample sampling algorithm. 

First, we note that computation of TU(x = s) in Equation (11) above becomes time 
consuming because the system is required to search the whole set of unsupervised 
examples for examples whose interpretation certainty will increase after x is used for 
training. To avoid this problem, we could apply a method used in efficient database 
search techniques, by which the system can search for neighbor examples of x with 
optimal time complexity (Utsuro et al. 1994). However, in this section, we will explain 
another efficient algorithm to identify neighbors of x, in which neighbors of case fillers 
are considered to be given directly by the thesaurus structure. 12 The basic idea is the 
following: the system searches for neighbors of each case filler of x instead of x as a 
whole, and merges them as a set of neighbors of x. Note that by dividing examples 
along the lines of each case filler, we can retrieve neighbors based on the structure of 
the Bunruigoihyo thesaurus (instead of the conceptual semantic space as in Figure 7). 
Let Nx=s,c be a subset of unsupervised neighbors of x whose interpretation certainty 
will increase after x is used for training, considering only case c of sense s. The actual 
neighbor set of x with sense s (Nx=s) is then defined as in Equation (14). 

Nx=s=UNx:s ,c  (14) 
£ 

Figure 10 shows a fragment of the thesaurus, in which the x and the y's are unsu- 
pervised case filler examples. Symbols el and e2 are case filler examples stored in the 
database taken as senses sl and s2, respectively. The triangles represent subtrees of the 
structure, and the labels ni represent nodes. In this figure, it can be seen that the inter- 
pretation score of Sl never changes for examples other than the children of n4, after x 
is used for training with sense Sl. In addition, incorporating x into the database with 
sense sl never changes the score of examples y for other sense candidates. Therefore, 
Nx=sl,c includes only examples dominated by n4, in other words, examples that are 
closer to x than el in the thesaurus structure. Since, during the WSD phase, the system 
determines el as the supervised neighbor of x for sense Sl, identifying Nx=sl,c does 
not require any extra computational overhead. We should point out that the technique 
presented here is not applicable when the vector space model (see Section 2.2) is used 
for the similarity computation. However, automatic clustering algorithms, which as- 
sign a hierarchy to a set of words based on the similarity between them (such as the 
one proposed by Tokunaga, Iwayama, and Tanaka [1995]), could potentially facilitate 
the application of this retrieval method to the vector space model. 

Second, sample size at each iteration should ideally be one, so as to avoid the 
supervision of similar examples. On the other hand, a small sampling size generates 
a considerable computation overhead for each iteration of the sampling procedure. 
This can be a critical problem for statistics-based approaches, as the reconstruction 

12 Utsuro's method requires the constiuction of large-scale similarity templates prior to similarity 
computation (Utsuro et al. 1994), and this is what we would like to avoid. 
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Figure 10 
A fragment of the thesaurus including neighbors of x associated with case c. 

of statistic classifiers is expensive. However, example-based systems fortunately do 
not require reconstruction, and examples simply have to be stored in the database. 
Furthermore, in each disambiguation phase, our example-based system needs only 
to compute the similarity between each newly stored example and its unsupervised 
neighbors, rather than between every example in the database and every unsupervised 
example. Let us reconsider Figure 10. As mentioned above, when x is stored in the 
database with sense sl, only the interpretation score of y's dominated by n4, i.e., Nx=sl,c, 
will be changed with respect to sense sl. This algorithm reduces the time complexity 
of each iteration from O(N 2) to O(N), given that N is the total number of examples in 
a given corpus. 

3.5 Discussion 
3.5.1 Sense Ambiguity of Case Fillers in Selective Sampling. The semantic ambi- 
guity of case fillers (nouns) should be taken into account during selective sampling. 
Figure 11, which uses the same basic notation as Figure 7, illustrates one possible 
problem caused by case filler ambiguity. Let xl be a sense of a case filler x, and Yl and 
y2 be different senses of a case filler y. On the basis of Equation (10), the interpretation 
certainty of x and y is small in Figures 11(a) and 11(b), respectively. However, in the 
situation shown in Figure 11(b), since (a) the task of distinguishing between the verb 
senses 1 and 2 is easier, and (b) instances where the sense ambiguity of case fillers 
corresponds to distinct verb senses will be rare, training using either yl or y2 will be 
less effective than using a case filler of the type of x. It should also be noted that since 
Bunruigoihyo is a relatively small-sized thesaurus with limited word sense coverage, 
this problem is not critical in our case. However, given other existing thesauri like 
the EDR electronic dictionary (Japan Electronic Dictionary Research Institute 1995) or 
WordNet (Miller et al. 1993), these two situations should be strictly differentiated. 

3.5.2 A Limitation of our Selective Sampling Method. Figure 12, where the basic 
notation is the same as in Figure 7, exemplifies a limitation of our sampling method. 
In this figure, the only supervised examples contained in the database are el and e2, 
and x represents an unsupervised example belonging to sense 2. Given this scenario, 
x is informative because (a) it clearly evidences the semantic vicinity of sense 2, and 
(b) without x as sense 2 in the database, the system may misinterpret other examples 
neighboring x. However, in our current implementation, the training utility of x would 
be small because it would be mistakenly interpreted as sense I with great certainty due 
to its relatively close semantic proximity to el. Even if x has a number of unsupervised 
neighbors, the total increment of their interpretation certainty cannot be expected to be 
large. This shortcoming often presents itself when the semantic vicinities of different 
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Figure 11 
Two separate scenarios in which the interpretation certainty of x is small. In (a), interpretation 
certainty of x is small because x lies in the intersection of distinct verb senses; in (b), 
interpretation certainty of y is small because y is semantically ambiguous. 

sense ~ sense 2 

Figure 12 
The case where informative example x is not selected. 

verb senses are closely aligned or their semantic ranges are not  disjunctive. Here, let 
us consider Figure 3 again, in which the nominat ive case would  parallel the semantic 
space shown in Figure 12 more  closely than the accusative. Relying more  on the 
similarity in the accusative (the case with greater CCD) as is done in our  system, we 
aim to map  the semantic space in such a way  as to achieve higher  semantic dispari ty 
and minimize this shortcoming. 

4. Evaluation 

4.1 Comparative Experimentation 
~n order  to investigate the effectiveness of our  example sampling method,  we con- 
ducted an exper iment  in which we compared  the following four sampling methods:  

• a control (random), in which a certain propor t ion  of a given corpus is 
randomly  selected for training, 

• uncertainty sampling (US), in which examples with m in im u m  
interpretat ion certainty are selected (Lewis and Gale 1994), 

• committee-based sampling (CBS) (Engelson and Dagan 1996), 

• our  me thod  based on the notion of training utility (TU). 
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We elaborate on uncertainty sampling and committee-based sampling in Section 4.2. 
We compared these sampling methods by evaluating the relation between the num- 
ber of training examples sampled and the performance of the system. We conducted 
sixfold cross-validation and carried out sampling on the training set. With regard to 
the training/test data set, we used the same corpus as that used for the experiment 
described in Section 2.3. Each sampling method uses examples from IPAL to initialize 
the system, with the number of example case fillers for each case being an average 
of about 3.7. For each sampling method, the system uses the Bunruigoihyo thesaurus 
for the similarity computation. In Table 2 (in Section 2.3), the column of "accuracy" 
for "BGH" denotes the accuracy of the system with the entire set of training data 
contained in the database. Each of the four sampling methods achieved this figure at 
the conclusion of training. 

We evaluated each system performance according to its accuracy, that is the ratio 
of the number of correct outputs, compared to the total number of inputs. For the 
purpose of this experiment, we set the sample size to 1 for each iteration, A = 0.5 
for Equation (10), and k = 1 for Equation (13). Based on a preliminary experiment, 
increasing the value of k either did not improve the performance over that for k = 1, 
or lowered the overall performance. Figure 13 shows the relation between the number 
of training data sampled and the accuracy of the system. In Figure 13, zero on the 
x-axis represents the system using only the examples provided by 1PAL. Looking at 
Figure 13 one can see that compared with random sampling and committee-based 
sampling, our sampling method reduced the number of the training data required to 
achieve any given accuracy. For example, to achieve an accuracy of 80%, the number 
of training data required for our method was roughly one-third of that for random 
sampling. Although the accuracy of our method was surpassed by that of uncertainty 
sampling for larger sizes of training data, this minimal difference for larger data sizes 
is overshadowed by the considerable performance gain attained by our method for 
smaller data sizes. 

Since IPAL has, in a sense, been manually selectively sampled in an attempt to 
model the maximum verb sense coverage, the performance of each method is biased 
by the initial contents of the database. To counter this effect, we also conducted an 
experiment involving the construction of the database from scratch, without using ex- 
amples from IPAL. During the initial phase, the system randomly selected one example 
for each verb sense from the training set, and a human expert provided the correct 
interpretation to initialize the system. Figure 14 shows the performance of the various 
methods, from which the same general tendency as seen in Figure 13 is observable. 
However, in this case, our method was generally superior to other methods. Through 
these comparative experiments, we can conclude that our example sampling method 
is able to decrease the number of training data, i.e., the overhead for both supervision 
and searching, without degrading the system performance. 

4.2 Related Work 
4.2.1 Uncertainty Sampling. The procedure for uncertainty sampling (Lewis and Gale 
1994) is as follows, where C(x) represents the interpretation certainty for an example 
x (see our sampling procedure in Section 3.1 for comparison): 

1. WSD(D,X) 

2. e ~ argminxcx C(x) 
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Figure 13 
The relation between the number of training data sampled and the accuracy of the system. 

3. D ~ DU {e}, X +- XN {e} 

4. goto i 

Let us discuss the theoretical difference between this and our method. Considering 
Figure 9 again, one can see that the concept of training utility is supported by  the 
following properties: 

. 

2. 

an example that neighbors more unsupervised examples is more 
informative (Figure 9(a)), 

an example less similar to one already existing in the database is more 
informative (Figure 9(b)). 

Uncertainty sampling directly addresses the second property but  ignores the first. It 
differs from our method more crucially when more unsupervised examples remain, 
because these unsupervised examples have a greater influence on the computation 
of training utility. This can be seen in the comparative experiments in Section 4, in 
which our method outperformed uncertainty sampling to the highest degree in early 
stages. 

4.2.2 Committee-based Sampling. In committee-based sampling (Engelson and Da- 
gan 1996), which follows the "query by committee" principle (Seung, Opper, and 
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Figure 14 
The relation between the number of training data sampled and the accuracy of the system 
without using examples from IPAL. 

Sompolinsky 1992), the system selects samples based on the degree of disagreement 
between models randomly taken from a given training set (these models are called 
"committee members"). This is achieved by iteratively repeating the steps given below, 
in which the number of committee members is given as two without loss of generality: 

° 

2. 

. 

draw two models randomly, 

classify unsupervised example x according to each model, producing 
classifications C1 and C2, 

if C1 # C2 (the committee members disagree), select x for the training of 
the system. 

Figure 15 shows a typical disparity evident between committee-based sampling 
and our sampling method. The basic notation in this figure is the same as in Figure 7, 
and both x and y denote unsupervised examples, or more formally D = {el, e2}, and 
X = {x, y}. Assume a pair of committee members {el} and {e2 } have been selected from 
the database D. In this case, the committee members disagree as to the interpretations 
of both x and y, and consequently, either example can potentially be selected as a 
sample for the next iteration. In fact, committee-based sampling tends to require a 
number of similar examples (similar to el and y) in the database, otherwise committee 
members taken from the database will never agree. This is in contrast to our method, in 
which similar examples are less informative. In our method, therefore, x is preferred to 
y as a sample. This contrast can also correlate to the fact that committee-based sampling 
is currently applied to statistics-based language models (HMM classifiers), in other 
words, statistical models generally require that the distribution of the training data 
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_sense 1 

s 
sense 2 

Figure 15 
A case where either x or y can be selected in committee-based sampling. 

reflects that of the overall text. Through this argument,  one can assume that committee- 
based sampling is better suited to statistics-based systems, while our method is more 
suitable for example-based systems. 

Engelson and Dagan (1996) criticized uncertainty sampling (Lewis and Gale 1994), 
which they call a "single model"  approach, as distinct from their "multiple model"  
approach: 

sufficient statistics may yield an accurate 0.51 probability estimate for a class c in 
a given example, making it certain that c is the appropriate classificationJ 3 
However, the certainty that c is the correct classification is low, since there is a 
0.49 chance that c is the wrong class for the example. A single model can be used 
to estimate only the second type of uncertainty, which does not correlate directly 
with the utility of additional training. (p. 325) 

We note that this criticism cannot be applied to our sampling method,  despite 
the fact that our method falls into the category of a single model  approach. In our 
sampling method, given sufficient statistics, the increment of the certainty degree for 
unsupervised examples, i.e., the training utility of additional supervised examples, 
becomes small (theoretically, for both example-based and statistics-based systems). 
Thus, the utility factor can be considered to correlate directly with additional training, 
for our method.  

5. Conclus ion  

Corpus-based approaches have recently pointed the way  to a promising trend in word 
sense disambiguation. However, these approaches tend to require a considerable over- 
head for supervision in constructing a large-sized database, additionally resulting in 
a computational  overhead to search the database. To overcome these problems, our 
method,  which is currently applied to an example-based verb sense disambiguation 
system, selectively samples a smaller-sized subset from a given example set. This 
method is expected to be applicable to other example-based systems. Applicability for 
other types of systems needs to be further explored. 

The process basically iterates through two phases: (normal) word sense disam- 
biguation and a training phase. During the disambiguation phase, the system is pro- 
vided with sentences containing a polysemous verb, and searches the database for the 

13 By appropriate classification, Engelson and Dagan mean the classification given by a perfectly trained 
model. 
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most semantically similar example to the input (nearest neighbor resolution). There- 
after, the verb is disambiguated by superimposing the sense of the verb appearing in 
the supervised example. The similarity between the input and an example, or more 
precisely the similarity between the case fillers included in them, is computed based on 
an existing thesaurus. In the training phase, a sample is then selected from the system 
outputs and provided with the correct interpretation by a human expert. Through 
these two phases, the system iteratively accumulates supervised examples into the 
database. The critical issue in this process is to decide which example should be 
selected as a sample in each iteration. To resolve this problem, we considered the 
following properties: (a) an example that neighbors more unsupervised examples is 
more influential for subsequent training, and therefore more informative, and (b) since 
our verb sense disambiguation is based on nearest neighbor resolution, an example 
similar to one already existing in the database is redundant. Motivated by these prop- 
erties, we introduced and formalized the concept of training utility as the criterion 
for example selection. Our sampling method always gives preference to that example 
which maximizes training utility. 

We reported on the performance of our sampling method by way of experiments 
in which we compared our method with random sampling, uncertainty sampling 
(Lewis and Gale 1994), and committee-based sampling (Engelson and Dagan 1996). 
The result of the experiments showed that our method reduced both the overhead 
for supervision and the overhead for searching the database to a larger degree than 
any of the above three methods, without degrading the performance of verb sense 
disambiguation. Through the experiment and discussion, we claim that uncertainty 
sampling considers property (b) mentioned above, but lacks property (a). We also 
claim that committee-based sampling differs from our sampling method in terms of 
its suitability to statistics-based systems as compared to example-based systems. 
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