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A new method for automatically acquiring case frame patterns from large corpora is proposed. 
In particular, the problem of generalizing values of a case frame slot for a verb is viewed as 
that of estimating a conditional probability distribution over a partition of words, and a new 
generalization method based on the Minimum Description Length (MDL) principle is proposed. 
In order to assist with efficiency, the proposed method makes use of an existing thesaurus and 
restricts its attention to those partitions that are present as "cuts" in the thesaurus tree, thus 
reducing the generalization problem to that of estimating a "tree cut model" of the thesaurus tree. 
An efficient algorithm is given, which provably obtains the optimal tree cut model for the given 
frequency data of a case slot, in the sense of MDL. Case frame patterns obtained by the method 
were used to resolve PP-attachment ambiguity. Experimental results indicate that the proposed 
method improves upon or is at least comparable with existing methods. 

1. Introduction 

We address the problem of automatically acquiring case frame patterns (selectional 
patterns, subcategorization patterns) from large corpora. A satisfactory solution to this 
problem would have a great impact on various tasks in natural language processing, 
including the structural disambiguation problem in parsing. The acquired knowledge 
would also be helpful for building a lexicon, as it would provide lexicographers with 
word usage descriptions. 

In our view, the problem of acquiring case frame patterns involves the following 
two issues: (a) acquiring patterns of individual case frame slots; and (b) learning 
dependencies that may exist between different slots. In this paper, we confine ourselves 
to the former issue, and refer the interested reader to Li and Abe (1996), which deals 
with the latter issue. 

The case frame (case slot) pattern acquisition process consists of two phases: extrac- 
tion of case frame instances from corpus data, and general ization of those instances to 
case frame patterns. The generalization step is needed in order to represent the input 
case frame instances more compactly as well as to judge the (degree of) acceptability 
of unseen case frame instances. For the extraction problem, there have been various 
methods proposed to date, which are quite adequate (Hindle and Rooth 1991; Grish- 
man and Sterling 1992; Manning 1992; Utsuro, Matsumoto, and Nagao 1992; Brent 
1993; Smadja 1993; Grefenstette 1994; Briscoe and Carroll 1997). The generalization 
problem, in contrast, is a more challenging one and has not been solved completely. A 
number of methods for generalizing values of a case frame slot for a verb have been 
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proposed. Some of these methods make use of prior knowledge in the form of an 
existing thesaurus (Resnik 1993a, 1993b; Framis 1994; Almuallim et al. 1994; Tanaka 
1996; Utsuro and Matsumoto 1997), while others do not rely on any prior knowl- 
edge (Pereira, Tishby, and Lee 1993; Grishman and Sterling 1994; Tanaka 1994). In this 
paper, we propose a new generalization method, belonging to the first of these two 
categories, which is both theoretically well-motivated and computationally efficient. 

Specifically, we formalize the problem of generalizing values of a case frame slot 
for a given verb as that of estimating a conditional probability distribution over a 
partition of words, and propose a new generalization method based on the Minimum 
Description Length principle (MDL): a principle of data compression and statistical 
estimation from information theory. 1 In order to assist with efficiency, our method 
makes use of an existing thesaurus and restricts its attention on those partitions that 
are present as "cuts" in the thesaurus tree, thus reducing the generalization problem 
to that of estimating a "tree cut model" of the thesaurus tree. We then give an efficient 
algorithm that provably obtains the optimal tree cut model for the given frequency data 
of a case slot, in the sense of MDL. In order to test the effectiveness of our method, we 
conducted PP-attachment disambiguation experiments using the case frame patterns 
obtained by our method. Our experimental results indicate that the proposed method 
improves upon or is at least comparable to existing methods. 

The remainder of this paper is organized as follows: In Section 2, we formalize the 
problem of generalizing values of a case frame slot as that of estimating a conditional 
distribution. In Section 3, we describe our MDL-based generalization method. In Sec- 
tion 4, we present our experimental results. We then give some concluding remarks 
in Section 5. 

2. The Problem 

2.1 The Data Sparseness Problem 
Suppose that the data available to us are of the type shown in Table 1, which are slot 
values for a given verb (verb,slot_name,slot_value triples) automatically extracted from 
a corpus using existing techniques. By counting the frequency of occurrence of each 
noun at a given slot of a verb, the frequency data shown in Figure 1 can be obtained. 
We will refer to this type of data as co-occurrence data. The problem of generalizing 
values of a case frame slot for a verb (or, in general, a head) can be viewed as the 
problem of learning the underlying conditional probability distribution that gives 
rise to such co-occurrence data. Such a conditional distribution can be represented by 
a probability model that specifies the conditional probability P(n I v, r) for each n in 
the set of nouns .M = {nl, n2 . . . . .  nN}, V in the set of verbs V = {vl, v2 . . . . .  Vv}, and r 
in the set of slot names T~ = {rl, r2 . . . . .  rR}, satisfying: 

P(n Iv, r) = 1. (1) 
nGM 

This type of probability model is often referred to as a word-based model. Since the 
number of probability parameters in word-based models is large (O(N. V. R)), accurate 

1 Recently, MDL and related techniques have become popular in corpus-based natural language 
processing and other related fields (Ellison 1991, 1992; Cartwright and Brent 1994; Stolcke and 
Omohundro 1994; Brent, Murthy, and Lundberg 1995; Ristad and Thomas 1995; Brent and Cartwright 
1996; Grunwald 1996). In this paper, we introduce MDL into the context of case frame pattern 
acquisition. 
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Table 1 
Example (verb, slot_name, 
slot_value) triple data. 

verb slot_name slot_value 

fly argl bee 
fly argl bird 
fly argl bird 
fly argl crow 
fly argl bird 
fly argl eagle 
fly argl bee 
fly argl eagle 
fly argl bird 
fly argl crow 

"Freq." - -  

swallow crow eagle bird bug bee insect 

Figure 1 
Frequency data for the subject slot of verb fly. 

estimation of a word-based model is difficult with the data size that is available in 
practice--a problem usually referred to as the data sparseness problem. For example, 
suppose that we employ the maximum-likelihood estimation (or MLE for short) to 
estimate the probability parameters of a conditional probability distribution, as de- 
scribed above, given the co-occurrence data in Figure 1. In this case, MLE amounts 
to estimating the parameters by simply normalizing the frequencies so that they sum 
to one, giving, for example, the estimated probabilities of 0, 0.2, and 0.4 for swallow, 
eagle, and bird, respectively (see Figure 2). Since in general the number of parameters 
exceeds the size of data that is typically available, MLE will result in estimating most 
of the probability parameters to be zero. 

To address this problem, Grishman and Sterling (1994) proposed a method of 
smoothing conditional probabilities using the probability values of similar words, 
where the similarity between words is judged based on co-occurrence data (see also 
Dagan, Marcus, and Makovitch [1992] and Dagan, Pereira, and Lee [1994]). More 
specifically, conditional probabilities of words are smoothed by taking the weighted 
average of those of similar words using the similarity measure as the weights. The 
advantage of this approach is that it does not rely on any prior knowledge, but it 
appears difficult to find a smoothing method that is both efficient and theoretically 
sound. As an alternative, a number of authors have proposed the use of class-based 
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Figure 2 
Word-based distribution estimated using MLE. 

models, which assign (conditional) probability values to (existing) classes of words, 
rather than individual words. 

2.2 Class-based Models 
An example of the class-based approach is Resnik's method of generalizing values of 
a case frame slot using a thesaurus and the so-called selectional association measure 
(Resnik 1993a, 1993b). The selectional association, denoted A(C I v, r), is defined as 
follows: 

P(CIv ,  r) (2) 
A(C I v, F) = P(C I v, F) x log P(C) 

where C is a class of nouns present in a given thesaurus, v is a verb and r is a slot name, 
as described earlier. In generalizing a given noun n to a noun  class, this method selects 
the noun  class C having the maximum A(C I v, r), among all super classes of n in a 
given thesaurus. This method is based on an interesting intuition, but  its interpretation 
as a method of estimation is not clear. We propose a class-based generalization method 
whose performance as a method of estimation is guaranteed to be near optimal. 

We define the class-based model  as a model that consists of a partition of the set 
.N" of nouns, and a parameter associated with each member  of the partition. Here, a 
partition F of .M is any collection of mutual ly  disjoint subsets of iV" that exhaustively 
cover N .  The parameters specify the conditional probability P(C I v, r) for each class 
(subset) C in that partition, such that 

P(CIv ,  r) = 1. (3) 
CEF 

Within a given class C, it is assumed that each noun  is generated with equal probability, 
namely 

1 
Vn E C: P(n l v, r) = ~ x P(C I v, F). (4) 

Here, we assume that a word belongs to a single class. In practice, however, 
many  words have sense ambiguity and a word can belong to several different classes, 
e.g., bird is a member  of both BIRD and MEAT. Thorough treatment of this problem 
is beyond the scope of the present paper; we simply note that one can employ an 
existing word-sense disambiguation technique (e.g.,Yarowsky 1992, 1994) in prepro- 
cessing, and use the disambiguated word senses as virtual words in the following 
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ANIMAL 

BIRD INSECT 

swallow crow eagle bird bug bee insect 

Figure 3 
An example thesaurus. 

case-pattern acquisition process. It is also possible to extend our  model  so that each 
word  probabilistically belongs to several different classes, which would  allow us to 
resolve both structural and word-sense ambiguities at the time of disambiguation. 2 
Employing probabilistic membership,  however,  would  make the estimation process 
significantly more computat ional ly  demanding.  We therefore leave this issue as a fu- 
ture topic, and employ  a simple heuristic of equally distributing each word  occurrence 
in the data to all of its potential  word  senses in our  experiments.  Since our  learning 
method  based on MDL is robust against noise, this should not  significantly degrade 
performance.  

2.3 The Tree Cut Model  
Since the number  of partitions for a given set of nouns  is extremely large, the problem 
of selecting the best model  from among all possible class-based models  is most  likely 
intractable. In this paper, we reduce the number  of possible partitions to consider by  
using a thesaurus as prior  knowledge,  following a basic idea of Resnik's (1992). 

In particular, we restrict our  attention to those partitions that exist within the 
thesaurus in the form of a cut. By thesaurus, we mean  a tree in which each leaf node  
stands for a noun,  while each internal node represents a noun  class, and dominat ion 
stands for set inclusion (see Figure 3). A cut in a tree is any set of nodes in the tree 
that defines a parti t ion of the leaf nodes, viewing each node  as representing the set 
of all leaf nodes it dominates.  For example, in the thesaurus of Figure 3, there are 
five cuts: [ANIMAL], [BIRD, INSECT], [BIRD, bug, bee, insect], [swallow, crow, eagle, 
bird, INSECT], and [swallow, crow, eagle, bird, bug, bee, insect]. The class of tree cut 
models  of a fixed thesaurus tree is then obtained by  restricting the parti t ion P in the 
definition of a class-based model  to be those partit ions that are present  as a cut in that 
thesaurus tree. 

Formally, a tree cut model  M can be represented by  a pair consisting of a tree cut 
lP and a probabili ty parameter  vector 0 of the same length, that is: 

V = (r,  e) (5) 

where lP and 0 are: 

r = [C1, C2 . . . . .  Ck+l], e = [P(C1), P(C2) . . . . .  P(Ck+l)] (6) 

k+l where  C1, C2 . . . . .  Ck+l is a cut in the thesaurus tree and ~i=1 P(Ci) = 1 is satisfied. 
For simplicity we sometimes write P(Ci), i = 1 . . . . .  (k + 1) for P(Ci [ v, r). 

If we use MLE for the parameter  estimation, we can obtain five tree cut models  
from the co-occurrence data in Figure 1; Figures 4-6 show three of these. For example,  

2 The model used by Pereira, Tishby, and Lee (1993) is indeed along this direction. 
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Figure 4 
A tree cut model with [swallow, crow, eagle, bird, bug, bee, insect]. 
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swa'll .... ow eagle bi'rd bug bee ins'ect 

Figure 5 
A tree cut model with [BIRD, bug, bee, insect]. 

~- ([BIRD, bug, bee, insect], [0.8,0,0.2,0]) shown in Figure 5 is one such tree cut 
model. Recall that M defines a conditional probability distribution PM(n I v,r) as 
follows: For any noun that is in the tree cut, such as bee, the probability is given as 
explicitly specified by the model,  i.e., PM(bee I flY, argl) = 0.2. For any class in the tree 
cut, the probability is distributed uniformly to all nouns dominated by it. For example, 
since there are four nouns that fall under the class BIRD, and swallow is one of them, 
the probability of swallow is thus given by Pt~(swallow I flY, argl) = 0.8/4 = 0.2. Note 
that the probabilities assigned to the nouns under BIRD are smoothed, even if the 
nouns have different observed frequencies. 

We have thus formalized the problem of generalizing values of a case frame slot as 
that of estimating a model  from the class of tree cut models  for some fixed thesaurus 
tree; namely, selecting a model  that best explains the data from among the class of 
tree cut models.  

3. Generalization Method Based On MDL 

The question now becomes what strategy (criterion) we  should employ to select the best 
tree-cut model. We adopt the Minimum Description Length principle (Rissanen 1978, 
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Figure 6 
A tree cut model with [BIRD, INSECT]. 

"Prob." - -  

Table 2 
Number of parameters and KL distance from the empirical distribution for the five 
tree cut models. 

P Number of Parameters KL Distance 

[ANIMAL] 
[BIRD, INSECT] 
[BIRD, bug, bee, insect] 
[swallow, crow, eagle, bird, INSECT] 
[swallow, crow, eagle, bird, bug, bee, insect] 

0 0.89 
1 0.72 
3 0.4 
4 0.32 
6 0 

1983, 1984, 1986, 1989), which has various desirable properties, as will be described 
later. 3 

MDL is a principle of data compression and statistical estimation from informa- 
tion theory, which states that the best probability model  for given data is that which 
requires the least code length in bits for the encoding of the model  itself and the given 
data observed through it. 4 The former is the model description length and the latter 
the data description length. 

In our current problem, it tends to be the case, in general, that a model  nearer the 
root of the thesaurus tree, such as that in Figure 6, is simpler (in terms of the number  
of parameters), but  tends to have a poorer  fit to the data. In contrast, a model  nearer 
the leaves of the thesaurus tree, such as that in Figure 4, is more complex, but  tends 
to have a better fit to the data. Table 2 shows the number  of free parameters  and 
the KL distance from the empirical distribution of the data (namely, the word-based 
distribution estimated by MLE) shown in Figure 2 for each of the five tree cut models. 5 
In the table, one can see that there is a trade-off between the simplicity of a model  
and the goodness  of fit to the data. 

In the MDL framework,  the model  description length is an indicator of model  

3 Estimation strategies related to MDL have been independently proposed and studied by various 
authors (Solomonoff 1964; Wallace and Boulton 1968; Schwarz 1978; Wallace and Freeman 1992). 

4 We refer the interested reader to Quinlan and Rivest (1989) for an introduction to the MDL principle. 
5 The KL distance (alsO known as KL-divergence or relative entropy), which is widely used in 

information theory and statistics, is a measure of distance between two distributions (e.g., Cover and 
Thomas 1991). It is always normegative and is zero if and only if the two distributions are identical, 
but is asymmetric and hence not a metric (the usual notion of distance). 
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complexity, while the data description length indicates goodness of fit to the data. The 
MDL principle stipulates that the model that minimizes the sum total of the description 
lengths should be the best model (both for data compression and statistical estimation). 

In the remainder of this section, we will describe how we apply MDL to our 
current problem. We will then discuss the rationale behind using MDL in our present 
context. 

3.1 Calculat ing  D e s c r i p t i o n  Length  
We first show how the description length for a model is calculated. We use S to 
denote a sample (or set of data), which is a multiset of examples, each of which is an 
occurrence of a noun at a given slot r of a given verb v (i.e., duplication is allowed). 
We let ISI denote the size of S as a multiset, and n E S indicate the inclusion of n 
in S as a multiset. For example, the column labeled slot_value in Table 1 represents a 
sample S for the subject slot offly, and in this case ISI = 10. 

Given a sample S and a tree cut F, we employ MLE to estimate the parame- 
ters of the corresponding tree cut model ~,I = (F, 0), where 6 denotes the estimated 
parameters. 

The total description length L(/~,I, S) of the tree cut model/vl  and the sample S 
observed through M is computed as the sum of the model description length L(P), 
parameter description length L(0 I P), and data description length L(S I F, 6): 

L(M,S) = L((F,6),S) = L(r) + L(6 I r )  +L(Str,6). (7) 

Note that we sometimes refer to L(F) + L(0 I F) as the model description length. 
The model description length L(F) is a subjective quantity, which depends on the 

coding scheme employed. Here, we choose to assign the same code length to each cut 
and let: 

L(F) = log IG[ (8) 

where ~ denotes the set of all cuts in the thesaurus tree T. 6 This corresponds to assum- 
ing that each tree cut model is equally likely a priori, in the Bayesian interpretation of 
MDL. (See Section 3.4.) 

The parameter description length L(O I F) is calculated by: 

k 
L(0 I r )  = ~ x log IsI (9) 

where ISI denotes the sample size and k denotes the number of free parameters in the 
tree cut model, i.e., k equals the number of nodes in P minus one. It is known to be 
best to use this number of bits to describe probability parameters in order to minimize 
the expected total description length (Rissanen 1984, 1986). An intuitive explanation 
of this is that the standard deviation of the maximum-likelihood estimator of each 
parameter is of the order ~ ,  and hence describing each parameter using more than 

1 1 log ISI bits would be wasteful for the estimation accuracy possible with - log  x / ~  - 2 

the given sample size. 
Finally, the data description length L(S I F, 0) is calculated by: 

L(S I r ,  0) = - ~ log P(n) (10) 
nES 

6 Here and throughout, log denotes the logarithm to the base 2. For reasons why Equation 8 holds, see, 
for example, Quinlan and Rivest (1989). 
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Table 3 
Calculating the description length for the 
model of Figure 5. 

C B I R D  bug bee insect 

f(C) 8 0 2 0 
ICI 4 1 1 1 
P(C) 0.8 0.0 0.2 0.0 
P(n) 0.2 0.0 0.2 0.0 

P [BIRD, bug, bee, insect] 

L(0 1 r) (47l) x log 10 = 4.98 
L(S I P,~) - ( 2 + 4 + 2 + 2 )  x log0.2 = 23.22 

where for simplicity we write P(n) for PM(n [ v, r). Recall that P(n) is obtained by 
MLE, namely, by normalizing the frequencies: 

1 
P(n) = ~ x P(C) (11) 

for each C c P and each n E C, where for each C c P: 

= d ( C )  (12) 
ISI 

wheref (C)  denotes the total frequency of nouns in class C in the sample S, and F is a 
tree cut. We note that, in fact, the maximum-likelihood estimate is one that minimizes 
the data description length L(S I F, 0). 

With description length defined in the above manner, we wish to select a model 
with the min imum description length and output  it as the result of generalization. 
Since we assume here that every tree cut has an equal L(P), technically we need only 
calculate and compare L'(/[d, S) = L(~ I F) + L(S t F, ~) as the description length. For 
simplicity, we will sometimes write just L'(F) for L'(7[/I, S), where I ~ is the tree cut of 
M, when ~,I and S are clear from context. 

The description lengths for the data in Figure 1 using various tree cut models 
of the thesaurus tree in Figure 3 are shown in Table 4. (Table 3 shows how the de- 
scription length is calculated for the model of tree cut ]BIRD, bug, bee, insect].) These 
figures indicate that the model in Figure 6 is the best model, according to MDL. Thus, 
given the data in Table 1 as input, the generalization result shown in Table 5 is ob- 
tained. 

3.2 An Efficient Algorithm 
In generalizing values of a case f lame slot using MDL, we could, in principle, calculate 
the description length of every possible tree cut model and output  a model  with the 
min imum description length as the generalization result, if computat ion time were of 
no concern. But since the number  of cuts in a thesaurus tree is exponential in the size 
of the tree (for example, it is easy to verify that for a complete b-ary tree of depth d it is 

of the order o(2ba-1)), it is impractical to do so. Nonetheless, we were able to devise a 
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Table 4 
Description length of the five tree cut models. 

r L(~ I r)  L(S ] r,~) L'(P) 

[ANIMAL] 0 28.07 28.07 
[BIRD, INSECT] 1.66 26.39 28.05 
[BIRD, bug, bee, insect] 4.98 23.22 28.20 
[swallow, crow, eagle, bird, INSECT] 6.64 22.39 29.03 
[swallow, crow, eagle, bird, bug, bee, insect] 9.97 19.22 29.19 

Table 5 
Generalization result. 

verb slot~name slot_value probability 

fly argl BIRD 0.8 
fly argl INSECT 0.2 

Here we  let t denote a thesaurus (sub)tree, root(t) the root of the tree t. 
Initially t is set to the entire tree. 
Also input  to the algorithm is a co-occurrence data. 
algorithm Find-MDL(t) := cut 
1. if 
2. t is a leaf node 
3. then 
4. retum([t]) 
5. else 
6. For each child tree ti of t ci :=Find-MDL(ti) 
7. c:= append(ci) 
8. if 
9. L'([root(t)]) < L'(c) 
10. then 
11. return([root(t)]) 
12. else 
13. return(c) 

Figure 7 
The algorithm: Find-MDL. 

simple and efficient algorithm based on dynamic programming,  which is guaranteed 
to find a model  with the min imum description length. 

Our algorithm, which we call Find-MDL, recursively finds the optimal MDL model  
for each child subtree of a given tree and appends  all the optimal models  of these sub- 
trees and returns the appended  models,  unless collapsing all the lowerqevel  optimal 
models  into a model  consisting of a single node (the root node of the given tree) re- 
duces the total description length, in which case it does so. The details of the algorithm 
are given in Figure 7. Note  that for simplicity we  describe Find-MDL as outputt ing a 
tree cut, rather than a complete tree cut model.  

Note  in the above algorithm that the parameter  description length is calculated as 
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L'([ARTIFACT])=41.09 
L'([VEHICLE,AIRPLANE])=40.97 

ENTITY 
L'([AIR PLAN E])=32.27 

r,airplane])=32.72 

R O ~ i N S  A a ~ 5A'C"I . . . . . . . . .  .. 7o.2-. .  • 0.23 
BI CT l VEHICLE AIRPLANE 

swallow crow eagle bird bug ~lS~"~insect car bike jet helicopter airplane 

f(swallow)=4,f(crow)=4,f(eagle)=4,f(bird)=6,f(bee)=8,f(car)=l ,f(jet)=4,f(airplane)=4 

Figure 8 
An example application of Find-MDL. 

log ISI, where k + 1 is the number of nodes in the current cut, both when t is the 2 
entire tree and when it is a proper subtree. This contrasts with the fact that the number 
of free parameters is k for the former, while it is k + 1 for the latter. For the purpose 
of finding a tree cut with the minimum description length, however, this distinction 
can be ignored (see Appendix A). 

Figure 8 illustrates how the algorithm works (on the co-occurrence data shown 
at the bottom): In the recursive application of Find-MDL on the subtree rooted at 
AIRPLANE, the if-clause on line 9 evaluates to true since L'([AIRPLANE]) = 32.27, 
L'(~et, helicopter, airplane]) = 32.72, and hence [AIRPLANE] is returned. Then in the 
call to Find-MDL on the subtree rooted at ARTIFACT, the same if-clause evaluates 
to false since L'([VEHICLE, AIRPLANE]) = 40.97, L'([ARTIFACT]) = 41.09, and hence 
[VEHICLE, AIRPLANE] is returned. 

Concerning the above algorithm, we show that the following proposition holds: 

Proposition 1 
The algorithm Find-MDL terminates in time O(N x ISI), where N denotes the number 
of leaf nodes in the input thesaurus tree T and ISI denotes the input sample size, and 
outputs a tree cut model of T with the minimum description length (with respect to 
the encoding scheme described in Section 3.1). 

Here we will give an intuitive explanation of why the proposition holds, and give 
the formal proof in Appendix A. The MLE of each node (class) is obtained simply by 
dividing the frequency of nouns within that class by the total sample size. Thus, the 
parameter estimation for each subtree can be done independently from the estimation 
of the parameters outside the subtree. The data description length for a subtree thus 
depends solely on the tree cut within that subtree, and its calculation can be performed 
independently for each subtree. As for the parameter description length for a subtree, 
it depends only on the number of classes in the tree cut within that subtree, and hence 
can be computed independently as well. The formal proof proceeds by mathematical 
induction, which verifies that the optimal model in any (sub)tree is either the model 
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consisting of the root of the tree or the model obtained by appending the optimal 
submodels for its child subtrees. 7 

3.3 Estimation, Generalization, and MDL 
When a discrete model (a partition F of the set of nouns W" in our present context) is 
fixed, and the estimation problem involves only the estimation of probability parame- 
ters, the classic maximum-likelihood estimation (MLE) is known to be satisfactory. In 
particular, the estimation of a word-based model is one such problem, since the parti- 
tion is fixed and the size of the partition equals [.M[. Furthermore, for a fixed discrete 
model, it is known that MLE coincides with MDL: Given data S = {xi : i = 1 . . . . .  m } ,  

MLE estimates parameter P, which maximizes the likelihood with respect to the data; 
that is: 

m 

= arg mpax H P(xi) .  (13) 
i=1 

It is easy to see that P also satisfies: 

m 

= arg nun ~ - log P(xi) .  (14) 
i=1 

This is nothing but the MDL estimate in this case, since ~i~1 -log P(xi)  is the data 
description length. 

When the estimation problem involves model selection, i.e., the choice of a tree cut 
in the present context, MDUs behavior significantly deviates from that of MLE. This 
is because MDL insists on minimizing the sum total of the data description length 
and the model description length, while MLE is still equivalent to minimizing the data 
description length only. So, for our problem of estimating a tree cut model, MDL tends 
to select a model that is reasonably simple yet fits the data quite well, whereas the 
model selected by MLE will be a word-based model (or a tree cut model equivalent 
to the word-based modelS), as it will always manage to fit the data. 

In statistical terms, the superiority of MDL as an estimation method is related to 
the fact we noted earlier that even though MLE can provide the best fit to the given 
data, the estimation accuracy of the parameters is poor, when applied on a sample of 
modest size, as there are too many parameters to estimate. MLE is likely to estimate 
most parameters to be zero, and thus suffers from the data sparseness problem. Note 
in Table 4, that MDL avoids this problem by taking into account the model complexity 
as well as the fit to the data. 

MDL stipulates that the model with the minimum description length should be 
selected both for data compression and estimation. This intimate connection between 
estimation and data compression can also be thought of as that between estimation and 
generalization, since in order to compress information, generalization is necessary. In 
our current problem, this corresponds to the generalization of individual nouns present 
in case frame instances in the data as classes of nouns present in a given thesaurus. For 
example, given the thesaurus in Figure 3 and frequency data in Figure 1, we would 

7 The process of f inding the MDL model  tends to be computationally demanding  and is often 
intractable. When  the model  class under  consideration is restricted to tree structures, however,  dynamic 
p rogramming  is often applicable and the MDL model  can be efficiently found. For example, Rissanen 
(1995) has devised an algorithm for learning decision trees. 

8 Consider, for example,  the case when  the co-occurrence data is given as 
f ( swa l low)  = 2,f(crow) = 2,f(eagle) = 2,f(bird) = 2 for the problem in Section 2. 
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like our system to judge that the class BIRD and the noun bee can be the subject slot of 
the verb fly. The problem of deciding whether to stop generalizing at BIRD and bee, or 
generalizing further to ANIMAL has been addressed by a number of authors (Webster 
and Marcus 1989; Velardi, Pazienza, and Fasolo 1991; Nomiyama 1992). Minimization 
of the total description length provides a disciplined criterion to do this. 

A remarkable fact about MDL is that theoretical findings have indeed verified that 
MDL, as an estimation strategy, is near optimal in terms of the rate of convergence of 
its estimated models to the true model as data size increases. When the true model 
is included in the class of models considered, the models selected by MDL converge 

to the true model at the rate of O/~C:~9~_i~!~ where k* is the number of parameters in 2.1Sl J' 
the true model, and [S] the data size, which is near optimal (Barron and Cover 1991; 
Yamanishi 1992). 

Thus, in the current problem, MDL provides (a) a way of smoothing probability 
parameters to solve the data sparseness problem, and at the same time, (b) a way 
of generalizing nouns in the data to noun classes of an appropriate level, both as a 
corollary to the near optimal estimation of the distribution of the given data. 

3.4 The Bayesian Interpretation of MDL and the Choice of Encoding Scheme 
There is a Bayesian interpretation of MDL: MDL is essentially equivalent to the "pos- 
terior mode" in the Bayesian terminology (Rissanen 1989). Given data S and a number 
of models, the Bayesian estimator (posterior mode) selects a model M that maximizes 
the posterior probability: 

= argn~x(P(M) .  P(S I M))  (15) 

where P(M) denotes the prior probability of the model M and P(S [ M) the probability 
of observing the data S given M. Equivalently, M satisfies 

~'I = argn~m(- logP(M) - logP(S I M)). (16) 

This is equivalent to the MDL estimate, if we take - log P(M) to be the model descrip- 
tion length. Interpreting - log P(M) as the model description length translates, in the 
Bayesian estimation, to assigning larger prior probabilities on simpler models, since it 
is equivalent to assuming that P(M) = (½)t(a), where I(M) is the description length of 
M. (Note that if we assign uniform prior probability P(M) to all models M, then (15) 
becomes equivalent to (13), giving the maximum-likelihood estimate.) 

Recall, that in our definition of parameter description length, we assign a shorter 
parameter description length to a model with a smaller number of parameters k, 
which admits the above interpretation. As for the model description length (for tree 
cuts) we assigned an equal code length to each tree cut, which translates to placing 
no bias on any cut. We could have employed a different coding scheme assigning 
shorter code lengths to cuts nearer the root. We chose not to do so partly because, for 
sufficiently large sample sizes, the parameter description length starts dominating the 
model description length anyway. 

Another important property of the definition of description length is that it af- 
fects not only the effective prior probabilities on the models, but also the procedure 
for computing the model minimizing the measure. Indeed, our definition of model 
description length was chosen to be compatible with the dynamic programming tech- 
nique, namely, its calculation is performable locally for each subtree. For a different 
choice of coding scheme, it is possible that a simple and efficient MDL algorithm like 
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Find-MDL may  not  exist. We believe that our  choice of model  description length is 
der ived from a natural  encoding scheme with reasonable interpretation as Bayesian 
prior, and at the same time allows an efficient algori thm for finding a model  with the 
min imum description length. 

3.5 The Uniform Distribution Assumption and the Level of Generalization 
The uniform distribution assumption made  in (4), namely  that all nouns  belonging 
to a class contained in the tree cut model  are assigned the same probability, seems 
to be rather stringent. If one were to insist that the model  be exactly accurate, then 
it would  seem that the true model  would  be the word-based model  resulting from 
no generalization at all. If we allow approximations,  however,  it is likely that some 
reasonable tree cut model  with the uni form probabili ty assumption will be a good 
approximat ion of the true distribution; in fact, a best model  for a given data size. As 
we remarked earlier, as MDL balances be tween the fit to the data and the simplicity 
of the model ,  one can expect  that the model  selected by  MDL will be a reasonable 
compromise.  

Nonetheless,  it is still a shortcoming of our  model  that it contains an oversimplified 
assumption,  and the problem is especially pressing when  rare words  are involved. Rare 
words  may  not  be observed at a slot of interest in the data simply because they are 
rare, and not  because they are unfit for that particular slot. 9 To see h o w  rare is too 
rare for our  method,  consider the following example. 

Suppose that the class BIRD contains 10 words,  bird, swallow, crow, eagle, parrot, 
waxwing, etc. Consider co-occurrence data having 8 occurrences of bird, 2 occurrences 
of swallow, 1 occurrence of crow, 1 occurrence of eagle, and 0 occurrence of all other  
words,  as part  of, say, 100 data obtained for the subject slot of verb fly. For this data 
set, our  me thod  would  select the model  that generalizes bird, swallow, etc. to the class 
BIRD, since the sum of the data and parameter  description lengths for the BIRD subtree 
is 76.57 + 3.32 = 79.89 if generalized, and 53.73 + 33.22 = 86.95 if not  generalized. For 
comparison,  consider the data with 10 occurrences of bird, 3 occurrences of swallow 
and 1 occurrence of crow, and 0 occurrence of all other words,  also as part  of 100 
data for the subject slot of fly. In this case, our  me thod  would  select the model  that 
stops generalizing at bird, swallow, eagle, etc., because the description length for the 
same subtree now is 86.22 + 3.32 = 89.54 if generalized, and 55.04 + 33.22 = 88.26 if 
not generalized. These examples seem to indicate that our  MDL-based me thod  would  
choose to generalize, even when  there are relatively large differences in frequencies of 
words  within a class, but  knows enough to stop generalizing w h en  the discrepancy 
in frequencies is especially noticeable (relative to the given sample size). 

4. Experimental Results 

4.1 Experiment 1: A Qualitative Evaluation 
We applied our  generalization method  to large corpora and inspected the obtained 
tree cut models  to see if they agreed with h u m a n  intuition. In our  experiments,  we 
extracted verbs and their case frame slots (verb, slot_name, slot_value triples) from the 
tagged texts of the Wall Street Journal corpus (ACL/DCI  CD-ROM1) consisting of 
126,084 sentences, using existing techniques (specifically, those in Smadja [1993]), then 

9 There are several possible measures that one could take to address this issue, including the 
incorporation of absolute frequencies of the words (inside and outside the particular slot in question). 
This is outside the scope of the present paper, and we simply refer the interested reader to one possible 
approach (Abe and Li 1996). 
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Table 6 
Example input data (for the direct object slot of eat). 

eat arg2 food 3 eat arg2 lobster 1 eat arg2 seed 1 
eat arg2 heart 2 eat arg2 liver 1 eat arg2 plant 1 
eat arg2 sandwich 2 eat arg2 crab 1 eat arg2 elephant 1 
eat arg2 meal 2 eat arg2 rope 1 eat arg2 seafood 1 
eat arg2 amount 2 eat arg2 horse 1 eat arg2 mushroom 1 
eat arg2 night 2 eat arg2 bug 1 eat arg2 ketchup 1 
eat arg2 lunch 2 eat arg2 bowl 1 eat arg2 sawdust 1 
eat arg2 snack 2 eat arg2 month 1 eat arg2 egg 1 
eat arg2 jam 2 eat arg2 effect 1 eat arg2 sprout 1 
eat arg2 diet 1 eat arg2 debt 1 eat arg2 nail 1 
eat arg2 pizza 1 eat arg2 oyster 1 

applied our  method  to generalize the slot_values. Table 6 shows some example triple 
data for the direct object slot of the verb eat. 

There were some extraction errors present  in the data, but  we chose not  to remove 
them, because in general there will always be extraction errors and realistic evaluat ion 
should leave them in. 

When generalizing, we used the noun  taxonomy of WordNet  (version 1.4) (Miller 
1995) as our  thesaurus. The noun  taxonomy of WordNet  has a structure of directed 
acyclic graph (DAG), and its nodes stand for a word  sense (a concept) and often 
contain several words  having the same word  sense. WordNet  thus deviates from our  
notion of thesaurus- -a  tree in which each leaf node stands for a noun,  each internal 
node  stands for the class of nouns  below it, and a noun  is uniquely  represented by  a 
leaf n o d e - - s o  we took a few measures to deal with this. 

First, we modified our  algori thm FInd-MDL so that it can be applied to a DAG; 
now, Find-MDL effectively copies each subgraph having multiple parents (and its 
associated data) so that the DAG is t ransformed to a tree structure. Note that with 
this modification it is no longer guaranteed that the output  model  is optimal. Next, 
we dealt heuristically with the issue of word-sense ambiguity by  equally dividing the 
observed frequency of a noun  between all the nodes containing that noun. Finally, 
when  an internal node contained nouns  actually occurring in the data, we assigned 
the .frequencies of all the nodes  below it to that internal node,  and excised the whole 
subtree (subgraph) below it. The last of these measures,  in effect, defines the "starting 
cut" of the thesaurus from which to begin generalizing. Since (word senses of) nouns  
that occur in natural  language tend to concentrate in the middle  of a taxonomy, the 
starting cut given by  this method  usually falls a round the middle  of the thesaurus. 1° 

Figure 9 shows the starting cut and the resulting cut in WordNet  for the direct 
object slot of eat with respect to the data in Table 6, where  / . . . /  denotes a node in 
WordNet.  The starting cut consists of nodes /p l an t . . . / , / f ood / , e t c ,  which are the high- 
est nodes containing values of the direct object slot of eat. S i n c e / f o o d / h a s  significantly 
higher frequencies than its n e i g h b o r s / s o l i d / a n d / f l u i d / ,  the generalization stops there 
according to MDL. In contrast, the nodes u n d e r / l i f e _ f o r m . . . / h a v e  relatively small dif- 
ferences in their frequencies, and thus they are generalized to the node / l i f e_ fo rm. . . / .  
The same is true of the nodes under  /artifact/. Since / . . - a m o u n t . . . /  has a much  

10 Cognitive scientists have observed that concepts in the middle of a taxonomy tend to be more 
important with respect to learning, recognition, and memory, and their linguistic expressions occur 
more frequently in natural language--a phenomenon known as basic level primacy. See Lakoff (1987). 
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Figure 9 
An example generalization, result (for the direct object slot of eat). 

higher frequency than its neighbors /time/ and {space), the generalization does not 
go up higher. All of these results seem to agree with human intuition, indicating that 
our method results in an appropriate level of generalization. 

Table 7 shows generalization results for the direct object slot of eat and some 
other arbitrarily selected verbs, where classes are sorted in descending order of their 
probability values. (Classes with probabilities less than 0.05 are discarded due to space 
limitations.) 

Table 8 shows the computation time required (on a SPARC "Ultra 1" work station) 
to obtain the results shown in Table 7. (The computation time for loading the WordNet 
was excluded since it need be done only once.) Even though the noun taxonomy of 
WordNet is a large thesaurus containing approximately 50,000 nodes, our method 
still manages to efficiently generalize case slots using it. The table also shows the 
average number of levels generalized for each slot, namely, the average number of 
links between a node in the starting cut and its ancestor node in the resulting cut. 
(For example, the number of levels generalized for /p lan t . . - /  is one in Figure 9.) One 
can see that a significant amount of generalization is performed by our method--the 
resulting tree cut is about 5 levels higher than the starting cut, on the average. 

4.2 Experiment 2: PP-Attachment Disambiguation 
Case frame patterns obtained by our method can be used in various tasks in natu- 
ral language processing. In this paper, we test its effectiveness in a structural (PP- 
attachment) disambiguation experiment. 

Disambiguation Methods. It has been empirically verified that the use of lexical semantic 
knowledge is effective in structural disambiguation, such as the PP-attachment prob- 
lem (Hobbs and Bear 1990; Whittemore, Ferrara, and Brunner 1990). There have been 
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Table 7 
Examples of generalization results. 

Class Probability Example Words 

Direct Object of eat 

(food,nutrient) 0.39 pizza, egg 
(life_form,organism,being,living_thing) 0.11 lobster, horse 
/measure,quantity, amount,quantum) 0.10 amount of 
(artifact,article,artefact) 0.08 as if eat rope 

Direct Object of buy 

(object, inanimate-object,physical-object / 0.30 computer, painting 
(asset) 0.10 stock, share 
(group,grouping) 0.07 company, bank 
(legal_document,legal_instrument,official_document .... ) 0.05 security, ticket 

Direct Object of .fly 

(entity) 0.35 airplane, flag, executive 
(linear_measure,long_measure) 0.28 mile 
/group,grouping) 0 . 0 8  delegation 

Direct Object of operate 

/group,grouping/ 0 . 1 3  company, fleet 
(act,human_action,human_activity) 0.13 flight, operation 
(structure,construction/ 0.12 center 
(abstraction) 0.11 service, unit 
(possession/ 0.06 profit, earnings 

Table 8 
Required computation time and number of generalized levels. 

Verb CPU Time (second) Average Number of Generalized Levels 

eat 1.00 5.2 
buy 0.66 4.6 
fly 1.11 6.0 
operate 0.90 5.0 

Average 0.92 5.2 

many  probabilistic methods proposed in the literature to address the PP-attachment 
problem using lexical semantic knowledge which, in our view, can be classified into 
three types. 

The first approach (Hindle and Rooth 1991, 1993) takes doubles of the form 
(verb, prep) and (nounl, prep), like those in Table 9, as training data to acquire semantic 
knowledge and judges the attachment sites of the prepositional phrases in quadru- 
ples of the form (verb, nounl, prep, noun2) e.g., (see, girl, with, telescope)--based on 
the acquired knowledge. Hindle and Rooth (1991) proposed the use of the lexical 
association measure calculated based on such doubles. More specifically, they esti- 
mate P(prep I verb) and P(prep [ noun1), and calculate the so-called t-score, which is 
a measure of the statistical significance of the difference between P(prep I verb) and 
P(prep [ nounl). If the t-score indicates that the former probability is significantly larger, 

233 



Computational Linguistics Volume 24, Number 2 

Table 9 
Example input data as doubles. 

see in 
see with 
girl with 
man with 

Table 10 
Example input data as triples. 

see in park 
see with telescope 
girl with scarf 
see with friend 
man with hat 

Table 11 
Example input data as quadruples and 
labels. 

see girl in park ADV 
see man with telescope ADV 
see girl with scarf ADN 

then the prepositional phrase is attached to verb, if the latter probability is significantly 
larger, it is attached to nounl, and otherwise no decision is made. 

The second approach (Sekine et al. 1992; Chang, Luo, and Su 1992; Resnik 1993a; 
Grishman and Sterling 1994; Alshawi and Carter 1994) takes triples (verb, prep, noun2) 
and (nounl, prep, noun2), like those in Table 10, as training data for acquiring semantic 
knowledge and performs PP-attachment disambiguation on quadruples. For example, 
Resnik (1993a) proposes the use of the selectional association measure calculated based 
on such triples, as described in Section 2. More specifically, his method compares 
maxclassi~noun2 A(Classi [ verb, prep) and maxclassi~no,m2 A(Classi I nounl,prep) to make 
disambiguation decisions. 

The third approach (Brill and Resnik 1994; Ratnaparkhi, Reynar, and Roukos 1994; 
Collins and Brooks 1995) receives quadruples (verb, noun1, prep, noun2) and labels indi- 
cating which way the PP-attachment goes, like those in Table 11, and learns a disam- 
biguation rule for resolving PP-attachment ambiguities. For example, Brill and Resnik, 
(1994) propose a method they call transformation-based error-driven learning (see also 
Brill [1995]). Their method first learns IF-THEN type rules, where the IF parts repre- 
sent conditions like (prep is with) and (verb is see), and the THEN parts represent 
transformations from (attach to verb) to (attach to nounl), or vice versa. The first rule 
is always a default decision, and all the other rules indicate transformations (changes 
of attachment sites) subject to various IF conditions. 

We note that, for the disambiguation problem, the first two approaches are basi- 
cally unsupervised learning methods, in the sense that the training data are merely 
positive examples for both types of attachments, which could in principle be extracted 
from pure corpus data with no human intervention. (For example, one could just 
use unambiguous sentences.) The third approach, on the other hand, is a supervised 
learning method, which requires labeled data prepared by a human being. 
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Table 12 
Number of different types of data. 

Training Data 

Average number of doubles per data set 91218.1 
Average number of triples per data set 91218.1 
Average number of quadruples per data set 21656.6 

Test Data 

Average number of quadruples per data set 820.4 

The generalization me thod  we propose falls into the second category, a l though it 
can also be used as a component  in a combined scheme with many  of the above meth- 
ods (see Brill and Resnik [1994], Alshawi and Carter [1994]). We estimate P(noun2 I 
verb, prep) and P(noun2 I nount, prep) from training data consisting of triples, and com- 
pare them: If the former exceeds the latter (by a certain margin) we attach it to verb, 
else if the latter exceeds the former (by the same margin) we attach it to noun1. 

In our  experiments,  described below, we compare  the performance of our  proposed  
method,  which we refer to as MDL, against the methods  proposed  by  Hindle  and 
Rooth (1991), Resnik (1993b), and Brill and Resnik (1994), referred to respectively as 
LA, SA, and TEL. 

Data Set. We used the bracketed corpus of the Penn Treebank (Wall Street Journal cor- 
pus) (Marcus, Santorini, and Marcinkiewicz 1993) as our  data. First we randomly  
selected one of the 26 directories of the WSJ files as the test data and what  remains as 
the training data. We repeated this process 10 times and obtained 10 sets of data con- 
sisting of different training data and test data. We used these 10 data sets to conduct  
cross-validation as described below. 

From the test data in each data set, we extracted (verb, noun1, prep, noun2) quadru-  
ples using the extraction tool provided  by  the Penn Treebank called "tgrep."  At the 
same time, we obtained the answer for the PP-attachment site for each quadruple.  
We did not  double-check if the answers provided  in the Penn Treebank were actually 
correct or not. Then from the training data of each data set, we extracted (verb, prep) 
and (noun, prep) doubles, and (verb, prep, noun2) and (nounl,prep, noun2) triples using 
tools we developed ourselves. We also extracted quadruples  from the training data as 
before. We then applied 12 heuristic rules to further  preprocess the data, which include 
(1) changing the inflected form of a word  to its stem form, (2) replacing numerals  with 
the word  number, (3) replacing integers be tween 1,900 and 2,999 with the word  year, (4) 
replacing co., ltd., etc. with the words  company, limited, etc. 11 After preprocessing there 
still remained some minor  errors, which we did not  remove further, due  to the lack 
of a good method  for doing so automatically. Table 12 shows the number  of different 
types of data obtained by the above process. 

Experimental Procedure. We first compared  the accuracy and coverage for each of the 
three disambiguation methods  based on unsupervised learning: MDL, SA, and LA. 

11 The experimental results obtained here are better than those obtained in our preliminary experiment 
(Li and Abe 1995), in part because we only adopted rule (1) in the past. 

235 



Computational Linguistics Volume 24, Number 2 

0.98 

0.96 

0.94 

0.92 

0.9 

0.88 

0.66 

0.84 

0.82 

0.8 
0 

" ' - . . ,  

" ' " - , . , . ,  

" " , . ,  
"E3, 

" '" ' ,  .., 

"D,. 

x * ' ,  

f I I { 
0.2 0.4 0.6 0.8 

coverage 

Figure 10 
Accuracy-coverage curves for MDL, SA, and LA. 
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For MDL, we generalized noun2 given (verb, prep, noun2) and (nounl,prep, noun2) 
triples as training data for each data set, using WordNet as the thesaurus in the same 
manner as in experiment 1. When disambiguating, we actually compared P(Classl [ 
verb, prep) and P(Class2 I noun1, prep), where Class1 and Class2 are classes in the out- 
put tree cut models dominating noun2 in place of P(noun2 ] verb, prep) and P(noun2 ] 
nounl,prep). 12 We found that doing so gives a slightly better result. For SA, we em- 
ployed a somewhat simplified version in which noun2 is generalized given (verb, prep, 
noun2) and (nounl,prep, noun2) triples using WordNet, and maxcl~ss,~,o,,2 A(Classi I 
verb, prep) and maxctass,~no,n2 A(Classi l nounl, prep) are compared for disambiguation: 
If the former exceeds the latter then the prepositional phrase is attached to verb, and 
otherwise to noun1. For LA, we estimated P(prep ] verb) and P(prep ] noun1) from the 
training data of each data set and compared them for disambiguation. We then eval- 
uated the results achieved by the three methods in terms of accuracy and coverage. 
Here, coverage refers to the proportion as a percentage, of the test quadruples on 
which the disambiguation method could make a decision, and accuracy refers to the 
proportion of correct decisions among them. 

In Figure 10, we plot the accuracy-coverage curves for the three methods. In plot- 
ting these curves, the attachment site is determined by simply seeing if the difference 
between the appropriate measures for the two alternatives, be it probabilities or selec- 
tional association values, exceeds a threshold. For each method, the threshold was set 
successively to 0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 0.75. When the difference between 
the two measures is less than a threshold, we rule that no decision can be made. These 
curves were obtained by averaging over the 10 data sets. 

12 Recall that  a node  in WordNet  represents  a word  sense and not a word;  noun2 can be long  to several  
classes in the thesaurus.  We thus  use maxciassignou,2 (P(Classi [ verb, prep)) and 

maxclassi gno,m2 ( P( Classi [ nounl, prep) ) in place of P( Classl ] verb, prep) and P( Class2 [ nounl, prep). 
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Table 13 
Results of PP-attachment disambiguation. 

Coverage(%) Accuracy(%) 

Default 100 56.2 
MDL + Default 100 82.2 
SA + Default 100 76.7 
LA + Default 100 80.7 
LA.t + Default 100 78.1 
TEL 100 82.4 

We also implemented the exact method proposed by Hindle and Rooth (1991), 
which makes disambiguation judgement using the t-score. Figure 10 shows the re- 
sult as LA.t, where the threshold for t-score is set to 1.28 (significance level of 90 
percent.) From Figure 10 we see that with respect to accuracy-coverage curves, MDL 
outperforms both SA and LA throughout, while SA is better than LA. 

Next, we tested the method of applying a default rule after applying each method. 
That is, attaching (prep, noun2) to verb for the part of the test data for which no deci- 
sion was made by the method in question. 13 We refer to these combined methods as 
MDL+Default, SA+Default, LA+Default, and LA.t+Default. Table 13 shows the results, 
again averaged over the 10 data sets. 

Finally, we used the transformation-based error-driven learning (TEL) to acquire 
transformation rules for each data set and applied the obtained rules to disambiguate 
the test data. The average number of obtained rules for a data set was 2,752.3. Table 13 
shows the disambiguation result averaged over the 10 data sets. From Table 13, we 
see that TEL performs the best, edging over the second place MDL+Default by a small 
margin, and then followed by LA+Default, and SA+Default. Below we discuss further 
observations concerning these results. 

MDL and SA. According to our experimental results, the accuracy and coverage of 
MDL appear to be somewhat better than those of SA. As Resnik (1993b) pointed 

~ P(qv,r) out, the use of selectional association Iu~ ~ seems to be appropriate for cognitive 
modeling. Our experiments show, however, that the generalization method currently 
employed by Resnik has a tendency to overfit the data. Table 14 shows example gener- 
alization results for MDL (with classes with probability less than 0.05 discarded) and 
SA. Note that MDL tends to select a tree cut closer to the root of the thesaurus tree. 
This is probably the key reason why MDL has a wider coverage than SA for the same 
degree of accuracy. One may be concerned that MDL is "overgeneralizing" here, 14 but 
as shown in Figure 10, its disambiguation accuracy does not seem to be degraded. 

Another problem that must be dealt with concerning SA is how to remove noise 
(resulting, for example, from erroneous extraction) from the generalization results. 

P(Clv,r) Since SA estimates the ratio between two probability values, namely - ~ y - ,  the gen- 
eralization result may be lead astray if one of the estimates of P(C I v, r) and P(C) is 
unreliable. For instance, a high estimated value for/drop, bead, pearl / at protect against 

13 Interestingly, for the entire data set it is more favorable to attach (prep, noun2) to noun1, but for what  
remains after applying LA and MDL, it turns out to be more favorable to attach (prep, noun2) to verb. 

14 Note that in Experiment 1, there were more data available, and thus the data were more appropriately 
generalized. 
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Table 14 
Example generalization results for SA and MDL. 

Input 

Verb Preposition Noun Frequency 

protect against accusation 1 
protect against damage 1 
protect against decline 1 
protect against drop 1 
protect against loss 1 
protect against resistance 1 
protect against squall 1 
protect against vagary 1 

Generalization Result of MDL 

Verb Preposition Noun Class Probability 

protect against (act,human_action,human_activity) 0.212 
protect against (phenomenon) 0.170 
protect against (psychological_feature) 0.099 
protect against (event) 0.097 
protect against (abstraction) 0.093 

Generalization Result of SA 

Verb Preposition Noun Class SA 

protect against 
protect against 
protect against 
protect against 
protect against 
protect against 
protect against 
protect against 
protect against 
protect against 
protect against 
protect against 
protect against 
protect against 
protect against 

(caprice,impulse,vagary, whim) 1.528 
(phenomenon) 0.899 
(happening,occurrence,natural_event) 0.339 
(deterioration,worsening,decline,declination) 0.285 
(act,human_action,human_activity) 0.260 
(drop,bead,pearl) 0.202 
(drop) 0.202 
(descent,declivity, fall,decline,downslope) 0.188 
(resistor, resistance) 0.130 
(underground,resistance) 0.130 
{immunity, resistance) O. 124 
(resistance, opposition) 0.111 
(loss,deprivation) 0.105 
(loss) 0.096 
(cost,price,terms,damage / 0.052 

shown in Table 14 is rather odd, and is because the estimate of P(C) is unreliable (too 
small). This problem apparently costs SA a nonnegligible drop in disambiguation ac- 
curacy. In contrast, MDL does not suffer from this problem since a high estimated 
probability value is only possible with high frequency, which cannot result just from 
extraction errors. Consider, for example, the occurrence of car in the data shown in 
Figure 8, which has supposedly resulted from an erroneous extraction. The effect of 
this datum gets washed away, as the estimated probability for VEHICLE, to which car 

has been generalized, is negligible. 
On the other hand, SA has a merit not shared by MDL, namely its use of the 

association ratio factors out the effect of absolute frequencies of words, and focuses 
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Table 15 
Some hard examples for LA. 

Attached to verb Attached to noun1 

acquire interest in year 
buy stock in trade 
ease restriction on export 
forecast sale for year 
make payment on million 
meet standard for resistance 
reach agreement in august 
show interest in session 
win verdict in winter 

acquire interest in firm 
buy stock in index 
ease restriction on type 
forecast sale for venture 
make payment on debt 
meet standard for car 
reach agreement in principle 
show interest in stock 
win verdict in case 

on their co-occurrence relation. Since both MDL and SA have pros and cons, it would 
be desirable to develop a methodology that combines the merits of the two methods 
(cf. Abe and Li [1996]). 

MDL and LA. LA makes its disambiguation decision completely ignoring noun2. As 
Resnik (1993b) pointed out, if we hope to improve disambiguation performance by 
increasing training data, we need a richer model such as those used in MDL and SA. 
We found that 8.8% of the quadruples in our entire test data were such that they shared 
the same verb, prep, noun1 but had different noun2, and their PP-attachment sites go both 
ways in the same data, i.e., both to verb and to noun1. Clearly, for these examples, the 
PP-attachment site cannot be reliably determined without knowing noun2. Table 15 
shows some of these examples. (We adopted the attachment sites given in the Penn 
Tree Bank, without correcting apparently wrong judgements.) 

MDL and TEL. We chose TEL as an example of the quadruple approach. This method 
was designed specifically for the purpose of resolving PP-attachment ambiguities, and 
seems to perform slightly better than ours. 

As we remarked earlier, however, the input data required by our method (triples) 
could be generated automatically from unparsed corpora making use of existing 
heuristic rules (Brent 1993; Smadja 1993), although for the experiments we report 
here we used a parsed corpus. Thus it would seem to be easier to obtain more data 
in the future for MDL and other methods based on unsupervised learning. Also note 
that our method of generalizing values of a case slot can be used for purposes other 
than disambiguation. 

5. C o n c l u s i o n s  

We proposed a new method of generalizing case frames. Our approach of applying 
MDL to estimate a tree cut model in an existing thesaurus is not limited to just the 
problem of generalizing values of a case frame slot. It is potentially useful in other 
natural language processing tasks, such as the problem of estimating n-gram models 
(Brown et al. 1992) or the problem of semantic tagging (Cucchiarelli and Velardi 1997). 
We believe that our method has the following merits: (1) it is theoretically sound; (2) it 
is computationally efficient; (3) it is robust against noise. Our experimental results 
indicate that the performance of our method is better than, or at least comparable 
to, existing methods. One of the disadvantages of our method is that its performance 

239 



Computational Linguistics Volume 24, Number 2 

depends on the structure of the particular thesaurus used. This, however, is a prob- 
lem commonly shared by any generalization method that uses a thesaurus as prior 
knowledge. 

Appendix A: Proof of Proposition 1 

Proof 
For an arbitrary subtree T' of a thesaurus tree T and an arbitrary tree cut model 
M = (F,0) of T, let MT, = ( F T , , 0 T , )  denote the submodel of M that is contained in 
T'. Also for any sample S and any subtree T' of T, let ST, denote the subsample of S 
contained in T'. (Note that MT = M, ST = S.) Then define, in general for any submodel 
MT, and subsample ST,, L(ST, [ FT,, ~T') to be the data description length of subsample 
ST, using submodel MT,, L(~T, [ FT,) to be the parameter description length for the 
submodel MT,, and L'(MT,,ST,) t o  be L(ST, I F T ' , ~ T ' )  q- L(~T, [ FT,). (Note that, when 
calculating the parameter description length for a submodel, the sample size of the 
entire sample ]S] is used.) 

First note that for any (sub)tree T, (sub)model MT = (FT, ~T) contained in T, and 
(sub)sample ST contained in T, and T's child subtrees Ti : i = 1 , . . . ,  k, we have: 

k 

L(ST I PT, g )  =  L(ST, I PT,,g,) (17) 
i=1 

provided that Fz is not a single node (root node of T). This follows from the mutual 
disjointness of the Ti, and the independence of the parameters in the Ti. 

We also have, when T is a proper subtree of the thesaurus tree: 

k 

L(OT I FT) = ~ L(OT, I FT,). (18) 
i=1 

Since the number of free parameters of a model in the entire thesaurus tree equals 
the number of nodes in the model minus one due to the stochastic condition (that the 
probability parameters must sum to one), when T equals the entire thesaurus tree, 
theoretically the parameter description length for a tree cut model of T should be: 

L(g I r r )  = L r)  
k 

=  L(0r, I rr,)  
i=1 

log Isl 
(19) 

where ISI is the size of the entire sample. Since the second term - ~  in (19) is 
constant once the input sample S is fixed, for the purpose of finding a model with the 
minimum description length, it is irrelevant. We will thus use the identity (18) both 
when T is the entire tree and when it is a proper subtree. (This allows us to use the 
same recursive algorithm, Find-MDL, in all cases.) 

It follows from (17) and (18) that the minimization of description length can be 
done essentially independently for each subtree. Namely, if we let Clmin (MT, ST) denote 
the minimum description length (as defined by [17] and [18]) achievable for (sub)model 
Mr on (sub)sample ST contained in (sub)tree T, [)s(~) the MLE estimate for node ~] 
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using the entire sample S, and root(T) the root node  of tree T, then we have: 

L~nin(MT, ST) min L~nin (MTi, ST i ), 
k i=1 

L'( ([root(T)], [Ps(root(T) )]), ST) } (20) 

The rest of the proof  proceeds by  induction. First, when  T is of a single leaf 
node,  the submodel  consisting solely of the node and the MLE of the generation 
probabili ty for the class represented by  T is returned,  which is clearly a submodel  
with min imum description length in the subtree T. Next, inductively assume that 
Find-MDL(T ~) correctly outputs  a (sub)model with the min imum description length 
for any tree T' of size less than n. Then, given a tree T of size n whose  root node  has at 
least two children, say Ti : i = 1 . . . . .  k, for each Ti, Find-MDL(Ti) returns a (sub)model 
with the min imum description length by  the inductive hypothesis.  Then, since (20) 
holds, whichever  way  the if-clause on lines 8, 9 of Find-MDL evaluates to, what  is 
re turned on line 11 or line 13 will still be a (sub)model with the min imum description 
length, complet ing the inductive step. 

It is easy to see that the running t ime of the algori thm is linear in both the number  
of leaf nodes of the input  thesaurus tree and the input  sample size. • 
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