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A word sense disambiguator that is able to distinguish among the many senses of common 
words that are found in general-purpose, broad-coverage lexicons would be useful. For example, 
experiments have shown that, given accurate sense disambiguation, the lexical relations encoded 
in lexicons such as WordNet can be exploited to improve the effectiveness of information retrieval 
systems. This paper describes a classifier whose accuracy may be sufficient for such a purpose. The 
classifier combines the output of a neural network that learns topical context with the output of 
a network that learns local context to distinguish among the senses of highly ambiguous words. 

The accuracy of the classifier is tested on three words, the noun line, the verb serve, and 
the adjective hard; the classifier has an average accuracy of 87%, 90%, and 81%, respectively, 
when forced to choose a sense for all test cases. When the classifier is not forced to choose a sense 
and is trained on a subset of the available senses, it rejects test cases containing unknown senses 
as well as test cases it would misclassify if forced to select a sense. Finally, when there are few 
labeled training examples available, we describe an extension of our training method that uses 
information extracted from unlabeled examples to improve classification accuracy. 

1. Introduct ion 

An information retrieval system returns documents presumed to be of interest to the 
user in response to a query. While there are a variety of different ways the retrieval 
can be accomplished, most systems treat the query as a pattern to be matched by doc- 
uments. Unfortunately, the effectiveness of these word-matching systems is depressed 
by both homographs and synonyms. Homographs depress the accuracy of the retrieval 
systems by making texts about two different concepts appear to match. Synonyms im- 
pair the system's ability to find all matching documents, since different words mask 
conceptual matches. While polysemy is the immediate cause of the first problem, it 
indirectly contributes to the second problem as well by preventing the effective use of 
thesauri. These considerations motivate our desire for a highly accurate word sense 
disambiguator. 

Our experimental results show that the disambiguator described in this paper is 
quite accurate. The disambiguator is a particular formulation of feed-forward neural 
networks (Rumelhart, Hinton, and Williams 1986) that separately extract topical and 
local contexts of a target word from a set of sample sentences that are tagged with the 
correct sense of the target. The neural networks responsible for topical and local dis- 
ambiguation are then combined to form a single, "contextual" representation (Miller 
and Charles 1991). Further experiments show that the accuracy of the contextual dis- 
ambiguator can be improved if the disambiguator is allowed to label some examples as 

• Siemens Corporate Research, 755 College Road East, Princeton, NJ 08540 
t Currently at: National Institute of Standards and Technology, Building 225, Room A-216, Gaithersburg, 

MD, 20899 

(~) 1998 Association for Computational Linguistics 



Computational Linguistics Volume 24, Number 1 

unknown. Since the accumulation of sufficient tagged samples is expensive and time- 
consuming, we finish by describing an extension of our algorithm through which its 
accuracy can be enhanced by using inexpensive untagged examples. 

Our long-term goal is to be able to incorporate such a contextual disambigua- 
tion system within a taxonomy such as WordNet (Miller 1990) and thereby to use it 
for resolving query word senses at retrieval run-time. To accomplish this goal, the 
disambiguator must be able to construct contextual representations that accurately 
distinguish among the highly ambiguous words found in general-purpose lexicons as 
well as build representations that are efficient to use at query run-time. The system 
described in this paper represents a significant step towards that goal. 

2. Effects of  Po lysemy on Retrieval Performance 

The effectiveness of information retrieval systems is usually measured in terms of 
precision, the percentage of retrieved documents that are relevant, and recall, the per- 
centage of relevant documents that are retrieved. As mentioned above, in principle, 
the direct effect of polysemy on word-matching systems is to decrease precision (e.g., 
queries about financial banks retrieve documents about rivers). The impact this direct 
effect has in practice is less clear. Schtitze and Pedersen (1995) found noticeable im- 
provement in precision using sense-based (as opposed to word-based) retrieval. On 
the other hand, Krovetz and Croft (1992) concluded that polysemy hurt retrieval only 
if the searcher needed very high recall or was using very short (one or two word) 
queries. Sanderson (1994) found that resolving senses could degrade retrieval perfor- 
mance unless the disambiguation procedure was very accurate, although he worked 
with large, rich queries. Other techniques also address the polysemy problem without 
requiring explicit disambiguation. One such technique is local-global matching (Salton 
and Buckley 1991), where the similarity of a document with a query depends not only 
on the words occurring in the entire document but also on the existence of smaller 
lexical units, such as sentences, that exhibit particularly close matches with the query. 
These techniques implicitly accommodate ambiguity: by computing similarity mea- 
sures based on word co-occurrence, the systems find instances of words used in the 
same contexts and thus words that are used in the same sense. 

Polysemy has a second, indirect effect, however, in that it hampers the successful 
application of thesauri. Much as using the same word in different senses can depress 
precision by causing false matches, using different words to express the same sense 
(i.e., synonyms) depresses recall by causing true conceptual matches to be missed. 
One way to mitigate the effects of synonyms is to use lexical aids to expand a text 
(usually the query) by words that are closely related to words in the original text. 
This procedure has met with some success in experiments on small, single-domain 
collections. For example, Salton and Lesk (1971) found that expansion by synonyms 
only improved performance, and Wang, Vendendorpe, and Evens (1985) found that 
a variety of lexical-semantic relations improved retrieval performance. However, it is 
difficult to obtain similar improvements in heterogeneous collections where the lexical 
aids necessarily contain multiple senses of words (Voorhees and Hou 1993; Voorhees 
1994a, 1994b). 

Selecting the correct sense of a word to be expanded is an essential first step when 
expanding queries by lexically related words. Experiments run on the diverse TREC 
test collection (Harman 1993), and using the WordNet lexical system as a source of 
related words, demonstrate that expanding queries by the set of words such that each 
word in the set is related to some (any) sense of the query word consistently degrades 
performance compared to the base run in which no expansion is done (Voorhees and 
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Hou 1993). However, query expansion by lexically related words can significantly 
improve retrieval effectiveness: additional experiments in which hand-selected Word- 
Net synonym sets were used as seeds for expansion improved retrieval performance 
by over 30% (Voorhees 1994b). Because the process used in hand-picking the seed 
synonym sets encompassed more than simple sense resolution--other considerations 
such as specificity of the sense and perceived usefulness of the concept also played 
a part--simply finding the correct sense of the query terms is not likely to produce 
this large an improvement. Nonetheless, significant improvement should be possible 
if the correct sense can be determined. 

Unfortunately, determining the correct sense of a query word using simply the 
paradigmatic relations that organize WordNet and other thesauri is unlikely to be 
successful (Voorhees 1993). 1 Instead, the word sense disambiguation literature strongly 
suggests that syntagmatic relations are important for sense resolution. For example, 
consider the word board and the noun hierarchy of WordNet. Each of nail, hammer, 
and carpenter is a good clue for the 'lumber' sense of board, but each is closest to some 
other sense of board in WordNet when distance is measured by the number of IS-A 
links between the respective nodes. 

An ideal lexical system would therefore incorporate both paradigmatic and syn- 
tagmatic relations. An automatic text retrieval system could exploit such a combined 
lexical system by first using the syntagmatic relations to resolve word senses, and then 
adding both paradigmatic- and syntagmatic-related words to the query. The WordNet 
expansion experiments discussed above (Voorhees 1994b) suggest that paradigmatic- 
related words are useful for expansion, while the success of retrieval techniques such 
as relevance feedback (Salton and Buckley 1990) demonstrates the usefulness of ex- 
pansion by syntagmatic-related words. Since the different relations link quite different 
sets of words, the combined effect should be complimentary, resulting in greater im- 
provement than either type of expansion alone. 

To test this conjecture, we must build a lexical system that contains both types 
of relations. This in turn requires capturing the syntagmatic relations associated with 
the various senses contained within a particular paradigmatic lexicon. A word sense 
disambiguator that can capture these relations is described in the remainder of the 
paper. 

3. Extracting Contextual Representations 

Capturing syntagmatic relations is equivalent to creating contextual representations 
for the words within the lexicon. Miller and Charles (1991) define a contextual repre- 
sentation as a characterization of the linguistic contexts in which a word appears. In 
earlier work, we demonstrated that contextual representations consisting of both local 
and topical components are effective for resolving word senses and can be automat- 
ically extracted from sample texts (Leacock, Towell, and Voorhees 1996). The topical 
component consists of substantive words that are likely to co-occur with a given sense 
of the target word. Word order and grammatical inflections are not used in topical 
context. In contrast, the local component includes information on word order, dis- 
tance, and some information about syntactic structure; it includes all tokens (words 
and punctuation marks) in the immediate vicinity of the target word. Inclusion of a 
local component is motivated in part by a study that showed that Princeton University 

1 Paradigmatic relations refer to the generalization/specialization relations that give instances or 
examples of related words: e.g., plant, flower, tulip. In contrast, syntagmatic relations define words that 
frequently co-occur or are used in similar contexts: e.g., flower, garden, hoe. 
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undergraduates were more accurate at resolving word senses when given complete 
sentences than when given only an alphabetized list of content words appearing in 
the sentences (Leacock, Towell, and Voorhees 1996). 

In this paper, we continue to explore contextual representations by using neural 
networks to extract both topical and local contexts and combining the results of the two 
networks into a single word sense classifier. While V6ronis and Ide (1990) also use large 
neural networks to resolve word senses, their approach is quite different from ours. 
V6ronis and Ide use a spreading activation algorithm on a network whose structure is 
automatically extracted from dictionary definitions. In contrast, we use feed-forward 
networks that learn salient features of context from a set of tagged training examples. 

Many researchers have used learning algorithms to derive a disambiguation 
method from a training corpus. For example, Hearst (1991) uses orthographic, syn- 
tactic, and lexical features of the target and local context to train on. Yarowsky (1993) 
and Leacock, Towell, and Voorhees (1996) also found that local context is a highly 
reliable indicator of sense. However, their results uniformly confirm that all too often 
there is not enough local information available for the classifiers to make a decision. 
Gale, Church, and Yarowsky (1992) developed a topical classifier based on Bayesian 
decision theory. The classifier trains on all and only alphanumeric characters and punc- 
tuation strings in the training corpus. Leacock, Towell, and Voorhees (1996), comparing 
performance of the Bayesian classifier with a vector-space model used in information 
retrieval systems (Salton, Wong, and Yang 1975) and with a neural network, found that 
the neural networks had superior performance. Black (1988) trained on high-frequency 
local and topical context using a method based upon decision trees. While Black's re- 
sults were encouraging, our attempt to use C4.5 (a decision-tree algorithm [Quinlan 
1992]) on the topical encoding of line were uniformly disappointing (Leacock, Towell, 
and Voorhees 1993). 

The efficacy of our classifier is tested on three words, each a highly polysemous 
instance of a different part of speech: the noun line, the verb serve, and the adjective 
hard. The senses tested for each word are listed in Table 1. We restrict the test to 
senses within a single part of speech to focus the work on the harder part of the dis- 
ambiguation problem--the accuracy of simple stochastic part-of-speech taggers such 
as Brill's (Brill 1992) suggests that distinguishing among senses with different parts 
of speech can readily be accomplished. The data set we use is identical to that of 
Leacock, Chodorow and Miller (this volume) with two exceptions. First, we do not 
use part-of-speech tags. Second, we use exactly the same number of examples for each 
sense. 

To create data sets with an equal number of examples of each sense, we took 
the complete set of labeled examples for a word and randomly subsampled it so that 
all senses occurred equally often in our subsample. This meant that all examples of 
the least frequent sense appeared in every subsample. We repeated this procedure 
three times for each word. The same three subsamples were used in all of the experi- 
ments reported below. Analysis of variance studies have never detected a statistically 
significant difference between the subsamples. 

We used the same number of examples of each sense to eliminate any confounding 
effects of occurrence frequency. We do this because the frequency with which different 
senses occur in a corpus varies depending on the corpus type (the Wall Street Journal 
has many more instances of the 'product line' sense of line than other senses of line, 
for example) and can be difficult to estimate. Using an equal number of examples 
per sense makes the problem more challenging than it is likely to be in practice. For 
example, Yarowsky (1993) has demonstrated that exploiting frequency information 
can improve disambiguation accuracy. Indeed, if we had retained all examples of the 
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Table 1 
Word senses used in this study. 

serve - verb hard - adjective line - noun 

supply with food not easy (difficult) product 
hold an office not soft (metaphoric) phone 
function as something not soft (physical) text 
provide a service cord 

division 
formation 

Number of Occurrences of the Least Frequent Sense 

350 350 349 

'product '  sense of l ine from the W a l l  S tree t  Journal ,  then we could have improved upon  
the results presented in the next section by  simply always guessing 'product ' .  

4. N e u r a l - N e t w o r k - b a s e d  Sense  D i s a m b i g u a t i o n  

This section summarizes  a series of experiments  that tests whether  neural  networks  can 
extract sufficient information from sample usages to accurately resolve word  senses. 
We choose neural  networks as the learning method  for this s tudy because our  previous 
work  has shown neural  networks to be more effective than several other methods  
of sense disambiguation (Leacock, Towell, Voorhees 1996). Moreover,  there is ample 
empirical evidence which indicates that neural  networks  are at least as effective as 
other learning systems on most  problems (Shavlik, Mooney, and Towell 1991; Atlas 
et al. 1989). The major drawback to neural  networks is that they m ay  require a large 
amount  of training time. For our  purposes,  training time is not  an issue, since it may  be 
done off-line. However ,  the time required to classify an example is significant. Because 
of its complexity, our  approach will almost certainly be slower than methods  such as 
decision trees. Still, the time to classify an example will most  likely be dominated  
by the time required to t ransform an example into the appropriate  format  for input  
to the classifier. This time will be roughly uniform across classification strategies, so 
the difference in the speed of the various classification methods  themselves should be 
unnoticable. 

The first part  of the section presents learning curves that plot accuracy versus the 
number  of samples in the training set for each of: topical context only, local context 
only, and a combination of topical and local contexts. The curves demonstra te  that the 
classifiers are able to distinguish among the different senses. Further, the results show 
that the combined classifier (i.e., a classifier that uses both topical and local contexts) 
is at least as good as, and is usually significantly better than, a classifier that uses 
only a single component .  The second subsection is mot ivated by  the observation that 
it is unlikely that a real-world training set will contain examples of all possible senses 
of a word.  Hence, we investigate the effect on classification accuracy of senses that 
are missing from the labeled training set. For this investigation, we slightly modify  
the classification procedure  to allow a do not  k n o w  response. With this modification 
the method  rejects unknown  samples at rates significantly better than chance; this 
modification also tends to reject examples that would  have been misclassified by the 
unmodif ied  classifier. Since labeled training data are rare and expensive, the final 
subsection describes SULU, a me thod  for learning accurate classifiers from a small 
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number of labeled training examples plus a larger number of unlabeled examples. 
Experimental results demonstrate that SULU consistently and significantly improves 
classification accuracy when there are few labeled training examples. 

4.1 Asymptotic Accuracy 
All of the neural networks used here are strictly feed-forward (Rumelhart, Hinton, 
and Williams 1986). By this, we mean that there is a set of input units that receive 
activation only from outside the network. The input units pass their activation on to 
hidden units via weighted links. The hidden units, in turn, pass information on to 
either additional hidden units or to output units. There are no recurrent links; that is, 
the activation sent by a unit can never, even through a series of intermediaries, be an 
input to that unit. 

Units that are not input units receive activation only via links. The non-input 
1 where x is the sum of the incoming activations units compute the function y - l+e-x 

weighted by the links and y is the output activation. (The translation of words into 
numbers so that this formula can be applied to word sense disambiguation is described 
in the following paragraphs.) This nonlinear function has the effect of squashing the 
input into the range [0... 1]. Output units give the answer for our networks. Finally, 
the activation of the output units is normalized so that their sum is 1.0. 

In all of the experiments reported below, the weights on all the links are initially set 
to random numbers taken from a uniform distribution over [ -0 .5 . . .  0.5]. The networks 
are then trained using gradient descent algorithms (e.g., backpropagation [Rumelhart, 
Hinton, and Williams 1986]) so that the activation of the output units is similar to some 
desired pattern. Networks are trained until either each example has been presented to 
the network 100 times or at least 99.5% of the training patterns are close enough to the 
desired pattern that they would be considered correct. (The meaning of "correct" will 
vary in our experiments, it will be clearly defined in each experiment.) In practice, the 
second stopping criterion always obtained. 

The networks used in most of this work have a very simple structure: one output 
trait per sense, one input unit per token (the meaning of "token" differs between local 
and topical networks as described below), and no hidden units. For both local and 
topical encodings, we tested many hidden unit structures, including ones with many 
layers and ones with large numbers of hidden units in a single layer. However, with 
one exception described below, a structure with no hidden units consistently yields 
the best results. Input units are completely connected to the output units; that is, every 
input unit is linked to every output unit. During training, the activation of the output 
trait corresponding to the correct sense has a target value of 1.0, the other outputs have 
a target value of 0.0. During testing, the sense reported by the network is the output 
unit with the largest activation. An example is considered to be classified correctly if 
the sense reported by the network is the same as the tagged sense. 

In networks that extract topical context, the number of input units is equal to the 
number of tokens that appear three or more times in the training set, where a token is 
the string remaining after text processing. The text processing includes removing capi- 
talization, conflating words with common roots, and removing a set of high-frequency 
words called stopwords. To encode an example (an example is the sentence containing 
the target word and usually the preceding sentence) for the network, it is tokenized 
and the input units associated with the resulting tokens are set to 1.0 (regardless of 
the frequency with which the tokens appear in the example). All other input units 
are set to 0.0. We investigated many alternatives: both higher and lower bounds on 
the frequency of occurrence in the set of examples, including stopwords, and using 
frequency of occurrence. None of these changes has a significant impact on accuracy. 
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The effect of increasing example size on the number of input units needed for encoding. For 
each of our three data sets and each encoding method, this figure shows the number of input 
units required to encode the examples. Except for the endpoints, which use the entire example 
set, each point is the average of 11 random selections from the population of examples. 

To encode an example  for a ne twork  that  extracts local context, each token (word 
or punctuat ion)  is p r e p e n d e d  wi th  its posi t ion relative to the target add ing  padd ing  
as necessary. For example,  given the sentence "John serves loyally.", the target  serves, 
and a desire to use three tokens on either side of the target, the input  to the ne twork  
is [-3zzz -2zzz -1John 0serves 1loyally 2. 3zzz] where  "zzz"  is added  as a b lank as 
needed.  Ne tworks  contain input  units represent ing every  result ing string within three 
of the target  word  in the set of labeled training examples.  Note  that  this implies that  
there will be words  in posi t ions in the test set that are not  matched  in the training set. 
So, while training examples  will have  exactly seven input  units wi th  a value of 1.0, 
testing examples  will have  at mos t  seven input  units wi th  a value of 1.0. The w i n d o w  
we use is slightly wider  than a w i n d o w  of two words  on either side that  exper iments  
wi th  h u m a n s  suggest  is sufficient (Choueka and  Lusignan 1985). The h u m a n  s tudy  
counted only words ,  whereas  we count  bo th  words  and  punctuat ion.  Our  ne tworks  
are significantly less accurate using w i ndows  smaller  than three tokens on either side. 
On the other hand,  wider  w i ndows  are slightly, bu t  not statistically significantly, more  
accurate. 

Figure 1 shows that the topical and  local encoding me thods  result  in large input  
sets. For example ,  w h e n  the entire popula t ion  of line examples  is used, the local en- 
coding wou ld  require 3,973 input  units and the topical encoding wou ld  require 2,924 
inputs.  Fortunately, this figure shows that the rate of increase in the size of the in- 
put  set steadily decreases as the size of the input  set increases. Fitting each of the 
lines in this figure against  exponential  functions indicates that  none  of these data sets 
would  grow to require more  than 9,000 inputs  units. While this is certainly large, it is 
tolerable. 

We invest igated m a n y  ways  of combining the ou tpu t  of the topical and local 
networks.  We repor t  results for a m e t hod  that  takes the m a x i m u m  of the sum of the 
output  units. 2 For example ,  suppose  that a local ne twork  for d i sambigua t ing  the three 
senses of hard has outputs  of (0.4 0.5 0.1) and a topical ne twork  has outputs  of (0.4 

2 Among the many alternatives we investigated for merging the local and topical networks, only one 
yields slightly better results. It is based upon Wolpert's stacked generalization (Wolpert 1992). In this 
technique, the outputs from the topical and local networks are passed into another network whose 
function is simply to learn how to combine the outputs. When the input to the combining network is 
the concatenation of the inputs and the outputs of both the local and topical networks, the combining 
network often outperforms our summing method. However, the improvement is usually not 
statistically significant, so we report only the results from the considerably simpler summing method. 
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0.0 0.6). Then the local information would suggest the second sense, while the topical 
information would suggest the third sense. The summing strategy yields (0.8 0.5 0.7), 
so the combined classifier would select the first sense. 

The only approach we have found that consistently, and statistically significantly, 
outperforms the strategy described above is based upon error-correcting output en- 
coding (Kong and Dietterich 1995). The idea of error-correcting codes is to learn all 
possible dichotomies of the set of classifications. For example, given a problem with 
four classes, A, B, C, and D, learn to distinguish A and B from C and D; A from B, 
C, and D; etc. The major problem with this method is that it can be computationally 
intensive when there are many output classes because there are 2 s-1 - 1 dichotomies 
for S output classes. We implemented error-correcting output codes by independently 
training a network with one output unit and 10 hidden units to learn each dichotomy. 

4.1.1 Testing Methodology. To estimate the accuracy of our disambiguation methods, 
we built learning curves using several values of N in N-fold cross-validation. In cross- 
validation, the data set is randomly divided into N equal parts, then N - 1 parts are 
used for training and the remaining part is held aside to assess generalization. 3 As a 
result, each example is used for training N - 1 times and once to assess generalization. 
A drawback of N-fold cross-validation is that it cannot test small portions of the data. 
So, for points on the learning curves that use less than 50% of the training data, we 
invert the cross validation procedure, using one of the N parts for training and the 
remaining N - 1 parts to assess generalization. For example, if there are 100 labeled 
examples, each iteration of 10-fold cross-validation would use 90 examples for training 
and the remaining 10 for testing. When complete, each example would be used for 
training exactly nine times and exactly once for testing. By contrast, in inverted 10-fold 
cross-validation, each example is used exactly once for training and exactly nine times 
for testing. 

4.1.2 Results and Discussion. The learning curves are shown in Figure 2. Each point 
in the figure represents an average over 11 cross-validation trials. Thus, the point for 
75% of the training set, which corresponds to 4-fold cross-validation, requires training 
44 networks. The confusion matrices in Tables 2 to 4 give the complete data for the 
largest training sets of the "standard" curves in Figure 2. Rows in the table represent 
the correct answer, and columns represent the answer selected by the classifier. "Total" 
gives the number of times the classifier selects the given sense. "Precision" is the 
percentage of that total that is correct. In contrast, "Percent Correct" gives the accuracy 
of the classifier over the set of hand-tagged examples of the given sense. 

Figure 2 shows that, for line and serve, the combined classifier is considerably su- 
perior to either the local or topical classifier at all training-set sizes. At the largest 
training-set size, the combined classifier is superior with at least 99.5% confidence ac- 
cording to a one-tailed paired-sample t-test. There is no advantage for the combined 
classifier for hard. In fact, at the largest training-set size, the local classifier slightly out- 
performs the combined classifier. The difference, while small, is statistically significant 
with 97.5% confidence according to a one-tailed paired-sample t-test. 

An obvious reason, as can be seen in Figure 2, for why the combined represen- 
tation fails to improve classification effectiveness for hard is that the topical classifier 

3 By randomly separating examples, it is possible that examples taken from the same document appear 
in the training and testing sets. In principle, this could inflate the accuracy we report for the classifier. 
In practice, experiments that explicitly control for this effect do not yield significantly different results 
from those we report. 
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Figure 2 
Learning curves for classifiers that use local context only (Local), topical context only (Topical), 
and a combination of local and topical contexts (Combined) for hard, serve, and line. Each point 
in each curve represents an average over 11 repetitions of N-fold cross-validation. The points 
on each of these curves represent 10-, 6-, 4-, 3-, and 2-fold cross-validation and 3-, 4-, and 
6-fold inverted cross-validation. Error-correcting codes have results at only 2-, 3-, and 4-fold 
cross-validation (i.e, 50%, 66%, and 75% of the training data.) 

is m u c h  worse  than the local classifier. While  the differences in accuracy b e t w e e n  the 
topical and local classifiers are statistically significant wi th  at least 99.5% confidence 
according to a one-tai led paired-sample  t-test on  all three senses,  the accuracies are 
more  similar for both serve and line than they are for hard. This obv ious  difference in 
accuracy is on ly  part of  the reason w h y  the combined  classifier is less effective for hard. 
Perhaps more  important  is the fact that the errors for the local and topical classifiers 
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Table 2 
Average confusion matrices for hard over 11 runs of 10-fold cross 
validation. Rows in the table represent the correct answer, columns 
represent the answer given by the classifier. So, in the local table, 
22.1 is the average number of times that the classifier selected the 
'physical' sense when the correct sense was the 'difficult' sense. 
There are 350 examples of each class. 

Local-hard 

difficult metaphoric physical Percent Correct 

difficult 301.5 26.5 22.1 86.1% 
metaphoric 23.2 256.4 70.5 73.2% 
physical 13.9 33.6 302.5 86.4% 

Total 338.5 316.5 395.0 
Precision 89.0% 81.0% 76.6% 

Topical-hard 

difficult metaphoric physical Percent Correct 

difficult 210.6 98.0 41.4 60.2% 
metaphoric 114.8 203.6 31.5 58.2% 
physical 56.1 40.1 253.8 72.5% 

Total 381.5 341.7 326.7 
Precision 55.2% 59.6% 77.7% 

Combined-hard 

difficult metaphoric physical Percent Correct 

difficult 299.0 35.7 15.3 85.4% 
metaphoric 62.3 247.8 39.9 70.8% 
physical 20.1 24.6 305.3 87.2% 

Total 381.4 308.2 360.5 
Precision 78.4% 80.4% 84.7% 

are more  highly correlated for hard than for either line or serve. The average  correlation 
of correct and  incorrect answers  for local and  topical classifiers of hard is 0.14 while the 
average  correlations for line and serve, respectively, are 0.07 and  -0.02.  Many  efforts at 
us ing ensembles  of classifiers have  repor ted  that  to get significant improvement s ,  the 
m e m b e r s  of the ensemble  should be as uncorrelated as possible (Paramanto,  Munro,  
and Doyle 1996). Given the correlation be tween  the local and  topical classifiers for 
hard, it is not  surpr is ing that  the combined  classifier provides  no addi t ional  benefit. 

The confusion matr ices  in Tables 2 to 4 p rov ide  another  piece of evidence about  
file failure of the combined  representat ion for hard. Consider  the pat tern  of responses  
h)r the ' p rov ide  food '  sense of serve by  the local and  topical classifiers (Table 3). In 
particular, notice that  the local classifier is m u c h  more  likely to select the ' p rov ide  
food '  sense (26.1) w h e n  the correct sense is ' p rov ide  a service '  than it is w h e n  the 
correct sense is ' funct ion as '  (6.7). Conversely,  the topical classifier is more  likely to 
select the ' p rov ide  food '  sense w h e n  the correct sense is ' funct ion as '  (30.6) than  w h e n  
the correct sense is ' p rov ide  a service '  (5.8). When  these tendencies are combined  they 
essentially offset each other. As a result, the combined  classifier is unlikely to select 
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Table 3 
Average confusion matrices for serve over 11 runs of 10-fold cross validation. 
Rows in the table represent the correct answer, columns represent the 
answer given by the classifier. So, in the local table, 6.7 is the average 
number of times that the classifier selected the 'food' sense when the correct 
sense was the 'function as' sense. There are 350 examples of each class. 

Local-serve 

function as service food office Percent Correct 

function as 293.7 22.9 6.7 26.6 83.9% 
service 5.8 312.9 26.1 5.2 89.4% 
food 5.7 43.4 283.4 17.5 81.0% 
office 41.5 14.1 18.3 276.1 78.9% 

Total 346.8 393.3 334.5 325.5 
Precision 84.7% 79.6% 84.7% 84.8% 

Topical-serve 

function as service food office Percent Correct 

function as 218.0 51.2 30.6 50.2 62.3% 
service 50.0 261.1 5.8 33.1 74.6% 
food 22.2 4.3 308.2 15.4 88.1% 
office 40.1 29.9 10.8 269.2 76.9% 

Total 330.3 346.5 355.5 367.8 
Precision 66.0% 75.4% 86.7% 73.2% 

Combined-serve 

function as service food office Percent Correct 

function as 298.4 23.4 5.8 22.5 85.2% 
service 14.0 321.0 5.7 9.3 91.7% 
food 2.5 7.5 333.8 6.1 95.4% 
office 22.7 8.7 3.7 314.8 89.9% 

Total 337.6 360.6 349.1 352.6 
Precision 88.4% 89.0% 95.6% 89.3% 

the 'provide food '  sense when  the correct sense is either ' function as' (5.8) or 'provide 
a service' (5.7). 

This pattern of offsetting errors is repeated on all but  one of the senses of line 
and serve. Wherever it occurs, the combined classifier is superior to both the local 
and topical classifiers. By contrast, errors for the local and topical classifiers of hard 
(Table 2) rarely offset each other. Only for the 'physical '  sense do the errors offset, 
and that is the only sense on which the combined classifier outperforms the local 
classifier. For the 'difficult' and 'metaphoric '  senses of hard, the erroneous selections 
made by the topical classifier are strictly greater than those of the local classifier. 
Similarly, the selection of the local classifier for the 'cord '  sense of line is strictly worse 
than the selections of the topical classifier. In each of these cases, the effect of the 
combined classifier is to roughly average the errors of the local and topical classifiers, 
with the result that the combined classifier has more errors than the better of the 
local and topical classifiers. Unfortunately, the number  of errors introduced by the 
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Table 4 
Average confusion matrices for line over 11 runs of 10-fold cross validation. Rows in the table 
represent the correct answer, columns represent the answer given by the classifier. So, in the 
local table, 16.7 is the average number of times that the classifier selected the 'formation' sense 
when the correct sense was the 'product'  sense. There are 349 examples of each class. 

Local-line 

product formation text cord division phone Percent Correct 

product 264.5 16.7 27.4 21.3 5.6 13.5 75.8% 
formation 32.4 248.0 20.8 31.2 4.8 11.8 71.1% 
text 31.8 16.5 218.7 44.5 17.5 19.9 62.7% 
cord 19.1 23.2 35.5 215.8 12.9 42.5 61.8% 
division 8.2 9.8 21.7 12.7 286.5 10.0 82.1% 
phone 15.9 10.2 33.7 28.1 8.2 252.9 72.5% 

Total 371.8 324.5 357.9 353.6 335.5 350.6 
Precision 71.1% 76.4% 61.1% 61.0% 85.4% 72.1% 

Topical-line 

product formation text cord division phone Percent Correct 

product 294.7 13.1 17.8 1.9 9.6 11.8 84.4% 
formation 16.7 236.1 51.5 8.3 20.0 16.4 67.6% 
text 19.5 40.8 238.7 4.7 33.7 11.5 68.4% 
cord 3.2 6.0 13.0 311.6 4.9 10.3 89.3% 
division 8.5 23.4 28.7 13.5 263.4 11.6 75.5% 
phone 9.0 9.3 16.1 14.2 6.3 294.2 84.3% 

Total 351.6 328.6 365.9 354.2 337.9 355.7 
Precision 83.8% 71.8% 65.2% 88.0% 77.9% 82.7% 

Combined-line 

product formation text cord division phone Percent Correct 

product 317.3 8.1 9.8 4.8 2.9 6.1 90.9% 
formation 16.6 279.3 26.4 11.2 4.8 10.7 80.0% 
text 13.9 16.2 280.4 11.0 16.5 11.1 80.3% 
cord 1.7 4.5 8.6 318.0 4.5 11.7 91.1% 
division 4.4 7.4 11.5 7.5 312.5 5.7 89.6% 
phone 5.3 5.6 11.5 12.6 2.5 311.5 89.2% 

Total 359.2 321.0 348.1 365.2 343.7 356.8 
Precision 88.3% 87.0% 80.5% 87.1% 90.9% 87.3% 

'diff icult '  and  'me taphor i c '  senses of hard more  than offset the errors  e l imina ted  by  
the 'phys ica l '  sense. Therefore, t h e  local classifier for hard is more  accurate than the 
combined  classifier. 

The topical  classifier ou tpe r fo rms  the local classifier for the noun  line (Figure 2). 
Conversely,  the local classifier ou tpe r fo rms  the topical  classifier for the verb serve 
and the adject ive hard. While  we hesi tate  to d r a w  m a n y  conclusions  from this pat-  
tern on the basis  of so little data,  the pa t t e rn  is consis tent  wi th  other  observat ions.  
Yarowsky (1993) suggests  that  the sense of an adject ive is a lmost  whol ly  de t e rmined  
by  the noun  it modifies.  If this sugges t ion  is correct, then the a d d e d  informat ion  in 
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the topical representation should add only confusion. Hence, one would expect to 
see the local classifier outperforming the topical classifier for all adjectives. Similarly, 
some verb senses are determined largely by their direct object. For example, the 'pro- 
vide a service' sense of serve almost always has a thing as a direct object, while the 
'function as' sense of serve almost always has a person. The added information in 
the topical encoding may obscure this difference, thereby adding to the difficulty of 
correctly disambiguating these senses. So, we would not be surprised to see the advan- 
tage of local representations over topical representations continue on other verbs and 
adjectives. 

Many techniques for using local context explicitly use diagnostic phrases, such 
as wait in line, for the formation sense of line. In previous work, we took exactly this 
approach and showed that diagnostic phrases could be used to improve the accuracy 
of a topical classifier (Leacock, Towell, and Voorhees 1996). Our neural network for 
local disambiguation differs considerably from this approach. Specifically, it is unable 
to learn more than one diagnostic phrase per sense because it lacks hidden units. 
In fact, the network does not learn a single diagnostic phrase. Instead, it learns that 
certain words in certain positions are indicative of certain senses. While this might 
appear to be a significant handicap, we have been unable to train a network that is 
capable of learning phrases so that it outperforms our networks. In addition, while they 
lack the ability to learn phrases, our local classifiers are, nonetheless, quite effective 
at determining the correct sense. It is our belief that hidden units would be useful 
for learning local context given a sufficient amount of training data. However, there 
are currently far more free parameters in our networks than there are examples to 
constrain those parameters. Until there are more constraints, we do not believe that 
hidden units will be useful for sense disambiguation. 

Finally, it is interesting to note that not all senses are equally easy, and that different 
classifiers find different senses easier than others. For example, in Table 2 the most 
difficult sense of hard for the local classifier is the 'physical' sense, but this is the 
easiest sense for both the topical and combined classifiers. On the other hand, some 
senses are just difficult. The 'text' sense of line (Table 4) is among the hardest for all 
classifiers. We believe that the 'text' sense is difficult because it often contains quoted 
material which may distract from the meaning of line. However, the quoted material 
is often too far away from the target word for the quotation marks to be seen in the 
local window. As a result, the topical classifier is confused by distracting material and 
the local classifier does not see the most salient feature. 

4.2 Senses Missing from Data 
The results in the previous section suggest that, given a sufficiently large number of 
labeled examples, it is possible to combine topical and local representations into an 
effective sense classifier. Those results, however, assume that the labeled examples 
include all possible senses of the word to be disambiguated. Senses not included in 
the training set will be misclassified because the procedure assigns a sense to every 
example. In this section, we allow the system to respond do not know to address the 
issue of senses not seen during training. 

In the previous section, the sense selected by the network is the sense correspond- 
ing to the output unit with the largest activation. If the output units are known to 
represent all possible senses, then this is a reasonable procedure. If, however, there is 
reason to believe that there may be other senses, then this procedure imparts a strong, 
and incorrect, bias to the classification step. When there is reason to believe that there 
are senses in the data that are not represented in the training set, we can relax this 
bias by using the sense selected by the largest output activation only if that activation 
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Table 5 
The chance rate of correct rejection rate for each of the target words. 
(All numbers are percentages.) 

Target Word Overall Resulting from Resulting from 
Unknown Senses Errors on Known Senses 

hard 47 33 14 
serve 32 25 7 
line 25 17 8 

is greater than a threshold. When the max imum activation is below the threshold, the 
network 's  response is do not know. 

The logic under ly ing  this modification is that the activation of the output  unit 
corresponding to the correct answer tends to be close to 1.0 when  the instance to 
be classified is similar to a training example. Hence, instances of senses seen dur ing  
training should have an ou tpu t  unit  whose  activation is close to 1.0 (assuming that 
the training examples adequate ly  represent  the set of possibilities). On the other hand,  
instances of senses not  seen dur ing training are unlikely to be similar to any training 
example. So, they are unlikely to generate an activation that is close to 1.0. 

4.2.1 Testing Methodology. We use a leave-one-category-out  procedure  to test our  
hypothesis  that we can detect unknown  senses by  screening for examples that have 
a low ma x im um output  activation. Our procedure  is as follows: networks  are trained 
using 90% of the examples of S - 1 senses when  there are S senses for a target word.  
The trained ne twork  is then tested using the unused  10% of the S - 1 classes seen 
dur ing training and 10 percent  of the examples of the class not  seen dur ing  training 
(selected randomly).  In addition, dur ing  testing the ne twork  is given a threshold value 
to determine whether  or not  to label the example. Figure 3 shows the effect of varying 
the threshold from 0.4 to 1.0 (values below 0.4 were tried but  had no effect) using the 
combined classifier. The leave-one-category-out  procedure  was repeated 11 times for 
each sense. 

4.2.2 Results and Discussion. The graphs in Figure 3 show that the slight modification 
of the classifier has the hypothes ized  effect. Not  surprisingly, the number  of examples 
classified always decreases as the threshold increases. Also expected is that the per- 
centage of correctly rejected examples falls as the threshold increases-- increasing the 
threshold natural ly catches more  examples that should be accepted. (A rejected ex- 
ample is one for which the classifier responds do not know.) The up-tick in the p roper  
rejection rate at high thresholds for line is not significant. Of more  interest is that the 
classifier is always significantly better than chance at correctly rejecting examples. The 
chance rate of correct rejection is shown in Table 5. Thus, the modification allows the 
classifier to identify senses that do not  appear  in the training set. 

Figure 3 also shows that the threshold has the unanticipated benefit  of rejecting 
misclassified examples of known senses. Hence, it m ay  be desirable to use a threshold 
even when  all senses of a word  are represented in the training set. The exact level of 
the threshold is a mat ter  of choice: a low threshold admits more  errors but  rejects fewer 
examples,  while higher  thresholds are more  accurate but  classify fewer examples. 
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Figure 3 
The effect of omitting one sense from the training set. In each figure, the X-axis represents the 
level of a threshold. If the maximum output activation is below the threshold then the 
network responds do not know. "Correct (only known senses)" gives the accuracy of the 
combined classifier on senses seen during training. "Correct (all)" gives the accuracy over all 
examples. "Properly rejected" is the percentage of all examples for which the classifier 
responds do not know that are either in a novel sense or would have been misclassified. Finally, 
"Classified" gives the percentage of the data for which the classifier assigns a sense. 

4.3 Using Small Amounts of Labeled Data 
All of the above results have assumed that there exist a large number  of hand-labeled 
examples to use dur ing training. Unfortunately, this is not  likely to be the case. Rather 
than working with a number  of labeled examples sufficient to approach an asymptotic 
level of accuracy, the classifiers are likely to be working with a number  of labeled 
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RANDOM(min,max): 
return a uniformly distributed random integer between min and max, inclusive 

MAIN(B,M): 

/* B - in [0...I00], controls the rate of example synthesis */ 

/* M - controls neighborhood size during synthesis */ 
Let: E /* a set of labeled examples */ 

U /* a set of unlabeled examples */ 
N /* an appropriate neural network */ 

Repeat 
Permute E 
For each e in E 

if random(O,lO0) > B then 
e <- SYNTHESIZE (e, E, U, random (2, M) ) 

TRAIN N using e 
Until a stopping criterion is reached 

SYNTHESIZE(e,E,U,m): 
Let: C /* will hold a collection of examples */ 
For i from I to m 

c <- ith nearest neighbor of e in E union U 
if.((c is labeled) and (label of c not equal to label of e)) then STOP 
if c is not labeled 

cc <- nearest neighbor of c in E 
if label of cc not equal to label of e then STOP 

add c to C 
return an example whose input is the centroid of the 

inputs of the examples in C and has the class label of e. 

Figure 4 
Pseudocodefor SULU. 

examples barely sufficient to get them started on the learning curve. 
While labeled examples will likely always be rare, unlabeled text is already avail- 

able in huge quantities. Theoretical results (Castelli and Cover 1995) suggest that it 
should be possible to use both labeled and unlabeled examples to produce a classi- 
fier that is more accurate than one based on only labeled examples. We describe an 
algorithm, SULU (Supervised learning Using Labeled and Unlabeled examples), that 
uses both labeled and unlabeled examples and provide empirical evidence of the al- 
gorithm's effectiveness (Towell 1996). 

4.3.1 The SULU Algorithm. SULU uses standard neural-network supervised training 
techniques except that it may replace a labeled example with a synthetic example. 
A synthetic example is a point constructed from the nearest neighbors of a labeled 
example. The criterion to stop training in SULU is also slightly modified to require 
that the network correctly classify almost every labeled example and a majority of the 
synthetic examples. For instance, the experiments reported below generate synthetic 
examples 50% of the time; the stopping criterion requires that 80% of the examples 
seen in a single pass through the training set (an epoch) are classified correctly. 

Figure 4 shows pseudocode for the SULU algorithm. The syn thes ize  function de- 
scribes the process through which an example is synthesized. Given a labeled example 
to use as a seed, synthes ize  collects neighboring examples and returns an example 
that is the centroid of the collected examples with the label of the starting point. 
Synthesize collects neighboring examples until reaching one of the following three 
stopping points. First, the maximum number of points is reached: the goal of SULU is 
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to get information about the local variance around known points, this criterion guar- 
antees locality. Second, the next closest example to the seed is a labeled example with 
a different label: this criterion prevents the inclusion of obviously incorrect informa- 
tion in synthetic examples. Third, the next closest example to the seed is an unlabeled 
example and the closest labeled example to that unlabeled example has a different 
label from the seed: this criterion is intended to detect borders between classification 
areas in example space. 

4.3.2 Testing Methodology. The following methodology is used to test SULU on each 
data set. First, the data are split into three sets, 25% is set aside to be used for assessing 
generalization, 50% is stripped of sense labels, and the remaining 25% is used for 
training. To create learning curves, the training set is further subdivided into sets of 
5%, 10%, 15%, 20%, and 25% of the data, such that smaller sets are always subsets of 
larger sets. Then, a single neural network (of the structure described in Section 4.1) 
is created and copied 25 times. At each training-set size, a new copy of the network 
is trained under each of the following conditions: (1) using SULU, (2) using SULU but 
supplying only the labeled training examples to synthesize ,  (3) standard network 
training, (4) using a re-implementation of an algorithm proposed by Yarowsky (1995), 
and (5) using standard network training but with all training examples labeled to 
establish an upper bound. This procedure is repeated 11 times to average out the 
effects of example selection and network initialization. 

Yarowsky's algorithm expands the region of known, labeled examples out from 
a small set of hand-labeled seed collocations. Our instantiation of Yarowsky's algo- 
rithm differs from the original in three ways. First, we use neural networks whereas 
Yarowsky uses decision lists. This difference is almost certainly not significant; in de- 
scribing his algorithm, Yarowsky notes that a neural network could be used in place of 
decision lists. Second, we omit the application of the one-sense-per-discourse heuris- 
tic, as our examples are not part of a larger discourse. This heuristic could be equally 
applied to SULU, so eliminating this heuristic from Yarowsky's algorithm places the 
algorithms on an equal base. Finally, we randomly pick the initially labeled contexts. 
The effect of this difference could be significant. However, this difference would affect 
our system as well as Yarowsky's, so it should not invalidate our comparison. 

When SULU is used, synthetic examples replace labeled examples 50% of the time. 
Networks using the full SULU (condition i above) are trained until 80% of the examples 
in a single epoch are correctly classified. All other networks are trained until at least 
99.5% of the examples are correctly classified. 

4.3.3 Results and Discussion. The graphs in Figure 5 show the efficacy of the com- 
bined classifier for each algorithm on each of our three target words. SULU always re- 
suits in a statistically significant improvement over the standard neural network with 
at least 97.5% confidence (according to a one-tailed paired-sample t-test). Interestingly, 
SULU'S improvement is consistently between ¼ and ½ of that achieved by labeling the 
unlabeled examples. This result contrasts with Castelli and Cover's (1995) analysis 
that suggests that labeled examples are exponentially more valuable than unlabeled 
examples. 

SULU is consistently and significantly superior to our version of Yarowsky's al- 
gorithm when there are few labeled examples. As the number of labeled examples 
increases the advantage of SULU decreases. At the largest training-set sizes tested, the 
two systems are roughly equally effective. 

A possible criticism of SULU is that it does not actually need the unlabeled ex- 
amples; the procedure may be as effective using only the labeled training data. This 
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Figure 5 
The effect of five training procedures on the target words. In each of the above graphs, the 
effect of standard neural learning has been subtracted from all results to suppress the increase 
in accuracy that results simply from an increase in the number of labeled training examples. 
Observations marked by a "o" or a "+", respectively, indicate that the point is statistically 
significantly inferior or superior to a network trained using SULU. 

hypothes i s  is incorrect. As  s h o w n  in Figure 5, w h e n  SULU is g iven no  unlabeled ex- 
amples  it is consistently and significantly inferior to SULU w h e n  it is g iven  a large 
number  of unlabeled examples .  In addition,  sugu  wi th  no  unlabeled examples  is con-  
sistently, a l though not  a lways  significantly, inferior to a standard neural  ne twork  (data 
not  shown) .  

An  indication that there is r o o m  for i m p r o v e m e n t  in SULU is the difference in 
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generalization between sucu and a network trained using data in which the unlabeled 
examples provided to SULU have labels (condition 5 above). On every data set, the 
gain from labeling the examples is statistically significant. The accuracy of a network 
trained with all labeled examples is an upper bound for SULU, and one that is likely 
not reachable. However, the distance between this upper bound and SULU'S current 
performance indicates that there is room for improvement. 

5. C o n c l u s i o n  

The goal of our sense disambiguation work is to develop a classifier that allows in- 
formation retrieval systems to exploit the semantics encoded in lexical systems such 
as WordNet to improve retrieval performance. To be useful in that environment, the 
classifier must be effective at distinguishing the senses included in the lexicon and 
efficient enough to use during query processing. As a first step towards this goal, we 
have developed a classifier that is able to select the sense of a single highly ambiguous 
word given the two-sentence context in which the word appears. 

We tested our sense disambiguation approach on three highly polysemous words: 
six noun senses of line, four verb senses of serve, and three adjective senses of hard. 
The performance of our disambiguator on these three tasks was quite good; it has an 
average accuracy of 87%, 90%, and 81%, respectively, when it is forced to label all test 
examples. The labeling accuracy of our method can be further improved by allowing 
it to respond do not know on a small percentage of the test examples. 

While our current plan is to resolve the sense of each query term independently, 
some modifications to the current classifier may provide for the simultaneous classifi- 
cation of multiple polysemous words in a single context. By changing from backprop- 
agation to the EM algorithm (Dempster, Laird, and Rubin 1977), we can jointly refine 
poor guesses of the senses of the words with feedback from prior iterations. 

Our desire to use the sense classifier as part of a query-processing step influenced 
the types of classifiers we considered. The error-correcting codes networks discussed 
in Section 4.1 offer the potential for slightly higher accuracy rates than our simple 
sum combination, but at a significantly higher cost in time and space. Hence, we 
concentrated our effort on a simple scheme for combining local and topical neural 
networks using a sum of the output activations. Using this method, the expense of 
using the classifier would be dominated by the time and space requirements needed 
to break the query into tokens and to map those tokens to the correct input units of 
the various networks. 

The bottleneck in our approach to query processing is obtaining sufficient labeled 
examples for the set of polysemous words in a large lexicon. To minimize the bot- 
tleneck as much as possible, we developed a technique that substitutes inexpensive, 
readily available unlabeled examples for a labeled example while maintaining com- 
parable levels of accuracy. Nonetheless, it is clearly impossible to gather examples of 
all possible senses of all possible words. Thus, we also examined the impact on sense 
resolution accuracy of having previously unseen senses occur in the classifier's test 
cases. The classifier is allowed to choose do not know for a particular test case by re- 
quiring the output activation to be above a threshold before a sense is considered to 
be selected. When modified in this manner and trained on a subset of the available 
senses, the classifier chose do not know on a large fraction of the test cases of the sense 
it had not been trained on. In addition, the classifier tended to leave unclassified those 
cases it would misclassify when forced to choose a sense. 
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