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Probabilistic analogues of regular and context-free grammars are well known in computational 
linguistics, and currently the subject of intensive research. To date, however, no satisfactory 
probabilistic analogue of attribute-value grammars has been proposed: previous attempts have 
failed to define an adequate parameter-estimation algorithm. 

In the present paper, I define stochastic attribute-value grammars and give an algorithm 
for computing the maximum-likelihood estimate of their parameters. The estimation algorithm 
is adapted from Della Pietra, Della Pietra, and Lafferty (1995). To estimate model parameters, it 
is necessary to compute the expectations of certain functions under random fields. In the appli- 
cation discussed by Della Pietra, Della Pietra, and Lafferty (representing English orthographic 
constraints), Gibbs sampling can be used to estimate the needed expectations. The fact that 
attribute-value grammars generate constrained languages makes Gibbs sampling inapplicable, 
but I show that sampling can be done using the more general Metropolis-Hastings algorithm. 

1. Introduction 

Stochastic versions of regular grammars and context-free grammars have received a 
great deal of attention in computational linguistics for the last several years, and ba- 
sic techniques of stochastic parsing and parameter estimation have been known for 
decades. However, regular and context-free grammars are widely deemed linguisti- 
cally inadequate; standard grammars in computational linguistics are attribute-value 
(AV) grammars of some variety. Before the advent of statistical methods, regular and 
context-free grammars were considered too inexpressive for serious consideration, and 
even now the reliance on stochastic versions of the less-expressive grammars is often 
seen as an expedient necessitated by the lack of an adequate stochastic version of 
attribute-value grammars. 

Proposals have been made for extending stochastic models developed for the reg- 
ular and context-free cases to grammars with constraints. 1 Brew (1995) sketches a 
probabilistic version of Head-Driven Phrase Structure Grammar (HPSG). He proposes 
a stochastic process for generating attribute-value structures, that is, directed acyclic 
graphs (dags). A dag is generated starting from a single node labeled with the (unique) 
most general type. Each type S has a set of maximal subtypes T1 . . . . .  Tin. To expand 
a node labeled S, one chooses a maximal subtype T stochastically. One then considers 
equating the current node with other nodes of type T, making a stochastic yes /no  de- 
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1 1 confine my discussion here to Brew and Eisele because they aim to describe parametric models of 

probability distributions over the languages of constraint-based grammars, and to estimate the 
parameters of those models. Other authors have assigned weights or preferences to constraint-based 
grammars but not discussed parameter estimation. One approach of the latter sort that I find of 
particular interest is that of Stefan Riezler (Riezler 1996), who describes a weighted logic for 
constraint-based grammars that characterizes the languages of the grammars as fuzzy sets. This 
interpretation avoids the need for normalization that Brew and Eisele face, though parameter 
estimation still remains to be addressed. 

(~) 1997 Association for Computational Linguistics 



Computational Linguistics Volume 23, Number 4 

cision for each. Equating two nodes creates a re-entrancy. If the current node is equated 
with no other node, one proceeds to expand it. Each maximal type introduces types 
U1 . . . . .  Un, corresponding to values of attributes; one creates a child node for each 
introduced type, and then expands each child in turn. A limitation of this approach is 
that it permits one to specify only the average rate of re-entrancies; it does not permit 
one to specify more complex context dependencies. 

Eisele (1994) takes a logic-programmhlg approach to constraint grammars. He 
assigns probabilities to proof trees by attaching parameters to logic program clauses. 
He presents the following logic program as an example: 

1. p(X,Y,Z) +-1 q(X,Y), r(Y,Z). 

2. q(a,b) +-0.4 
3. q(X,c) +-0.6 
4. r(b,d) +-0.5 
5. r(X,e) +-o.5 

The probability of a proof tree is defined to be proportional to the product of the 
probabilities of clauses used in the proof. Normalization is necessary because some 
derivations lead to invalid proof trees. For example, the derivation 

p(x,Y,Z) Y~ ~y4 q(X,Y) r(Y,Z) by3 r (c ,Z)  : Y=c : Y=c b=c Z=d 

is invalid because of the illegal assignment b = c. 
Both Brew and Eisele associate weights with analogues of rewrite rules. In Brew's 

case, we can view type expansion as a stochastic choice from a finite set of rules of form 
X --* ~i, where X is the type to expand and each ~i is a sequence of introduced child 
types. A re-entrancy decision is a stochastic choice between two rules, X --* yes and 
X --* no, where X is the type of the node being considered for re-entrancy. In Eisele's 
case, expanding a goal term can be viewed as a stochastic choice among a finite set of 
rules X ---* ~i, where X is the predicate of the goal term and each ~i is a program clause 
whose head has predicate X. The parameters of the models are essentially weights 
on such rules, representing the probability of choosing ~i when making a choice of 
type X. 

In these terms, Brew and Eisele propose estimating parameters as the empiri- 
cal relative frequency of the corresponding rules. That is, the weight of the rule 
X ---+ ~i is obtained by counting the number of times X rewrites as ~i in the train- 
ing corpus, divided by the total number of times X is rewritten in the training cor- 
pus. For want of a standard term, let us call these estimates Empirical Relative Fre- 
quency (ERF) estimates. To deal with incomplete data, both Brew and Eisele appeal 
to the Expectation-Maximization (EM) algorithm, applied however to ERF rather than 
maximum-likelihood estimates. 

Under certain independence conditions, ERF estimates are maximum-likelihood 
estimates. Unfortunately, these conditions are violated when there are context depen- 
dencies of the sort found in attribute-value grammars, as will be shown below. As a 
consequence, applying the ERF method to attribute-value grammars' does not gener- 
ally yield maximum-likelihood estimates. This is true whether one uses EM or not--a 
method that yields the "wrong" estimates on complete data does not improve when 
EM is used to extend the method to incomplete data. 

Eisele identifies an important symptom that something is amiss with ERF esti- 
mates: the probability distribution over proof trees that one obtains does not agree 
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with the frequency of proof trees in the training corpus. Eisele recognizes that this 
problem arises only where there are context dependencies. 

Fortunately, solutions to the context-dependency problem have been described 
(and indeed are currently enjoying a surge of interest) in statistics, machine learn- 
ing, and statistical pattern recognition, particularly image processing. The models of 
interest are known as random fields. Random fields can be seen as a generalization 
of Markov chains and stochastic branching processes. Markov chains are stochas- 
tic processes corresponding to regular grammars and random branching processes 
are stochastic processes corresponding to context-free grammars. The evolution of a 
Markov chain describes a line, in which each stochastic choice depends only on the 
state at the immediately preceding time-point. The evolution of a random branching 
process describes a tree in which a finite-state process may spawn multiple child pro- 
cesses at the next time-step, but the number of processes and their states depend only 
on the state of the unique parent process at the preceding time-step. In particular, 
stochastic choices are independent of other choices at the same time-step: each process 
evolves independently. If we permit re-entrancies, that is, if we permit processes to 
re-merge, we generally introduce context-sensitivity. In order to re-merge, processes 
must be "in synch," which is to say, they cannot evolve in complete independence of 
one another. Random fields are a particular class of multidimensional random pro- 
cesses, that is, processes corresponding to probability distributions over an arbitrary 
graph. The theory of random fields can be traced back to Gibbs (1902); indeed, the 
probability distributions involved are known as Gibbs distributions. 

To my knowledge, the first application of random fields to natural language was 
Mark et al. (1992). The problem of interest was how to combine a stochastic context- 
free grammar with n-gram language models. In the resulting structures, the probability 
of choosing a particular word is constrained simultaneously by the syntactic tree in 
which it appears and the choices of words at the n preceding positions. The context- 
sensitive constraints introduced by the n-gram model are reflected in re-entrancies in 
the structure of statistical dependencies, as in Figure 1. 

S 
/ N  

NP VP 

there was NP 

k ~ J  ~jno~sponse 

Figure 1 
Statistical dependencies under the model of Mark et al. (1992). 

In this diagram, the choice of label on a node z with parent x and preceding word y is 
dependent on the label of x and y, but conditionally independent of the label on any 
other node. 

Della Pietra, Della Pietra, and Lafferty (1995, henceforth, DD&L) also apply ran- 
dom fields to natural language processing. The application they consider is the in- 
duction of English orthographic constraints--inducing a grammar of possible English 
words. DD&L describe an algorithm called Improved Iterative Scaling (IIS) for se- 
lecting informative features of words to construct a random field, and for setting the 
parameters of the field optimally for a given set of features, to model an empirical 
word distribution. 

It is not immediately obvious how to use the IIS algorithm to equip attribute-value 
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grammars with probabilities. In brief, the difficulty is that the IIS algorithm requires 
the computation of the expectations, under random fields, of certain functions; in 
general, computing these expectations involves summing over all configurations (all 
possible character sequences, in the orthography application), which is not possible 
when the configuration space is large. Instead, DD&L use Gibbs sampling to estimate 
the needed expectations. 

Gibbs sampling is possible for the application that DD&L consider. A prerequisite 
for Gibbs sampling is that the configuration space be closed under relabeling of graph 
nodes. In the orthography application, the configuration space is the set of possible 
English words, represented as finite linear graphs labeled with ASCII characters. Every 
way of changing a label, that is, every substitution of one ASCII character for a different 
one, yields a possible English word. 

By contrast, the set of graphs admitted by an attribute-value grammar G is highly 
constrained. If one changes an arbitrary node label in a dag admitted by G, one does not 
necessarily obtain a new dag admitted by G. Hence, Gibbs sampling is not applicable. 
However, I will show that a more general sampling method, the Metropolis-Hastings 
algorithm, can be used to compute the maximum-likelihood estimate of the parameters 
of AV grammars. 

2. Stochastic Context-Free Grammars 

Let us begin by examining stochastic context-free grammars (SCFGs) and asking why 
the natural extension of SCFG parameter estimation to attribute-value grammars fails. 
A point of terminology: I will use the term grammar to refer to an unweighted gram- 
mar, be it a context-free grammar or attribute-value grammar. A grammar equipped 
with weights (and other periphenalia as necessary) I will refer to as a model. Occa- 
sionally I will also use model to refer to the weights themselves, or the probability 
distribution they define. 

Throughout we will use the following stochastic context-free grammar for illus- 
trative purposes. Let us call the underlying grammar GI and the grammar equipped 
with weights as shown, MI: 

1. S - + A A  fll = 1/2 

2. S - + B  f12 = 1/2 

3. A--+a  f13 = 2/3 

4. A- -+b  f14 = 1/3 

5. B--+ a a f15 = 1/2 

6. B --+ b b f16 = 1/2 

The probability of a given tree is computed as the product of probabilities of rules 
used in it. For example: Let x be the tree in Figure 2 and let ql be the probability 
distribution over trees defined by model M1. Then: 

1 2 2 2 
ql(x) = i l l .  fiB" ~3 = ~"  5 "  ~ = 

In parsing, we use the probability distribution ql (x) defined by model M1 to dis- 
ambiguate: the grammar assigns some set of trees {Xl . . . . .  Xn} to a sentence or, and we 
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• o°°°°" S "'"',. 

Figure 2 
Computing the probability of a parse tree. 

choose that tree xi that has greatest probability ql (Xi)" The issue of efficiently comput- 
ing the most-probable parse for a given sentence has been thoroughly addressed in the 
literature. The standard parsing techniques can be readily adapted to the random-field 
models to be discussed below, so I simply refer the reader to the literature. Instead, I 
concentrate on parameter estimation, which, for attribute-value grammars, cannot be 
accomplished by standard techniques. 

By parameter estimation we mean determining values for the weights ft. In order 
for a stochastic grammar to be useful, we must be able to compute the correct weights, 
where by correct weights we mean the weights that best account for a training corpus. 
The degree to which a given set of weights accounts for a training corpus is measured 
by the similarity between the distribution q(x) determined by the weights fl and the 
distribution of trees x in the training corpus. 

2.1 T h e  G o o d n e s s  o f  a M o d e l  
The distribution determined by the training corpus is known as the empirical distri- 
bution. For example, suppose we have a training corpus containing twelve trees of 
the four types from L(G1) shown in Figure 3, where c(x) is the count of how often the 

X I X 2 X 3 X 4 

S S S S 

A A A A 

a a b b a a b b 

c = 4x 2x 3x 3x = 12 
= 4/12 2/12 3/12 3/12 

Figure 3 
An empirical distribution. There are twelve parse trees of four distinct types. 

tree (type) x appears in the corpus, and/3(.) is the empirical distribution, defined as: 

c(x) N = c(x) 
N 

x 

In comparing a distribution q to the empirical distribution ]~, we shall actually mea- 
sure dissimilarity rather than similarity. Our measure for dissimilarity of distributions 
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Table 1 
Computing the divergence of ql from ft. 

ql ~ ql/~ ~ln(~/q,) 
xl 2/9 1/3 0.67 0.14 
x2 1/18 1/6 0.33 0.18 
X 3 1/4 1/4 1.00 0.00 
X4 1/4 1/4 1.00 0.00 

0.32 

Table 2 
Computing the divergence of q' from ft. 

q' p q'/~ filn(~/q') 

xl 1/8 1/3 0.38 0.33 
x2 1/8 1/6 0.75 0.05 
x3 1/4 1/4 1.00 0.00 
x4 1/4 1/4 1.00 0.00 

0.38 

is the Kullback-Leibler (KL) divergence, defined as: 

D ( p l l q )  = In 
x q(x)  

The divergence between ~ and q at point x is the log of the ratio of ~(x) to q(x). The 
overall divergence between ~ and q is the average divergence, where the averaging is 
over tree (tokens) in the corpus; i.e., point divergences In(~(x)/q(x)) are weighted by 
~(x) and summed.  

For example, let ql be, as before, the distribution determined by model  M1. Table 1 
shows ql, P, the ratio ql ( X ) / ] ) ( X ) ,  and the weighted point divergence ~(x) ln(~(x)/ql (x)). 
The sum of the fourth column is the KL divergence D(~llql ) between ~ and ql. The 
third column contains ql(x)/~(x) rather than ~(x)/ql (x) so that one can see at a glance 
whether  ql(x) is too large (> 1) or too small (< 1). The total divergence D(~]lql ) = 0.32. 

One set of weights is better than another if its divergence from the empirical 
distribution is less. For example, let us consider a different set of weights for grammar  
G1. Let M' be G1 with weights (1 /2 ,1 /2 ,1 /2 ,1 /2 ,1 /2 ,1 /2) ,  and let q' be the probability 
distribution determined by Mq Then the computat ion of the KL divergence is as in 
Table 2. The fit for x2 improves, but  that is more than offset by a poorer fit for Xl. The 
distribution ql is a better distribution than q', in the sense that ql is more similar (less 
dissimilar) to the empirical distribution than q~ is. 

One reason for adopting minimal KL divergence as a measure of goodness is that 
minimizing KL divergence maximizes likelihood. The likelihood of distribution q is 
the probability of the training corpus according to q: 

L(q) = ] - [  q(x) 
x in training 

= I - [  q (x)~(~) 
x 
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Since log is monotone increasing, maximizing likelihood is equivalent to maximizing 
log likelihood: 

lnL(q) = y~c(x ) lnq(x )  
x 

= 

The expression on the right-hand side is - 1 / N  times the cross entropy of q with 
respect to ~, hence maximizing log likelihood is equivalent to minimizing cross entropy. 
Finally, D(~llq) is equal to the cross entropy of q less the entropy of ~, and the entropy of 

is constant with respect to q; hence minimizing cross entropy (maximizing likelihood) 
is equivalent to minimizing divergence. 

2.2 The ERF Method 
For stochastic context-free grammars, it can be shown that the ERF method yields the 
best model for a given training corpus. First, let us introduce some terminology and 
notation. With each rule i in a stochastic context-free grammar is associated a weight 
fli and a functionj~(x) that returns the number of times rule i is used in the derivation 
of tree x. For example, consider the tree in Figure 2, repeated here in Figure 4 for 
convenience: Rule 1 is used once and rule 3 is used twice; accordingly fl(x) = 1, 

-" '"-  ~1 
.,Y°" S "'"',, 

,.A x .." A.;i 

'%•. • °." "%... o°•' 

Figure 4 
Rule applications in a parse tree. 

f3(x) = 2, andy~(x) = 0 for i E {2,4,5,6}. 
We use the notation p[yq to represent the expectation o f f  under probability distri- 

bution p; that is, p[yq -- ~ x  p(x)f(x). The ERF method instructs us to choose the weight 
fli for rule i proportional to its empirical expectation ~[f;]. Algorithmically, we compute 
the expectation of each rule's frequency, and normalize among rules with the same 
left-hand side. 

To illustrate, let us consider corpus (2.1) again. The expectation of each rule fre- 
quencyy~ is a sum of terms ~(x)fi(x). These terms are shown for each tree, in Table 3. 
For example, in tree xl, rule 1 is used once and rule 3 is used twice. The empirical 
probability of xl is 1/3, so Xl'S contribution to ]~[fl] is 1 /3 .1 ,  and its contribution to 
]~[f3] is 1 /3 .2 .  The weight fli is obtained from p[fi] by normalizing among rules with 
the same left-hand side. For example, the expected rule frequencies/~[fl] and ]~[f2] of 
rules with left-hand side S already sum to 1, so they are adopted without change as fll 
and f12. On the other hand, the expected rule frequencies ])[fs] and/)[f6] for rules with 
left-hand side B sum to 1/2, not 1, so they are doubled to yield weights t55 and t56. It 
should be observed that the resulting weights are precisely the weights of model M1. 

It can be proven that the ERF weights are the best weights for a given context- 
free grammar, in the sense that they define the distribution that is most similar to 
the empirical distribution. That is, if fl are the ERF weights (for a given grammar), 
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Table  3 
Parameter estimation using the ERF method. 

Xl [S [A a] [A a]] 1/3 
X2 [S [A b] [A b]] 1/6 
x3 [s [B a a]] 1/4 
x4 [s [B b b]] 1/4 

= 

f l=  

S--* A A  S--*B 
/3fl /3f2 

1/3 
1/6 

1/4 
1/4 

1/2 1/2 
1/2 1/2 

A--*a A ~ b  

2/3 
2/6 

2/3 1/3 
2/3 1/3 

B ~ a a  B ~ b b  
pf5 pf6 

1/4 
1/4 

1/4 1/4 
1/2 1/2 

defining distribution q, and fl' defining q~ is any set of weights such that q ~ q', then 
D(~]]q) < D(fii[q'). 

One might  expect the best weights to yield D(fi[]q) = 0, but  such is not the case. We 
have just seen, for example, that the best weights for grammar  G1 yield distribution 
ql, yet D(/~]]ql) = 0.32 > 0. A closer inspection of the divergence calculation in Table 1 
reveals that ql is sometimes less than ~, but  never greater than ~. Could we improve 
the fit by increasing ql? For that matter, how can it be that ql is never greater than fi? 
As probability distributions, ql and/3 should have the same total mass, namely, one. 
Where is the missing mass for ql? 

The answer is of course that ql and /3 are probability distributions over L(G1), 
but  not all of L(G1) appears in the corpus. Two trees are missing, and they account 
for the missing mass. These two trees are given in Figure 5. Each of these trees has 

S S 

A A A A 

I I I I 
a b b a 

F igure  5 
The trees from L(G1) that are missing in the training corpus. 

probability 0 according to ~ (hence they can be ignored in the divergence calculation), 
but probability 1/9 according to ql. 

Intuitively, the problem is this: The distribution ql assigns too little weight  to trees 
xl and x2, and too much  weight  to the "missing" trees; call them x5 and x6. Yet exactly 
the same rules are used in x5 and x6 as are used in xl and x2. Hence there is no way to 
increase the weight  for trees Xl and x2, improving their fit to ~, without  simultaneously 
increasing the weight  for Xs and x6, making their fit to ~ worse. The distribution ql is 
the best compromise possible. 

To say it another way, our assumption that the corpus was generated by a context- 
free grammar means that any context dependencies in the corpus must  be accidental, 
the result of sampling noise. There is indeed a dependency in the corpus in Figure 3: 
in the trees where there are two A's, the A's always rewrite the same way. If the 
corpus was generated by a stochastic context-free grammar, then this dependency is 
accidental. 

This does not mean that the context-free assumption is wrong. If we generate 
twelve trees at random from ql, it would  not be too surprising if we got the corpus in 
Figure 3. More extremely, if we generate a random corpus of size 1 from ql, it is quite 
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impossible for the resulting empirical distribution to match the distribution ql. But as 
the corpus size increases, the fit be tween ~ and ql becomes ever better. 

3. Attribute-Value Grammars 

But what  if the dependency  in corpus (3) is not  accidental? What  if we wish to adopt  
a g rammar  that imposes the constraint that both A's rewrite the same way? We can 
impose such a constraint by  means  of an attribute-value grammar.  

We may  formalize an attribute-value grammar  as a context-free g rammar  with 
attribute labels and path  equations. An example is the following grammar;  let us call 
it G2: 

1. S--* I :A2 :A  /1 1) = / 2  1) 

2. S --* I:B 

3. A ~ l:a 

4. A--* l:b 

5. B --* l:a 

6. B --* l:b 

Figure 6 illustrates how a dag is generated from G2. We begin in (a) with a single 

® 

(a) 

Figure 6 

b D 

(b) (c) (d) 

Generating a dag. The grammar used is G2. 

node  labeled with the start category of G2, namely, S. A node  x is expanded  by  choosing 
a rule that rewrites the category of x. In this case, we choose rule 1 to expand the root 
node. Rule 1 instructs us to create two children, both labeled A. The edge to the first 
child is labeled 1 and the edge to the second child is labeled 2. The constraint (1 1) 
= (2 1) indicates that the 1 child of the 1 child of x is identical to the 1 child of the 2 
child of x. We create an unlabeled node to represent this grandchild of x and direct 
appropriately labeled edges from the children, yielding (b). 

We proceed to expand the newly  int roduced nodes. We choose rule 3 to expand 
the first A node. In this case, a child with edge labeled 1 already exists, so we use it 
rather than creating a new one. Rule 3 instructs us to label this child a, yielding (c). 
N ow  we expand the second A node.  Again we choose rule 3. We are instructed to 
label the 1 child a, but  it already has that label, so we do not  need to do anything. 
Finally, in (d), the only remaining node  is the bot tom-most  node,  labeled a. Since its 
label is a terminal category, it does not  need to be expanded,  and we are done. 

Let us back up  to (c) again. Here we were free to choose rule 4 instead of rule 3 to 
expand the r ight-hand A node. Rule 4 instructs us to label the I child b, but  we cannot, 
inasmuch as it is already labeled a. The derivat ion fails, and no dag is generated.  
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The language L(G2) is the set of dags produced by successful derivations, as shown 
in Figure 7. (The edges of the dags should actually be labeled with l 's  and 2's, but I 

X 1 X 2 X 3 X 4 

S S S S 

A A A A 

I L 
a b a b 

Figure 7 
The language generated by G2. 

have suppressed the edge labels for the sake of perspicuity.) 

3.1 AV Grammars  and the ERF M e t h o d  
Now we face the question of how to attach probabilities to grammar G2. The natural 
extension of the method we used for context-free grammars is the following: Associate 
a weight with each of the six rules of grammar G2. For example, let M2 be the model 
consisting of G2 plus weights (ill . . . . .  /36) = (1/2,1/2, 2/3,1/3,1/2,1/2). Let ¢2(x) be 
the weight that M2 assigns to dag x; it is defined to be the product of the weights 
of the rules used to generate x. For example, the weight ¢2(xl) assigned to tree xl of 
Figure 7 is 2/9, computed as in Figure 8. Rule 1 is used once and rule 3 is used twice; 

Xl----  

..""" S "'"".. 

:'i A'",, ..'"A ~i ,;. ",, .. ..:. 

" . .  • .' ~ 3  
"~. i...' 

Figure 8 
Rule applications in a dag generated by G2. The weight of the dag is the product of the 
weights of rule applications. 

hence ¢2(xl) = fllfl3fl3 = 1 / 2 . 2 / 3 . 2 / 3  = 2/9. 
Observe that ¢2(xa) = fllfl 2, which is to say, fl/l(x,)fl/~(x,) Moreover, since fl0 1, 1 3 " 

it does not hurt to include additional factors fl:(xl) for those i where y~(xl) = 0. That 
is, we can define the dag weight ¢ corresponding to rule weights fl = (ill . . . . .  fin) 
generally as: 

n 

II 
i=1  

The next question is how to estimate weights. Let us consider what happens when 
we use the ERF method. Let us assume a corpus distribution for the dags in Figure 7 
analogous to the distribution in Figure 3: 

X1 X2 X3 X4 

--- 1/3 1/6 1/4 1/4 (1) 

Using the ERF method, we estimate rule weights as in Table 4. This table is identical 
to the one given earlier in the context-free case. We arrive at the same weights M2 we 
considered above, defining dag weights ¢2(x). 
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Table 4 
Estimating the parameters of G2 using the ERF method. 

xl 1/3 
X2 1/6 
X 3 1/4 
X4 1/4 

~[;q = 
f l =  

1/3 
1/6 

1/4 
1/4 

1/2 1/2 
1/2 1/2 

2/3 
2/6 

2/3 1/3 
2/3 1/3 

1/4 
1/4 

1/4 1/4 
1/2 1/2 

3.2 Why the ERF Method Fails 
But at this point a problem arises: ~2 is not a probability distribution. Unlike in the 
context-free case, the four dags in Figure 7 constitute the entirety of L(G2). This time, 
there are no missing dags to account for the missing probability mass. 

There is an obvious "fix" for this problem: we can simply normalize 62. We might 
define the distribution q for an AV grammar with weight function ~b as: 

q(X)=z~(X) 

where Z is the normalizing constant: 

xEL(G) 

In particular, for ~2, w e  have Z = 2/9 + 1/18 + 1/4 + 1/4 = 7/9. Dividing ~2 by 7/9 
yields the ERF distribution: 

Xl X2 X3 X4 
q2(x)= 2/7 1/14 9/28 9/28 

On the face of it, then, we can transplant the methods we used in the context-free 
case to the AV case and nothing goes wrong. The only problem that arises (@ not 
summing to one) has an obvious fix (normalization). 

However, something has actually gone very wrong. The ERF method yields the 
best weights only under certain conditions that we inadvertently violated by chang- 
ing L(G) and re-apportioning probability via normalization. In point of fact, we can 
easily see that the ERF weights in Table 4 are not the best weights for our example 
grammar. Consider the alternative model M* given in Figure 9, defining probability 
distribution q*. 

S - * A A  S--*B A- -*a  A - ~ b  B--*a B--*b 
3-[-2v~ 3 x,~ 1 1 1 
6q-2v/2 6+2v~ l + v ~  l + v ~  2 

Figure 9 
An alternative model, M,. 

These weights are proper, in the sense that weights for rules with the same left-hand 
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side sum to one. The reader can verify that ** sums to Z = 3+v~ and that q, is: 3 

X1 X2 X3 X4 

q,(x)  = 1/3 1/6 1/4 1/4 

That is, q, = ]5. Comparing q2 (the ERF distribution) and q, to ~, we observe that 
D(~llq2 ) = 0.07 but D(~llq, ) = O. 

In short, in the AV case, the ERF weights do not yield the best weights. This 
means that the ERF method does not converge to the correct weights as the corpus 
size increases. If there are genuine dependencies in the grammar, the ERF method 
converges systematically to the wrong weights. Fortunately, there are methods  that 
do converge to the right weights. These are methods  that have been developed for 
random fields. 

4. Random Fields 

A random field defines a probability distribution over a set of labeled graphs f~ called 
configurations. In our case, the configurations are the dags generated by the grammar, 
i.e., f~ = L(G). The weight assigned to a configuration is the product  of the weights 
assigned to selected features of the configuration. We use the notation: 

,Ix)-- II 
i 

where fli is the weight  for feature i and f/(.) is its frequency function, that is, fi(x) is 
the number  of times that feature i occurs in configuration x. (For most purposes, a 
feature can be identified with its frequency function; I will not always make a careful 
distinction between them.) 

I use the term feature here as it is used in the machine learning and statistical 
pattern recognition literature, not as in the constraint grammar literature, where  feature 
is synonymous  with attribute. In my  usage, dag edges are labeled with attributes, not 
features. Features are rather like geographic features of dags: a feature is some larger 
or smaller piece of structure that occurs--possibly at more than one place---in a dag. 

The probability of a configuration (that is, a dag) is proportional to its weight,  and 
is obtained by normalizing the weight  distribution. 

q(x) = ½,(x) z = Gx a *(x) 

If we identify the features of a configuration with local trees equivalently, with 
applications of rewrite rules-- the random field model  is almost identical to the model  
we considered in the previous section. There are two important  differences. First, 
we no longer require weights to sum to one for rules with the same left-hand side. 
Second, the model  does not require features to be identified with rewrite rules. We use 
the grammar to define the set of configurations f~ = L(G), but  in defining a probability 
distribution over L(G), we can choose features of dags however  we wish. 

Let us consider an example. Let us continue to assume grammar G2 generating 
the language in Figure 7, and let us continue to assume the empirical distribution 
in (1). But now rather than taking rule applications to be features, let us adopt  the 
two features in Figure 10. For purpose of illustration, take feature 1 to have weight  
fll = v~  and feature 2 to have weight  f12 -- 3/2. The functions fl  and f2 represent the 
frequencies of features 1 and 2, respectively, as in Figure 11. We are able to exactly 
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;X'. 

- a :  
, . . /  

Figure 10 
Two features. 

s 
: ' ' r / ~ - - . , ~  s s s 

":::::::" b a b 

fl---- 2 0 0 0 
f2 = 0 0 1 1 
4 = x /2-v~  1 3/2 3/2 
q = 1/3 1/6 1/4 1/4 

Figure 11 

Z - - 6  

The frequencies (number of instances) of features 1 and 2 in dags generated by G2, and the 
computation of dag weights ~ and dag probabilities q. 

recreate the empirical distribution using fewer features than before. Intuitively, we 
need only use as many features as are necessary to distinguish among trees that have 
different empirical probabilities. 

This added flexibility is welcome, but it does make parameter estimation more 
involved. Now we must not only choose values for weights, we must also choose the 
features that weights are to be associated with. We would like to do both in a way 
that permits us to find the best model, in the sense of the model that minimizes the 
Kullback-Leibler distance with respect to the empirical distribution. The IIS algorithm 
(Della Pietra, Della Pietra, and Lafferty 1995) provides a method to do precisely that. 

5. Field Induction 

In outline, the IIS algorithm is as follows: 

1. 

2. 

. 

4. 

Start (t = 0) with the null field, containing no features. 

Feature Selection. Consider every feature that might be added to field 
Mt and choose the best one. 

Weight Adjustment. Readjust weights for all features. The result is field 
Mt+l. 

Iterate until the field cannot be improved. 

For the sake of concreteness, let us take features to be labeled subdags. In step 2 
of the algorithm we do not consider every conceivable labeled subdag, but only the 
atomic (i.e., single-node) subdags and those complex subdags that can be constructed 
by combining features already in the field or by combining a feature in the field with 
some atomic feature. We also limit our attention to features that actually occur in the 
training corpus. 

In our running example, the atomic features are as shown in Figure 12. Features 
can be combined by adding connecting arcs, as shown in Figure 13, for example. 
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@@@@@ 
Figure 12 
The atomic features arising in dags generated by G2. 

Figure 13 
Combining features to create more complex features. 

5.1 The Nul l  Field 
Field induction begins with the null field. With the corpus we have been assuming, the 

null field takes the form in Figure 14. No dag x has any features, so ¢(x) = I]i fl~(x) is a 

¢(x) -- 
q(x )  = 

Figure 14 

S S 

s s I I 
A A A A B B 

V V i i 
a b a b 

1 1 1 1 
1 /4  1 /4  1 /4  1 /4  

The null field for G2. 

Z = 4  

product  of zero terms, and hence has value 1. As a result, q is the uniform distribution. 
The Kullback-Leibler divergence D (/~ llq) is 0.03. The aim of feature selection is to choose 
a feature that reduces this divergence as much  as possible. 

The astute reader will note that there is a problem with the null field if L(G) is 
infinite. Namely, it is not possible to have a uniform probabili ty mass distribution over  
an infinite set. If each dag in an infinite set of dags is assigned a constant nonzero  
probabili ty e, then the total probabili ty is infinite, no matter  how small e is. There are 
a couple of ways of dealing with the problem. The approach that DD&L adopt  is to 
assume a consistent prior distribution p(k) over graph sizes k, and a family of r andom 
fields qk representing the conditional probabili ty q(x I k); the probabili ty of a tree is 
then p(k)q(x I k). All the r andom fields have the same features and weights, differing 
only in their normalizing constants. 

I will take a somewhat  different approach here. As sketched at the beginning of 
section 3, we can generate dags from an AV g r a m m a r  much  as proposed  by  Brew 
and Eisele. If we ignore failed derivations, the process of dag generation is completely 
analogous to the process of tree generation from a stochastic CFG-- indeed ,  in the 
limiting case in which none of the rules contain constraints, the g rammar  is a CFG. 
To obtain an initial distribution, we associate a weight  with each rule, the weights 
for rules with a common  left-hand side summing to one. The probabili ty of a dag is 
proport ional  to the product  of weights of rules used to generate it. (Renormalization 
is necessary because of the failed derivations.) We estimate weights using the ERF 
method: we estimate the weight  of a rule as the relative frequency of the rule in the 
training corpus, among rules with the same left-hand side. 

The resulting initial distribution (the ERF distribution) is not  the maximum-likeli-  
hood distribution, as we know. But it can be taken as a useful first approximation.  
Intuitively, we begin with the ERF distribution and construct a r andom field to take 
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account of context dependencies that the ERF distribution fails to capture, incremen- 
tally improving the fit to the empirical distribution. 

In this framework, a model consists of: (1) An AV grammar G whose purpose 
is to define a set of dags L(G). (2) A set of initial weights 0 attached to the rules 
of G. The weight of a dag is the product of weights of rules used in generating it. 
Discarding failed derivations and renormalizing yields the initial distribution po(x). 
(3) A set of features fl . . . .  ,fn with weights f l l  . . . .  , fin to define the field distribution 

q(x) = ½Po(X) I-Ii fl?(x). 

5.2 Feature Se lect ion  
At each iteration, we select a new feature f by considering all atomic features, and all 
complex features that can be constructed from features already in the field. Holding 
the weights constant for all old features in the field, we choose the best weight fl f o r f  
(how fl is chosen will be discussed shortly), yielding a new distribution qfi,/. The score 
for feature f is the reduction it permits in D(pl[qold), where qold is the old field. That 
is, the score for f is D(~llqold ) -- D(~llqfi,f ). We compute the score for each candidate 
feature and add to the field that feature with the highest score. 

To illustrate, consider the two atomic features a and B. Given the null field as old 
field, the best weight for a is fl = 7/5, and the best weight for B is fl ~- 1. This yields q 
and D(/S[~) as in Figure 15. The better feature is a, and a would be added to the field 

~a 
q~ 
filn 

¢B 
qB 
~ln ~ 

Figure 15 

S S 

s s I I 
A A A A B B 

a b a b 

1/3 1/6 1/4 1/4 

7/5 1 7/5 1 Z = 24/5 
7/24 5/24 7/24 5/24 
0.04 -0.04 -0.04 0.05 D = 0.01 

1 1 1 1 Z = 4  
1/4 1/4 1/4 1/4 
0.10 -0.07 0 0 D = 0.03 

Comparing features, qa is the best (minimum-divergence) distribution that can be generated by 
adding the feature "a" to the field, and qB is the best distribution generable by adding the 
feature "B'. 

if these were the only two choices. 
Intuitively, a is better than B because a permits us to distinguish the set {xl, X3} 

from the set {x2, x4}; the empirical probability of the former is 1/3+1/4 -- 7/12 whereas 
the empirical probability of the latter is 5/12. Distinguishing these sets permits us to 
model the empirical distribution better (since the old field assigns them equal prob- 
ability, counter to the empirical distribution). By contrast, the feature B distinguishes 
the set {xl, x2} from {x3, x4}. The empirical probability of the former is 1/3 + 1/6 = 1/2 
and the empirical probability of the latter is also 1/2. The old field models these prob- 
abilities exactly correctly, so making the distinction does not permit us to improve on 
the old field. As a result, the best weight we can choose for B is 1, which is equivalent 
to not having the feature B at all. 
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5.3 Selecting the Initial Weight 
DD&L show that there is a unique weight fl that maximizes the score for a new 
feature f (provided that the score for f is not constant for all weights). Writing q~ for 
the distribution that results from assigning weight fl to feature f ,  fl is the solution to 
the equation 

q~[f] = ~[f] (2) 

Intuitively, we choose the weight such that the expectation of f under the resulting 
new field is equal to its empirical expectation. 

Solving equation (2) for fl is easy if L(G) is small enough to enumerate. Then the 
sum over L(G) that is implicit in qfl [f] can be expanded out, and solving for fl is simply 
a matter of arithmetic. Things are a bit trickier if L(G) is too large to enumerate. DD&L 
show that we can solve equation (2) if we can estimate qold[f = k] for k from 0 to the 
maximum value o f f  in the training corpus. (See Appendix 1 for details.) 

We can estimate qold[f = k] by means of random sampling. The idea is actually 
rather simple: to estimate how often the feature appears in "the average dag," we 
generate a representative mini-corpus from the distribution qold and count. That is, we 
generate dags at random in such a way that the relative frequency of dag x is qold(X) 
(in the limit), and we count how often the feature of interest appears in dags in our 
generated mini-corpus. 

The application that DD&L consider is the induction of English orthographic con- 
straints, that is, inducing a field that assigns high probability to "English-sounding" 
words and low probability to non-English-sounding words. For this application, Gibbs 
sampling is appropriate. Gibbs sampling does not work for the application to AV gram- 
mars, however. Fortunately, there is an alternative random sampling method we can 
use: Metropolis-Hastings sampling. We will discuss the issue in some detail shortly. 

5.4 Readjusting Weights 
When a new feature is added to the field, the best value for its initial weight is chosen, 
but the weights for the old features are held constant. In general, however, adding the 
new feature may make it necessary to readjust weights for all features. The second 
half of the IIS algorithm involves finding the best weights for a given set of features. 

The method is very similar to the method for selecting the initial weight for a new 
feature. Let (fl  . . . .  , fin) be the old weights for the features. We wish to compute "in- 
crements" (61,..., 6,) to determine a new field with weights (61fll,..., 6,ft,). Consider 
the equation 

qold[6/#fi] = p[f/] (3) 

where f#(x) = y'~if/(x) is the total number of features of dag x. The reason for the 

factor 6 f# is a bit involved. Very roughly, we would like to choose weights so that the 
expectation offi under the new field is equal to/5[f/]. Now qnew(X) is: 

qnew(X) = ½polxl III6jfjl 
J 

1 H ~ x  
= ~--~qold (X) • 

J 

where we factor Z as ZaZ~, for Zfl the normalization constant in qold- Hence, qnew [f/] = 

qold[d-Ji I-Ij6fj;x] • Now there are two problems with this expression: it requires us to 
compute Za, which we are not able to do, and it requires us to determine weights 
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~j for all the features simultaneously, not just the weight ~i for feature i. We might 
consider approximating qnew[fi] by ignoring the normalization factor and assuming 

that all features have the same weight as feature i. Since ]-Ij 6~ (x) = 6//'(x), we arrive at 
the expression on the left-hand side of equation (3). 

One might expect the approximation just described to be rather poor, but it is 
proven in Della Pietra, Della Pietra, and Lafferty (1995) that solving equation (3) for 
6i (for each i) and setting the new weight for feature i to ~ifli is guaranteed to improve 
the model. This is the real justification for equation (3), and the reader is referred to 
Della Pietra, Della Pietra, and Lafferty (1995) for details. 

Solving (3) yields improved weights, but it does not necessarily immediately yield 
the globally best weights. We can obtain the globally best weights by iterating. Set 
fli *- 6ifli, for all i, and solve equation (3) again. Repeat until the weights no longer 
change. 

As with equation (2), solving equation (3) is straightforward if L(G) is small enough 
to enumerate, but not if L(G) is large. In that case, we must use random sampling. We 
generate a representative mini-corpus and estimate expectations by counting in the 
mini-corpus. (See Appendix 2.) 

5.5 Random Sampling 
We have seen that random sampling is necessary both to set the initial weight for 
features under consideration and to adjust all weights after a new feature is adopted. 
Random sampling involves creating a corpus that is representative of a given model 
distribution q(x). To take a very simple example, a fair coin can be seen as a method 
for sampling from the distribution q in which q(H) = 1/2, q(T) = 1/2. Saying that 
a corpus is representative is actually not a comment about the corpus itself but the 
method by which it was generated: a corpus representative of distribution q is one 
generated by a process that samples from q. Saying that a process M samples from q is 
to say that the empirical distributions of corpora generated by M converge to q in the 
limit. For example, if we flip a fair coin once, the resulting empirical distribution over 
(H, T) is either (1, 0) or (0,1), not the fair-coin distribution (1/2,1/2). But as we take 
larger and larger corpora, the resulting empirical distributions converge to (1/2,1/2). 

An advantage of SCFGs that random fields lack is the transparent relationship be- 
tween an SCFG defining a distribution q and a sampler for q. We can sample from q by 
performing stochastic derivations: each time we have a choice among rules expanding 
a category X, we choose rule X --* ~i with probability fli, where fli is the weight of rule 
X--* G 

Now we can sample from the initial distribution p0 by performing stochastic 
derivations. At the beginning of Section 3, we sketched how to generate dags from an 
AV grammar G via nondeterministic derivations. We defined the initial distribution 
in terms of weights ~ attached to the rules of G. We can convert the nondeterminis- 
tic derivations discussed at the beginning of Section 3 into stochastic derivations by 
choosing rule X --* ~i with probability ~i when expanding a node labeled X. Some 
derivations fail, but throwing away failed derivations has the effect of renormalizing 
the weight function, so that we generate a dag x with probability p0 (x), as desired. 

The Metropolis-Hastings algorithm provides us with a means of converting the 
sampler for the initial distribution po(x) into a sampler for the field distribution q(x). 
Generally, let p(.) be a distribution for which we have a sampler. We wish to construct 
a sample xl . . . . .  xN from a different distribution q(.). Assume that items xl . . . .  , x, are 
already in the sample, and we wish to choose xn+l. The sampler for p(.) proposes a 
new item y. We do not simply add y to the sample--that would give us a sample 
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from p(.)--but rather we make a stochastic decision whether to accept the proposal y 
or reject it. If we accept y, it is added to the sample (Xn+l = y), and if we reject y, then 
Xn is repeated (Xn+l = xn). 

The acceptance decision is made as follows: If p(y) > q(y), then y is overrep- 
resented among the proposals. We can quantify the degree of overrepresentation as 
p(y)/q(y). The idea is to reject y with a probability corresponding to its degree of 
overrepresentation. However, we do not consider the absolute degree of overrepre- 
sentation, but rather the degree of overrepresentation relative to x,. (If y and Xn are 
equally overrepresented, there is no reason to reject y in favor of xn.) That is, we 
consider the value 

p(y)/q(y) _ p(y)q(xn) 
r =  p(x,)/q(xn) p(xn)q(y) 

If r <_ 1, then y is underrepresented relative to x,, and we accept y with probability one. 
If r > 1, then we accept y with a probability that diminishes as r increases: specifically, 
with probability 1/r. In brief, the acceptance probability of y is A(y ] x,) = min(1,1/r). 
It can be shown that proposing items with probability p(.) and accepting them with 
probability A(. ] x,) yields a sampler for q(.). (See, for example, Winkler [1995]). 2 

The acceptance probability A(y ] xn) reduces in our case to a particularly simple 

form. If r < 1 then A(y ] x) = 1. Otherwise, writing ~b(x) for the "field weight" [Ii fl~lxl, 
we have: 

A(y]xn) -~ z-I~(Y)P°(Y)P°(X") 
Z-'d~(x.)po(x,)po(y) (4) 
(~(y ) / dp( Xn ) 

6. Final Remarks 

In summary, we cannot simply transplant CF methods to the AV grammar case. In par- 
ticular, the ERF method yields correct weights only for SCFGs, not for AV grammars. 
We can define a probabilistic version of AV grammars with a correct weight-selection 
method by going to random fields. Feature selection and weight adjustment can be 
accomplished using the IIS algorithm. In feature selection, we need to use random 
sampling to find the initial weight for a candidate feature, and in weight adjustment 
we need to use random sampling to solve the weight equation. The random sampling 
method that DD&L used is not appropriate for sets of dags, but we can solve that 
problem by using the Metropolis-Hastings method instead. 

Open questions remain. First, random sampling is notorious for being slow, and it 
remains to be shown whether the approach proposed here will be practicable. I expect 
practicability to be quite sensitive to the choice of grammar--the more the grammar's 

2 The Metropolis-Hastings acceptance probability is usually given in the form 

(  ly  ly, 
A(y [ x) = min 1,~r(x)g(x,y)]  

in which 7r is the distribution we wish to sample from (q, in our notation) and g(x, y) is the proposal 
probability: the probability that the input sampler will propose y if the previous configuration was x. 
The case we consider is a special case in which the proposal probability is independent of x: the 
proposal probability g(x, y) is, in our notation, p(y). 

The original Metropolis algorithm is also a special case of the Metropolis-Hastings algorithm, in 
which the proposal probability is symmetric, that is, g(x, y) = g(y, x). The acceptance function then 
reduces to rain(l,  ~r(y)/Tr(x)), which is rain(l ,  q(y)/q(x)) in our notation. I mention this only to point 
out that it is a different special case. Our proposal probability is not symmetric, but rather independent 
of the previous configuration, and though our acceptance function reduces to a form (4) that is similar 
to the original Metropolis acceptance function, it is not the same: in general, (b(y)/(b(x) =7/= q(y)/q(x). 
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distribution diverges from the initial context-free approximation, the more features 
will be necessary to "correct" it, and the more random samplingwill  be called on. 

A second issue is incomplete data. The approach described here assumes complete 
data (a parsed training corpus). Fortunately, an extension of the method to handle 
incomplete data (unparsed training corpora) is described in Riezler (1997), and I refer 
readers to that paper. 

As a closing note, it should be pointed out explicitly that the random field tech- 
niques described here can be profitably applied to context-free grammars, as well. As 
Stanley Peters nicely put it, there is a distinction between possibilistic and probabilistic 
context-sensitivity. Even if the language described by the grammar of interest--that 
is, the set of possible trees---is context-free, there may well be context-sensitive sta- 
tistical dependencies. Random fields can be readily applied to capture such statistical 
dependencies whether or not L(G) is context-sensitive. 

Appendix A: Initial Weight Estimation 

In the feature selection step, we choose an initial weight fl for each candidate feature 
f so as to maximize the gain G = D(/~llqold ) -- D(~[Iqf,~ ) of adding f to the field. It is 
actually more convenient to consider log weights c~ = In ft. For a given feature f ,  the 
log weight 6 that maximizes gain is the solution to the equation: 

where q~ is the distribution that results from adding f to the field with log weight ~. 
This equation can be solved using Newton's method. Define 

= # [ ; q -  q [jq (5) 

To find the value of c~ for which F(c~) = 0, we begin at a convenient point s0 (the 
"null" weight c~0 = 0 recommends itself) and iteratively compute: 

F(~t) (6) 
 t+l = 

Della Pietra, Della Pietra, and Lafferty (1995) show that F'(oq) is equal to the negative 
of the variance o f f  under the new field, which I will write -V~ If]. 

To compute the iteration (6) we need to be able to compute F(o~t) and F'(oq). For 
F(c~t) we require ~[f] and q~[f], and F'(~t) can be expressed a s  q , ~ [ f ] 2  _ q~[f2]./~[f] is 
simply the average value of f in the training corpus. The remaining terms are all of 
the form q~ IF]. We can re-express this expectation in terms of the old field qold: 

x 

Y~xfr(x)e~f(X)qold(X) 
Y~x e~f(X)qold (X) 

qold [fre~f] 
qold [e c~f ] 

The expectations qo~d [fre'~fJ can be obtained by generating a random sample (zl . . . . .  zN) 
of size N from qold and computing the average value of fre"f. That is, qold[freof] ~" 
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(1 /N)sr (a) ,  where: 

sr( ) = ~fr(zk)e°~f(zk) 
k 

: ~ c o u n t k [ f ( Z k )  = u]ure  c~u 
u 

This yields: 

q~,[f~]_ s~(a) 
so(a) 

and the Newton iteration (6) reduces to: 

~ t + l  z ~ t +  
- 

SO( OLt )S2 ( OLt ) -- S l ( O~t ) 2 

To compare candidates, we also need to know the gain D(p]lqold ) -D(/~]]q6) for each 
candidate. This can be expressed as follows (Della Pietra, Della Pietra, and Lafferty 
1995): 

G(f ,&) = p[ f] ln& - lnqold[e 6f] 

~[f] ln& -- lns0(&) + InN 

Putting everything together, the algorithm for feature selection has the following 
form. The array E[J] is assumed to have been initialized with the empirical expectations 
P i l l .  

procedure SelectFeature 0 begin 
Fill array C[f,  u] = countk[f(zk)  = u] 
by sampling from old field 

~-- 0, g +-- none 
for each f in candidates do 

c~ ,~-- 0 
until ~ is accurate enough do 

SO +--- S1 +-- S2 ~-- 0 

for u from 0 to Umax do 
x *-- C[f,  u]e ~u 
S0 +- -S0q-X 

Sl ~ SO q- XU 
82 +-- S0 q- XU 2 

end 

Oz ~--- Oz q- ~ 

end 
G +- aE[f] - I n s o  + InN 
if G > G then G ~-- G, g *--f, & ~- 

end 
return g, 6, 

end 
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Appendix B: Adjusting Field Weights 

The procedure for adjusting field weights has much  the same structure as the pro- 
cedure for choosing initial weights. In terms of log weights, we wish to compute 
increments (61 . . . . .  5,) such that the new field, with log weights (c~1 + 61 . . . . .  O~n q- 6n) 
has a lower divergence than the old field (c~1 . . . . .  C~n). We choose each 6i as the solution 
to the equation: 

p[f i ]  = qold[fie 6if~ ] ¢i 

Again, we use Newton 's  method. We wish to find 5 such that Fi(6) = 0, where: 

Fi(6)  = ]9[fi] 6f# -- qold[fie ] 

As Della Pietra, Della Pietra, and Lafferty (1995) show, the first derivative is: 

FI( 6 ) = --qold[fif#e 6y* ] 

We see that the expectations we need to compute by sampling from qold are of form 
qold [fifie~f@ We generate a random sample (Zl . . . . .  ZN) and define: 

Sr(i, 6) = ~ f i ( Z k ) f # ( z k ) r e  6f*(zk) 

k 

= y ~  y ~  coun tk [ f i (Zk )  = U Af#(zk) = m ] u m r e  6m 

= ~-~mre 6m ~ fi(Zk) 
m k[/:#(Zk)=m 

As we generate the sample we update the array C[i, m] = Y~k[f~ (zk)=mfi(Zk)" We estimate 

qold[fifie ~f"] as the average value of rifle ~f* in the sample, namely, (1/N)sr(i,6). This 
permits us to compute Fi(6) and FI(6 ). The resulting Newton iteration is: 

6t+ l  = 6t -{- 
Nf~[fi] - so(i, 6t) 

s1(i, 6) 

The estimation procedure is: 

procedure AdjustWeights (Oz I . . . . .  ~n)  begin 
until the field converges do 

Fill array C[i, m] 
by sampling from q~ 
for i from 1 to n 

6+--0 
until 6 is sufficiently accurate do 
So +'- Sl *--- 0 

for m from 0 to n/max do 
x ~-- C[i, m]e &' 
So +-- SO q- X 
Sl ~ Sl Jr- x m  

end 
6 ~ 6 + NE[/~]-s0 

$1 
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end 
OL i +-- OL i q -  ¢~ 

end 
end 
re turn  (al  . . . .  , an) 

end 
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