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Tokenization is the process of mapping sentences from character strings into strings of words. 
This paper sets out to study critical tokenization, a distinctive type of tokenization following the 
principle of maximum tokenization. The objective in this paper is to develop its mathematical 
description and understanding. 

The main results are as follows: (1) Critical points are all and only unambiguous toke~ 
boundaries for any character string on a complete dictionary; (2) Any critically tokenized word 
string is a minimal element in the partially ordered set of all tokenized word strings with respect 
to the word string cover relation; (3) Any tokenized string can be reproduced from a critically 
tokenized word string but not vice versa; (4) Critical tokenization forms the sound mathemati- 
cal foundation for categorizing tokenization ambiguity into critical and hidden types, a precise 
mathematical understanding of conventional concepts like combinational and overlapping ambi- 
guities; (5) Many important maximum tokenization variations, such as forward and backward 
maximum matching and shortest tokenization, are all true subclasses of critical tokenization. 

It is believed that critical tokenization provides a precise mathematical description of the 
principle of maximum tokenization. Important implications and practical applications of critical 
tokenization in effective ambiguity resolution and in efficient tokenization implementation are 
also carefully examined. 

1. Introduction 

Words, and tokens in general, are the primary building blocks in almost all linguistic 
theories (e.g., Gazdar, Klein, Pullum, and Sag 1985; Hudson 1984) and language pro- 
cessing systems (e.g., Allen 1995; Grosz, Jones, and Webber 1986). Sentence, or string, 
tokenization, the process of mapping sentences from character strings to strings of 
words, is the initial step in natural language processing (Webster and Kit 1992). 

Since in written Chinese there is no explicit word delimiter (equivalent to the blank 
space in written English), the problem of Chinese sentence tokenization has been the 
focus of considerable research efforts, and significant advancements have been made 
(e.g., Bai 1995; Zhang et al. 1994; Chen and Liu 1992; Chiang et al. 1992; Fan and Tsai 
1988; Gan 1995; Gan, Palmer, and Lua 1996; Guo 1993; He, Xu, and Sun 1991; Huang 
1989; Huang and Xia 1996; Jie 1989; Jie, Liu, and Liang 1991a, 1991b; Jin and Chen 
1995; Lai et al. 1992; Li et al. 1995; Liang 1986, 1987, 1990; Liu 1986a, 1986b; Liu, Tan, 
and Shen 1994; Lua 1990, 1994, and 1995; Ma 1996; Nie, Jin, and Hannan 1994; Sproat 
and Shih 1990; Sproat et al. 1996; Sun and T'sou 1995; Sun and Huang 1996; Tung and 
Lee 1994; Wang, Su, and Mo 1990; Wang 1989; Wang, Wang, and Bai 1991; Wong et 
al. 1995; Wong et al. 1994; Wu et al. 1994; Wu and Su 1993; Yao, Zhang, and Wu 1990; 
Yeh and Lee 1991; Zhang, Chen, and Chen 1991). 
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The tokenization problem exists in almost all natural languages, including Japanese 
(Yosiyuki, Takenobu, and Hozumi 1992), Korean (Yun, Lee, and Rim 1995), German 
(Pachunke et al. 1992), and English (Garside, Leech, and Sampson 1987), in various 
media, such as continuous speech and cursive handwriting, and in numerous appli- 
cations, such as translation, recognition, indexing, and proofreading. 

For Chinese, sentence tokenization is still an unsolved problem, which is in part 
due to its overall complexity but also due to the lack of a good mathematical de- 
scription and understanding of the problem. The theme in this paper is therefore to 
develop such a mathematical description. 

In particular, this paper focuses on critical tokenization 1, a distinctive type of 
tokenization following the maximum principle. What is to be established in this paper 
is the notion of critical tokenization itself, together with its precise descriptions and 
well-proved properties. 

We will prove that critical points are all and only unambiguous token boundaries 
for any character string on a complete dictionary. We will show that any critically to- 
kenized word string is a minimal element in the partially ordered set of all tokenized 
word strings on the word string cover relation. We will also show that any tokenized 
string can be reproduced from a critically tokenized word string but not vice versa. In 
other words, critical tokenization is the most compact representation of tokenization. 
In addition, we will show that critical tokenization forms a sound mathematical foun- 
dation for categorizing critical ambiguity and hidden ambiguity in tokenizations, 
which provides a precise mathematical understanding of conventional concepts like 
combinational and overlapping ambiguities. Moreover, we will confirm that some im- 
portant maximum tokenization variations, such as forward and backward maximum 
matching and shortest tokenization, are all subclasses of critical tokenization. 

Based on a mathematical understanding of tokenization, we reported, in Guo 
(1997), a series of interesting findings. For instance, there exists an optimal algorithm 
that can identify all and only critical points, and thus all unambiguous token bound- 
aries, in time proportional to the input character string length but independent of 
the size of the tokenization dictionary. Tested on a representative corpus, about 98% 
of the critical fragments generated are by themselves desired tokens. In other words, 
about 98% close-dictionary tokenization accuracy can be achieved efficiently without 
disambiguation. 

Another interesting finding is that, for those critical fragments with critical ambi- 
guities, by replacing the conventionally adopted meaning preservation criterion with 
the critical tokenization criterion, disagreements among (human) judges on the ac- 
ceptability of a tokenization basically become non-existent. Consequently, an objective 
(human) analysis and annotation of all (critical) tokenizations in a corpus becomes 
achievable, which in turn leads to some important observations. For instance, we ob- 
served from a Chinese corpus of four million morphemes a very strong tendency to 
have one tokenization per source. Naturally, this observation suggests tokenization disam- 
biguation strategies notably different from the mainstream best-path-finding strategy. 
For instance, the simple strategy of tokenization by memorization alone could easily ex- 
hibit critical ambiguity resolution accuracy of no less than 90%, which is notably higher 
than what has been achieved in the literature. Moreover, it has been observed that crit- 
ical tokenization can also provide helpful guidance in identifying hidden ambiguities 
and in determining unregistered (unknown) tokens (Guo 1997). While these are just 
some of the very primitive findings, they are nevertheless promising and motivate 

1 All terms mentioned here will be precisely defined later in this paper. 
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us to rigorously formalize the tokenization problem and to carefully explore logical 
consequences. 

The rest of the paper is organized as follows: In Section 2, we formally define 
the string generation and tokenization operations that form the basis of our frame- 
work. In Section 3, we will s tudy tokenization ambiguities and explore the concepts 
of critical points and critical fragments. In Section 4, we define the word string cover 
relation and prove it to be a partial order, define critical tokenization as the set of min- 
imal elements of the tokenization partially ordered set, and illustrate the relationship 
between critical tokeniz~ition and string tokenization. Section 5 discusses the relation- 
ship between critical tokenization and various types of tokenization ambiguities, while 
Section 6 addresses the relationship between critical tokenization and various types 
of maximum tokenizations. Finally, in Sections 7 and 8, after discussing some helpful 
implications of critical tokenization in effective tokenization disambiguation and in 
efficient tokenization implementation, we suggest areas for future research and draw 
some conclusions. 

2. Generation and Tokenization 

In order to address the topic clearly and accurately, a precise and well-defined formal 
notation is required. What  is used in this paper is primarily from elementary Boolean 
algebra and Formal Language Theory, which can be found in most graduate-level 
textbooks on discrete mathematics. This section aims at refreshing several simple terms 
and conventions that will be applied throughout  this paper and at introducing the 
two new concepts of character string generation and tokenization. For the remaining 
basic concepts and conventions, we mainly follow Aho and Ullman (1972, Chapter 0, 
Mathematical Preliminaries), and Kolman and Busby (1987). 

2.1 Character, Alphabet, and Character String 
Definition 1 
An alphabet G = {a, b, c . . . .  } is a finite set of symbols. Each symbol in the alphabet is a 
character. The alphabet size is the number  of characters in the alphabet and is denoted 
IGI. Character strings over an alphabet G are defined 2 in the following manner: 

. 

2. 

. 

e is a character string over G. e is called the empty character string. 

If S is a character string over G and a is a character in G, then Sa is a 
character string over G. 

S' is a character string over ~ if and only if its being so follows from (1) 
and (2). 

The length of a character string S is the number  of characters in the string and 
is denoted ISI. A position in a character string is the position after a character in the 
string. If characters in a character string are indexed from 1 to n, then positions in the 
string are indexed from 0 to n, with 0 for the position before the first character and n 
for that after the last character. 

2 This definition is adapted from Aho and Ullman (1972, 15). 
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Example 1 
The set of 26 upper  case and 26 lower case English characters forms the English 
alphabet ~,, = { a , b , . . . , z , A , B , . . . , Z } .  S = thisishisbook is a character string over  the 
alphabet. Its string length is 13. 

In this paper, characters are represented with small characters a, b, c, or their 
subscript form ak, bk, and Ck. The capital letter S or its expanded  form S = c l . . .  cn is 
used to represent  a character string. We let G* denote  the set containing all character 
strings over  G including e, and G+ denote  the set of all character strings over  G but  
excluding e. 

2.2 Word, Dictionary, and Word String 
Definition 2 
Let alphabet  ~, = {a, b, c , . . .}  be a finite set of characters. A dictionary D is a set of 
character strings over  the alphabet  G. That  is, D = {x ,y , z  . . . .  } C_ G*. Any element  in 
the dict ionary is a word.  The dictionary size is the number  of words  in the dict ionary 
and is denoted  IDI. Word strings over  a dict ionary D are defined in the following 
manner:  

. 

2. 

. 

v is a word  string over  D. v is called the empty word string. 

If W is a word  string over  D and w is a word  in D, then Ww is a word  
string over  D. 

W' is a word  string over  D if and only if its being so follows from (1) 
and (2). 

The length of a word  string W is the number  of words  in the string and is denoted  
IW I. We let D* denote  the set containing all word  strings over  D, including v and let 
D + denote  the set of all word  strings over  D bu t  excluding v. 

Example 1 (cont.) 
The set D = {this, is, his, book} is a t iny English dict ionary from the English alphabet. 
Both his and book are words  over  the English alphabet. The dict ionary size is 4, i.e., 
IDI = 4. "this is his book" is a word  string. Its string length is 4. 

To differentiate be tween character string and word string, blank spaces are added  
between words  in word  strings. For example,  "this is his book" represents a word  string 
of length 4 (four words  concatenated) while thisishisbook consists of a character string 
of length 13 (13 characters in sequence). Slash / is sometimes used as a (hidden) word  
delimiter. For instance, this~is~his~book is an equivalent  representat ion to "this is his 
book". 

Generally, capital letters X, Y, Z, and W, or their expanded  forms such as W = 
w l . . .  win, represent  word  strings. Small letters x, y, z, and w, or their expanded  forms 
such as w = cl • .. cn, represent  both  words  as elements in a dict ionary and character 
strings over an alphabet. In other words,  they are both  w E D and w E G' .  The word  
string made  up  of the single word  w alone is represented by  w 1. In cases where  context 
makes it clear, the superscript  can be omit ted and w is also used for representing the 
single word  string w 1. 
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2.3 Character String Generation 
Definition 3 
Let E = {a,b,c . . . .  } be an alphabet and D = {x ,y , z  . . . .  } be a dictionary over the 
alphabet. The character string generation operation G is a mapping G: D* ~ E* 
defined as: 

1. Empty word string v is mapped to empty character string e. That is, 
G(v) = e. 

2. Single word string w 1 is mapped to the character string of the single 
word. That is, G(w 1) = w. 

3. If W is a word string over dictionary D and w is a word in D, then, the 
word string Ww is mapped to the concatenation of character string G(W) 
and G(w). That is, G(Ww) = G(W)G(w). 

G(W) is said to be the generated character string of the word string W from dictio- 
nary D. 

Note that the character string generation operation G is a homomorphism (Aho and 
Ullman 1972, 17) with property G(w I) = w. 

Example 1 (cont.) 
The character string thisishisbook is the generated character string of the word string 
"this is his book". That is, G("this is his book") = thisishisbook. 

2.4 Character String Tokenization 
Definition 4 
The character string tokenization operation T is a mapping TD: ~* ---* 2 D* defined 
as: if S is a character string in G*, then TD(S) is the set of dictionary word strings 
mapped by the character string generation operation G to the character string S. That 
is, To(S) = {WIG(W) = S, W E D*}. Any word string W in To(S) is a tokenized word 
string, or simply a tokenization, of the character string S. 

Sometimes the character string tokenization operation is emphasized as the ex- 
haustive tokenization operation or ET operation for short. In addition, the tokenized 
word string or tokenization is emphasized as the exhaustively tokenized word string 
or exhaustive tokenization or ET tokenization for short. 

Note that the character string tokenization operation TD is the inverse homomorphism 
(Aho and Ullman 1972, 18) of the character string generation operation G. 

Example 1 (cont.) 
Given character string thisishisbook, for the tiny English dictionary D = {this, is, his, 
book}, there is TD(thisishisbook) = {"this is his book"}. In other words, the word string 
"this is his book" is the only tokenization over the dictionary D. 

Given dictionary D' = {th, this, is, his, book}, in which th is also a word, there is 
TD, (thisishisbook) = {"th is is his book", "this is his book"}. In other words, the character 
string has two tokenizations over the dictionary D r. 

Example 2 
For character string fundsand and the tiny English dictionary D = {fund,funds, and, 
sand}, there is TD(fundsand) -= {"funds and", "fund sand"}. In other words, both "funds 
and" and "fund sand" are tokenizations of character stringfundsand. 
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2.5 Discussion 
Our intention, in formally defining characters and words, is to establish our mathe- 
matical system clearly and accurately. To keep discussion concise, the definitions of 
elementary concepts such as strings and substrings, although widely used in this pa- 
per, will be taken for granted. We limit our basic notion to what has already been 
defined in Aho and Ullman (1972) and Kolman and Busby (1987). 

Mathematically, word strings are nothing but symbol strings, with each symbol 
representing a word in the dictionary. In that sense, the word string definition is 
redundant as it is already covered by the definition of character string. However, 
since the relationships between character strings and word strings are very important 
in this paper, we believe it to be appropriate to list both definitions explicitly. 

What is new in this section is mathematical definitions for character string genera- 
tion and tokenization. We consider them fundamental to our mathematical description 
of the string tokenization problem. 

There are two points worth highlighting here. The first relates to the introduction 
of the character string generation operation. In the literature, the tokenization problem 
is normally modeled independently with no connection whatsoever with the charac- 
ter string generation problem. By contrast, we model tokenization and generation as 
inverse problems to each other. In this way, we establish a well-defined mathematical 
system consisting of an alphabet, a dictionary, and the (generation) homomorphism 
(operation) and its inverse defined on the alphabet and dictionary. As will be seen 
throughout this paper, the establishment of the generation operation renders various 
types of tokenization problems easy to describe. The generation problem is relatively 
simple and easy to manage, so any modeling of the tokenization problem as its inverse 
(that is, as the generation problem) should make it more tractable. 

The second point is in regard to the tokenization definition. In the literature, the 
string tokenization operation is normally required to generate a unique tokenized word 
string. Following such a definition of tokenization, introducing tokenization disam- 
biguation at the very beginning is inevitable. We believe this to be a pitfall that has 
trapped many researchers. In contrast, we define the character string tokenization op- 
eration as the inverse operation (inverse homomorphism) of the character string gen- 
eration operation (homomorphism). Naturally, the result of the tokenization operation 
is a set of tokenizations rather than a single word string. Such treatment suggests 
that we could use the divide-and-conquer problem-solving strategy--to decompose 
the complex string tokenization problem into several smaller and, hopefully, simpler 
subproblems. That is the basis of our two-stage, five-step iterative problem-solving 
strategy for sentence tokenization (Guo 1997). 

3. Critical Point and Fragment 

After clarifying both sentence generation and tokenization operations, we undertake 
next to further clarify sentence tokenization ambiguities. Among all the concepts to 
be introduced, critical points and critical fragments are probably two of the most 
important. We will prove that, for any character string on a complete tokenization 
dictionary, its critical points are all and only unambiguous token boundaries, and its 
critical fragments are the longest substrings with all inner positions ambiguous. 

3.1 Ambiguity 
Let G be an alphabet, D a dictionary, and S a character string over the alphabet. 
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Definition 5 
The character string S from the alphabet G has tokenization ambiguity on dict ionary 
D, if ]TD(S)] > 1. S has no tokenization ambiguity, if ]TD(S)] = 1. S is i l l - formed on 
dictionary D, if ITD(S)] = 0. A tokenization W C To(S) has tokenization ambiguity, if 
there exists another  tokenization W' E To(S), W' ~ W. 

Example 2 (cont.) 
Since TD(fundsand) = {"funds and", "fund sand"}, i.e., ]TD(fundsand)l = 2 > 1, the 
character string fundsand has tokenization ambiguity. In other words,  it is ambiguous 
in tokenization. Moreover, the tokenization "funds and" has tokenization ambiguity 
since there exists another  possible tokenization "fund sand" for the same character 
string. 

This definition is quite intuitive. If a character string could be tokenized in multiple 
ways, it would  be ambiguous  in tokenization. If a character string could only be 
tokenized in a unique way, it would  have no tokenization ambiguity. If a character 
string could not  be tokenized at all, it would  be ill-formed. In this latter case, the 
dictionary is incomplete. 

Intuitively, a position in a character string is ambiguous  in toke~za t ion  or is an 
ambiguous token boundary  if it is a token boundary  in one tokenization but  not  in 
another. Formally, let S = c l . . .  cn be a character string over  an alphabet  G and let D 
be a dictionary over  the alphabet. 

Definition 6 
Position p has tokenization ambiguity or is an ambiguous token boundary,  if there 
are two tokenizations X = x l . . .  Xs and Y = y l . . .  yt in TD(S), such that G(x l . . .  Xu) = 
Cl.. .  cp and G(xu+l.. .  Xs) = Cp+l...Cn for some index u, and for any index v, there 
is neither G(y l . . .  yv) = c l . . .  Cp nor  G(yv+l. . .  yt ) = Cp+l... Cn. Otherwise,  the position 
has no tokenization ambiguity, or is an unambiguous  token boundary.  

Example 1 (cont.) 
Given a typical English dictionary and the character string S = thisishisbook, all three 
positions after character s are unambiguous  in tokenization or are unambiguous  to- 
ken boundaries,  since all possible tokenizations must  take these positions as token 
boundaries.  

Example 2 (cont.) 
Given a typical English dictionary and the character string S --fundsand, the position 
after the middle  character s is ambiguous  in tokenization or is an ambiguous  token 
boundary  since it is a token boundary  in tokenization "funds and" but  not  in another  
tokenization "fund sand". 

3.2 Complete Dictionary 
To avoid ill-formedness in sentence tokenization, we now introduce the concept of a 
complete tokenization dictionary. 

Definition 7 
A dictionary D over  an alphabet  ~ is comple te  if for any character string S from the 
alphabet, S c ~*, there is ]TD(S)] ~ 1. 
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That is, for any character string S = c 1 . . .  C n from the alphabet, there exists at least 
one word string W = wl  . . .  Wm with S as its generated character string, G ( W )  = S. 

Theorem 1 
A dictionary D over an alphabet G is complete if and only if all the characters in the 
alphabet are single-character words in the dictionary. 

Proof 
On the one hand,  every single character is also a character string (of length 1). To 
ensure that such a single-character string is being tokenized, the single character must  
be a word in the dictionary. On the other hand,  if all the characters are words in the 
dictionary, any character string can at least be tokenized as a string of single-character 
words. [] 

Theorem I spells out a simple way  of making any dictionary complete, which calls 
for adding all the characters of an alphabet into a dictionary as single-character words. 
This is referred to as the dictionary completion process. If not specified otherwise, 
in this paper, when  referring to a complete dictionary or tokenization dictionary, we 
mean the dictionary after the completion process. 

3.3 Critical Point and Fragment 
Let S = c l . . . cn  be a character string over the alphabet ~ and let D be a dictionary 
over the alphabet. In addition, let T o ( S )  be the tokenization set of S on D. 

Definition 8 
Position p in character string S = c l . . .  Cn is a critical point, if for any word  string 
W = w l . . .  wm in  T o ( S ) ,  there exists an index k, 0 < k < m, such that G ( w l . . .  Wk) =- 

c l . . .  Cp and G ( W k + l . . .  Win) = Cp+l . . .  Cn. In particular, the starting position 0 and the 
ending position n are the two ordinary critical points. Substring cp+l . . .  cq is a critical 
fragment of S on D, if both p and q are critical points and any other position r in 
between them, p < r < q, is not a critical point. 

Example 1 (cont.) 
Given a typical English dictionary, there are five critical points in the character string 
S = thisishisbook. They are 0, 4, 6, 9, and 13. The corresponding four critical fragments 
are this, is, his, and book. 

Example 2 (cont.) 
Given a typical English dictionary, there is no extraordinary critical point in the char- 
acter string S = fundsand .  It is by itself the only critical fragment of this character 
string. 

Given a complete tokenization dictionary, it is obvious that all single-character crit- 
ical fragments or, more generally, single-character strings, possess unique tokenization. 
That is, they possess neither ambiguity nor ill-formedness in tokenization. However, 
the truth of the statement below (Lemma 1) is less obvious. 

Lemma 1 
For a complete tokenization dictionary, all multicharacter critical fragments and all of 
their inner positions are ambiguous in tokenization. 
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Proof 
Let S = cl . . .  Cn, n > 1, be a multicharacter critical fragment. Because the tokenization 
dictionary is complete, the critical fragment can at least be tokenized as a string of 
single-character words. On the other hand, because it is a critical fragment, for any 
position p, 1 _< p < n - 1, there must exist a tokenization W = W t . . . W m  in TD(S) 
such that for any index k, 0 G k G m, there is neither G ( w l . . . W k )  = c l . . . c p  nor 
G ( w k + l . . .  win) = cp+l. . .Cn.  As this tokenization differs from the above-mentioned 
tokenization of the string of single-character words, the critical fragment has at least 
two different tokenizations and thus has tokenization ambiguity. [] 

Theorem 2 
For any character string on a complete tokenization dictionary, its critical points are 
all and only unambiguous token boundaries. 

Proof 
By Lemma 1, all positions within critical fragments are ambiguous in tokenization. By 
Definition 8, critical points are unambiguous in tokenization. [] 

Corollary 
For any character string on a complete tokenization dictionary, its critical fragments 
are the longest substrings with all inner positions ambiguous. 

Proof 
By Theorem 2. [] 

3.4 Discussion 
In this section, we have described sentence tokenization ambiguity from three differ- 
ent angles: character strings, tokenizations, and individual string positions. The basic 
idea is conceptually simple: ambiguity exists when there are different means to the 
same end. For instance, as long as a character string has multiple tokenizations, it is 
ambiguous. 

This description of ambiguity is complete. Given a character string and a dic- 
tionary, it is always possible to answer deterministically whether or not a string is 
ambiguous in tokenization. Conceptually, for any character string, by checking every 
one of its possible substrings in a dictionary, and then by enumerating all valid word 
concatenations, all word strings with the character string as their generated character 
string can be produced. Just counting the number of such word strings will provide 
the answer to whether or not the character string is ambiguous. 

Some researchers question the validity of the complete dictionary assumption. 
Here we argue that, even in the strictest linguistic sense, there exists no single character 
that cannot be used as a single-character word in sentences. In any case, any natural 
language must allow us to directly refer to single characters. For instance, you could 
say "character x has many written forms" or "the character x in this word can be 
omitted" for any character x. 3 

3 Even so, some  researchers  m i gh t  still insist  that  the character x here is just  for t empora ry  use  and  
cannot  be regarded as a regular  word  wi th  the m a n y  linguistic propert ies  general ly associated wi th  
words.  Unde r s t and ing  the impor tance  of such  a distinction, we  will use  the more  generic t e rm token, 
rather than  the  loaded term word, w h e n  we  need  to h ighl ight  the distinction. It m u s t  be added,  
however ,  that  the two are largely used  in terchangeably  in this paper. 
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The validity of the complete dictionary assumption can also be justified from an 
engineering perspective. To ensure a so-called soft landing, any practical application 
system must be designed so that every input character string can always be tokenized. 
In other words, a complete dictionary is an operational must. Moreover, without such 
a complete dictionary, it would not be possible to avoid ill-formedness in sentence 
tokenization nor to make the generation-tokenization system for character and words 
closed and complete. Without such definitions of well-formedness, any rigorous formal 
study would be impossible. 

The concepts of critical point and critical fragment are fundamental to our sen- 
tence tokenization theory. By adopting the complete dictionary assumption, it has 
been proven that critical points are all and only unambiguous token boundaries while 
critical fragments are the longest substrings with all inner positions ambiguous. 

This is a very strong and significant statement. It provides us with a precise un- 
derstanding of what and where tokenization ambiguities are. Although the proof itself 
is easy to follow, the result has nonetheless been a surprise. As demonstrated in Guo 
(1997), many researchers have tried but failed to answer the question in such a precise 
and complete way. Consequently, while they proposed many sophisticated algorithms 
for the discovery of ambiguity (and certainty), they never were able to arrive at such 
a concise and complete solution. 

As critical points are all and only unambiguous token boundaries, an identifica- 
tion of all of them would allow for a long character string to be broken down into 
several short but fully ambiguous critical fragments. As shown in Guo (1997), critical 
points can be completely identified in linear time. Moreover, in practice, most criti- 
cal fragments are dictionary tokens by themselves, and the remaining nondictionary 
fragments are generally very short. In short, the understanding of critical points and 
fragments will significantly assist us in both efficient tokenization implementation and 
tokenization ambiguity resolution. 

The concepts of critical point and critical fragment are similar to those of segment 
point and character segment in Wang (1989, 37), which were defined on a sentence 
word graph for the purpose of analyzing the computational complexity of his new 
tokenization algorithm. However, Wang (1989) neither noticed their connection with 
tokenization ambiguities nor realized the importance of the complete dictionary as- 
sumption, and hence failed to demonstrate their crucial role in sentence tokenization. 

4. Critical T o k e n i z a t i o n  

This section seeks to disclose an important structure of the set of different tokeniza- 
tions. We will see that different tokenizations can be linked by the cover relationship 
to form a partially ordered set. Based on that, we will establish the notion of criti- 
cal tokenization and prove that every tokenization is a subtokenization of a critical 
tokenization, but no critical tokenization has true supertokenization. 

4.1 Cover  Re la t ionsh ip  
Def in i t ion  9 
Let X and Y be word strings. X covers  Y, or X has a cover  relat ion to Y, denoted 
X < Y, if for any substring Xs of X, there exists substring Ys of Y, such that IXsl ( IYsl 
and G(Xs) = G(Ys). If X G Y, then X is called a covering word string of Y, and Y a 
covered  w o r d  string of X. 

Intuitively, X ~ Y implies ]X] < ]YI. In other words, shorter word strings cover 
longer word strings. However, an absence of X < Y does not imply the existence of 
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Y <__ X. Some word strings do not  cover each other. In other words, shorter word 
strings do not always cover longer word strings. 

Example 1 (cont.) 
The word string "this is his book" covers the word string "th is is his book", but  not vice 
versa. 

Example 2 (cont.) 
The word strings "funds and" and "fund sand" do not cover each other. 

Definition 9 I 
Let A and B be sets of word strings. A covers B, or A has a cover relation to B, denoted 
A ~ B, if for any Y c B, there is X E A, such that X ~ Y. If A ~ B, A is called a covering 
word string set of B, and B a covered word string set of A. 

Example 3 
Given the alphabet G = {a, b, c, d}, dictionary D = {a, b, c, d, ab, be, cd, abe, bed}, and char- 
acter string S = abed from the alphabet, there is TD(S) = {a/b/c/d, a/b/cd, a/bc/d, a/bcd, 
ab/c/d, ab/cd, abe~d}. Among them, there are {abe~d} < {ab/c/d, a/bc/d}, {ab/cd} <_ 
{ab/e/d, a/b/ed}, {a/bed} < {a/be/d, a/b/ed} and {ab/c/d, a/be/d, a/b/ed} < {a/b/c/d}. 
Moreover, there is {abe~d, ab/cd, a/bcd} ~_ TD(S). 

4.2 Partially Ordered Set 
Lemma 2 
The cover relation is transitive, reflexive, and antisymmetric. That is, the cover relation 
is a (reflexive) partial order. 

Lemma 2, proved in Guo (1997), reveals that the cover relation is a partial order- -  
a well-defined mathematical structure with good mathematical properties. Conse- 
quently, from any textbook on discrete mathematics (Kolman and Busby [1987], for 
example), it is known that the tokenization set TD(S), together with the word string 
cover relation <, forms a partially ordered set, or simply a poser. We shall denote this 
poset by (TD(S), _<). In case there is no confusion, we may  refer to the poset simply 
as TD(S). 

In the literature, usually a poset is graphically presented in a Hasse diagram, which 
is a digraph with vertices representing poset elements and arcs representing direct 
partial order relations between poset elements. In a Hasse diagram, all connections 
implied by the partial order 's  transitive property are eliminated. That is, if X ~ Y and 
Y < Z, there should be no arc from X to Z. 

Example 3 (cont.) 
The poset TD(abcd) = {a/b/c/d, a/b/cd, a/bc/d, a/bcd, ab/c/d, ab/cd, abe~d} can be graph- 
ically presented in the Hasse diagram in Figure 1. 

Certain elements in a poset are of special importance for many  of the properties 
and applications of posets. In this paper, we are particularly interested in the minimal 
elements and least elements. In standard textbooks, they are defined in the following 
manner: Let (A, <) be a poset. An element a E A is called a minimal element of A if 
there is no element c E A, c ~ a, such that c < a. An element a E A is called a least 
element of A if a < x for all x E A. (Kolman and Busby 1987, 195-196). 
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Figure 1 
The Hasse diagram for the poset TD(abcd) = {a/b/c/d, a/b/cd, a/bc/d, a/bcd, ab/c/d, ab/cd, 
abc/d}. 

Example 1 (cont.) 
The word string "this is his book" is both the minimal element and the least element of 
both TD( thisishisbook ) = {"this is his book"} and TD, ( thisishisbook ) = {"th is is his book", 
"this is his book"}. 

Example 2 (cont.) 
The poset TD(fundsand) = {"funds and", "fund sand"} has both "funds and" and "fund 
sand" as its minimal elements, but has no least element. 

Example 3 (cont.) 
The poset TD(abcd) = {a/b/c/d, a/b/cd, a/bc/d, a/bcd, ab/c/d, ab/cd, abc/d} has three 
minimal elements: abc/d, ab/cd, a/bcd. It has no least element. 

Note that any finite nonempty poset has at least one minimal element. Any poset 
has at most one least element (Kolman and Busby 1987, 195-198). 

4.3 Critical Tokenization 
This section deals with the most important concept---critical tokenization. Let ~ be an 
alphabet, D a dictionary over the alphabet, and S a character string over the alphabet. 
In this case, (TD(S), <_) is the poset. 

Definition 10 
The character string critical tokenization operation CD is a mapping CD: ~* --~ 
2 D" defined as: for any S in ~*, CD(S) = {W I W is a minimal elementoftheposet 
(TD(S), G)}. Any word string W in CD(S) is a critically tokenized word string, or 
simply a critical tokenization, or CT tokenization for short, of the character string S. 
And CD(S) is the set of critical tokenizations. 
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In other words,  the critical tokenization operat ion maps  any character string to its 
set of critical tokenizations. A word  string is critical if any other  word  string does not  
cover it. 

Example 1 (cont.) 
Given the English alphabet, the tiny Dictionary D = {th, this, is, his, book}, and the 
character string S = thisishisbook, there is Co(S) = {"this is his book"}. This critical 
tokenization set contains the unique critical tokenization "this is his book". Note that 
the only difference between "this is his book" and "th is is his book" is that the word  this 
in the former is split into two words  th and is in the latter. 

Example 2 (cont.) 
Given the English alphabet, the tiny Dictionary D = {fund, funds, and, sand}, and the 
character string S = fundsand, there is CD( S) = {"funds and", "fund sand"}. 

Example 3 (cont.) 
Let E = {a,b,c,d} and D = {a,b,c,d, ab, bc, cd, abc, bcd}. There is CD(abcd) = {abc/d, 
ab/cd, a/bcd}. If D' --- {a, b, c, d, ab, bc, cd}, then Co, (abcd) = {a/bc/d, ab/cd}. 

Example 4 
Given the English alphabet, the t iny Dictionary D = {the, blue, print, blueprint}, and 
the character string S = theblueprint, there are To(S) = {"the blueprint", "the blue print"} 
and Co(S) = {"the blueprint"}. Note that the tokenization "the blue print" is not  critical 
(not a critical tokenization). 

4.4 Super- and SubTokenization 
Intuitively, a tokenization is a subtokenization of another  tokenization if further  to- 
kenizing words  in the latter can produce  the former. Formally, let S be a character 
string over  an alphabet E and let D be a dict ionary over  the alphabet. In addition, let 
X = xl . . . x ,  and Y = yl . . .Ym be tokenizations of S on D, X, Y c TD(S). That gives us, 
the following definition: 

Definition 11 
Y is a sub tokeniza t ion  of X and X is a super tokeniza t ion  of Y if, for any word  x in 
X, there exists a substring Ys of Y such that x = G(Ys). Y is a true subtokenization of 
X and X is a true supertokenization of Y, if Y is a subtokenization of X and X ~ Y. 

Example 1 (cont.) 
The tokenization "th is is his book" is a subtokenization of the critical tokenization "this 
is his book". 

Example 4 (cont.) 
The tokenization "the blue print" is a subtokenization of the critical tokenization "the 
blueprint". 

4.5 Theorem 
Lemma 3 
Y is a subtokenization of X if and only if X < Y. 

Proof 
If X < Y, by  definition, for any substring Xs of X, there exists substring Ys of Y, such 
that [Xs[ < [Ys[ and G(X~) = G(Y~). Also by  definition, there is x = G(x) for every  
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single word x. As any single word in a word string is also its single-word substring, 
it can be concluded that for any word x in X, there exists a substring Ys of Y, such 
that x = G(Ys). 

On the other hand,  if Y is a subtokenization of X, by definition, for any word  x 
in X, there exists a substring Ys of Y such that x = G(Ys). Thus, given any substring 
Xs of X, Xs = Xl. . .  x,, for any k, 1 < k < n, there exists a substring Yk of Y such that 
Xk = G(Yk). Denote Ys --- Y1. . . Ym, there is IXsl < IYsl and G(Xs) = G(Ys). By definition, 
there is X < Y. [] 

Lemma 3 reveals that a word string is covered by another word  string if and only 
if every word in the latter is realized in the former as a word  string. In other words, 
a covering word string is in a more compact form than its covered word string. 

Theorem 3 
Every tokenization has a critical tokenization as its supertokenization, but  critical to- 
kenization has no true supertokenization. 

That is, for any tokenization Y, Y E To(S), there exists critical tokenization X, X E 
Co(S), such that X is a supertokenization of Y. Moreover, if Y is a critical tokenization 
and X is its supertokenization, there is X = Y. 

Proof 
By definition, for any tokenization Y, Y E To(S), there is a critical tokenization X, 
X E Co(S), such that X _ Y. By Lemma 3, it would  be the same as saying that X 
is a supertokenization of Y. The second part of the theorem is from the definition of 
critical tokenization. [] 

Theorem 3 states that no critical tokenization can be produced by further tokeniz- 
ing words in other tokenizations. However, all other tokenizations can be produced 
from at least one critical tokenization by further tokenizing words  in it. 

Example 3 (cont.) 
Given TD(S) = {a/b/c/d, a/b/cd, a/bc/d, a/bcd, ab/c/d, ab/cd, abc/d}, there is Co(S) = 
{abc/d, ab/cd, a/bcd} ~ To(S). By splitting the word abc in abc/d E Co(S) into a/b/c, 
ab/c or a/bc, we can make another three tokenizations in To(S): a/b/c/d, ab/c/d and 
a/bc/d. Similarly, from ab/cd, we can bring back a/b/c/d, ab/c/d and a/b/cd; and from 
abc/d, we can recover a/b/c/d, ab/c/d and a/bc/d. By merging all word strings produced 
together with word strings in Co(S) = {abc/d, ab/cd, a/bcd}, the entire tokenization set 
To(S) is reclaimed. 

4.6 Discussion 
Since the theory of partially ordered sets is well established, we can use it to enhance 
our understanding of the mathematical  structure of string tokenization. One of the 
obvious and immediate  results is the concept of critical tokenization, which is simply 
another name for the minimal element set of a poset. The least element is another 
important  concept. Al though it may  seem trivial to the string tokenization problem, 
the critical tokenization is, in fact, absolutely crucial. For instance, Theorem 3 states 
that, from critical tokenization, any tokenization can be produced (enumerated). As the 
number  of critical tokenizations is normally considerably less than the total amount  of 
all possible tokenizations, this theorem leads us to focus on the s tudy of a few critical 
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ones. In the next few sections, we shall further investigate certain important aspects 
of critical tokenizations. 

5. Critical and Hidden Ambiguities 

This section clarifies the relationship between critical tokenization and various types 
• of tokenization ambiguities. 

5.1 Critical Ambiguity in Tokenization 
Definition 12 
Let Y, be an alphabet, D a dictionary, and S a character string over the alphabet. 
The character string S from the alphabet G has critical ambiguity in tokenization on 
dictionary D if ICD(S)I > 1. S has no critical ambiguity in tokenization if ICo(S)I = 1. 
A tokenization W E Tp(S) has critical ambiguity in tokenization if there exists another 
tokenization W' E To(S), W' ~ W, such that neither W _< W' nor W' _< W holds. 

Example 2 (cont.) 
Since CD(fundsand) -- ("funds and", "fund sand"}, i.e., ICD(fundsand)l = 2 > 1, the 
character string fundsand has critical ambiguity in tokenization. Moreover, the tok- 
enization "funds and" has critical ambiguity in tokenization since there exists another 
possible tokenization "fund sand" such that both "funds and" <_ "fund sand" and "fund 
sand" <_ "funds and" do not hold. 

Example 4 (cont.) 
Since CD(theblueprint) = {"the blueprint"}, the character string theblueprint does not 
have critical ambiguity in tokenization. 

It helps to clarify that the only difference between the definition of tokenization 
ambiguity and that of critical ambiguity in tokenization lies in the tokenization set: 
While tokenization ambiguity is defined on the entire tokenization set TD(S), critical 
ambiguity in tokenization is defined only on the critical tokenization set CD(S), which 
is a subset of To(S). 

As all critical tokenizations are minimal elements on the word string cover re- 
lationship, the existence of critical ambiguity in tokenization implies that the "most 
powerful and commonly used" (Chen and Liu 1992, 104) principle of maximum to- 
kenization would not be effective in resolving critical ambiguity in tokenization and 
implies that other means such as statistical inferencing or grammatical reasoning have 
to be introduced. In other words, critical ambiguity in tokenization is unquestionably 
critical. 

Critical ambiguity in tokenization is the precise mathematical description of con- 
ventional concepts such as disjunctive ambiguity (Webster and Kit [1992, 1108], for 
example) and overlapping ambiguity (Sun and T'sou [1995, 121], for example). We 
will return to this topic in Section 5.4. 

5.2 Hidden Ambiguity in Tokenization 
Definition 13 
Let ~ be an alphabet, D a dictionary, and S a character string over the alphabet. 
The character string S from the alphabet ~. has hidden ambiguity in tokenization 
on dictionary D if TD(S) ~ CD(S). A tokenization W c TD(S) has hidden ambiguity 
in tokenization if there exists another tokenization W' E TD(S), W' ~ W, such that 
W <__ W'. 
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Example 4 (cont.) 
Let S = theblueprint, TD(S) = {"the blueprint", "the blue print"}, and Co(S) = {"the 
blueprint"}. Since To(S) ~ Co(S), the character sting theblueprint has hidden ambigu- 
ity in tokenization. Since "the blueprint" <_ "the blue print", the character string "the 
blueprint" has hidden ambiguity in tokenization. 

Intuitively, a tokenization has hidden ambiquity in tokenization, if some words 
in it can be further decomposed into word strings, such as "blueprint" to "blue print". 
They are called hidden or invisible because others cover them. The resolution of hidden 
ambiguity in tokenization is the aim of the principle of maximum tokenization (Jie 
1989; Jie and Liang 1991). Under this principle, only covering tokenizations win and 
all covered tokenizations are discarded. 

Hidden ambiguity in tokenization is the precise mathematical description of con- 
ventional concepts such as conjunctive ambiguity (Webster and Kit [1992, 1108], for 
example), combinational ambiguity (Liang [1987], for example) and categorical ambi- 
guity (Sun and T'sou [1995, 121], for example). We will return to this topic in Sec- 
tion 5.4. 

5.3 Ambiguity = Critical + Hidden 
Let E be an alphabet, D a dictionary, and S a character string over the alphabet. 

Theorem 4 
A character string S over an alphabet ~ has tokenization ambiguity on a tokenization 
dictionary D if and only if S has either critical ambiguity in tokenization or hidden 
ambiguity in tokenization. 

Proof 
If S has critical ambiguity in tokenization, by definition, there is ICD(S)I > 1. If S has 
hidden ambiguity in tokenization, by definition, there is TD(S) ~ CD(S). In both cases, 
since CD(S) c_C_ TD(S), there must be ITD(S)[ > 1. By definition, S has tokenization 
ambiguity. 

If S has tokenization ambiguity, by definition, there is ITo(S)I > 1. Since any 
finite nonempty poset has at least one minimal element, there is [Co(S)I > 0. Since 
Co(S) c To(S), there is To(S) # Co(S) if ICo(S)I = 1. In this case, by definition, S has 
hidden ambiguity in tokenization. If ICo(S)[ > 1, by definition, S has critical ambiguity 
in tokenization. [] 

Theorem 4 explicitly and precisely states that tokenization ambiguity is the union 
of critical ambiguity in tokenization and hidden ambiguity in tokenization. This result 
helps us in the understanding of character string tokenization ambiguity. 

5.4 Discussion 
By freezing the problem of token identity determination, tokenization ambiguity iden- 
tification and resolution are all that is required in sentence tokenization. Consequently, 
it must be crucial and beneficial to pursue an explicit and accurate understanding of 
various types of character string tokenization ambiguities and their relationships. 

In the literature, however, the general practice is not to formally define and classify 
ambiguities but to apply various terms to them, such as overlapping ambiguity and 
combinational ambiguity in their intuitive and normally fuzzy senses. Nevertheless, 
efforts do exist to rigorously assign them precise, formal meanings. As a representa- 
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tive example, in Webster and Kit (1992, 1108), both conjunctive (combinational) and 
disjunctive (overlapping) ambiguities are defined in the manner given below. 

1. TYPE h In a sequence of Chinese 4 characters S = a l . . .  a i b l  . . .  by, if 
a l . . .  a i ,  b l . . .  b j ,  and S are each a word, then there is conjunctive 
ambiguity in S. The segment S, which is itself a word, contains other 
words. This is also known as multi-combinational ambiguity. 

2. TYPE II: In a sequence of Chinese characters S = a l  . . .  a i b l  . . .  b jCl  . . .  Ck, if 
a l . . .  a i b l . . ,  bj  and b l . . .  b j C l . . .  Ck are each a word, then S is an 
overlapping ambiguous segment, or in other words, the segment S 
displays disjunctive ambiguity. The segment b l . . .  b j  is known as an 
overlap, which is usually one character long. 

The definitions above contain nothing improper. In fact, conjunctive (combina- 
tional) ambiguity as defined above is a special case of hidden ambiguity in tokeniza- 
tion, since "al . . .  a i b l . . ,  b j "  <_ "a l . . .  a i / b l . . ,  b j " .  Moreover, disjunctive (overlapping) 
ambiguity is a special case of critical ambiguity in tokenization, since for the character 
string S = a l  . . . a i b l  . . . b j c ,  . . . Ck, both "a l . . .  a i b l  . . . b j  / C l  . . . Ck"  and "a , . . .  a i / b l  . . . bye1 

• . .  Ck"  are critical tokenizations. 
The definitions above, however, are neither c o m p l e t e  nor c r i t i c a l .  In our opinion, a 

definition is complete only if any phenomenon in the problem domain can be properly 
described (defined). With regard to the character string tokenization problem proper, 
this completeness requirement can be translated as: given an alphabet, a dictionary, 
and a character string, the definition should be sufficient to answer the following two 
questions: (1) does this character string have tokenization ambiguity? (2) if yes, what 
type of ambiguity does it have? 

The definitions above cannot fulfill this completeness requirement. For instance, 
if a l  . . .  a i ,  b l  • : .  by, Cl . . .  Ck, and a l  . . .  a i b l  . . .  b jCl  . . .  Ck are all words in a dictionary, the 
character string S = a l  . . .  a i b l  . . .  b jCl  . . .  Ck, while i n t u i t i v e l y  in Type I (conjunctive am- 
biguity), is, in fact, captured neither by Type I nor by Type II. 

We agree that, although to do so would not be trivial, it is nevertheless possible 
to make the definitions above complete by carefully listing and including all possible 
cases. However, c r i t i c a l i t y ,  which is what is being explored in this paper, would most 
probably still not be captured in such a carefully generalized ambiguity definition. 

What we believe to be crucial is the association between tokenization ambigu- 
ity and the maximization or minimization property of the partially ordered set on 
the cover relation. As will be illustrated later in this paper, such an association is 
exceptionally important in attempting to understand ambiguities and in developing 
disambiguation strategies. 

In short, both the cover relation and critical tokenization have given us a clear 
picture of character string tokenization ambiguity as expressed in Theorem 4. 

6. Maximum Tokenization 

This section clarifies the relationship between critical tokenization ( C T )  and three other 
representative implementations of the principle of maximum tokenization, i.e., forward 
maximum tokenization (FT), backward maximum tokenization ( B T )  and shortest to- 
kenization ( S T ) .  It will be proven that S T ,  F T  and B T  are all true subclasses of C T .  

4 Although Webster and Kit include the modifier Chinese,  the definition has nothing to do with specific 
characteristics of Chinese but is general (multilingual). 
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6.1 Forward Maximum Tokenization 
Let G be an alphabet, D a dict ionary on the alphabet, and S a character string over 
the alphabet. 

Definition 14 
A tokenization W = wl . . .  Wm E TD(S) is a forward maximum tokenization of S over  

and D, or FT tokenization for short, if, for any k, 1 < k < m, there exist i and j, 
1 < i < j < n, such that 5 

. 

2. 

3. 

C ( w l  . . .  Wk-1) = ci_ , 

Wk = Ci... Cj, and 

For any j ' ,  j < j '  < n, there is ci . . .  cj, ~ D. 

The forward maximum tokenization operation,  or FT operation for short, is a map-  
ping FD: ~* ~ 2 D* defined as: for any S E ~*, FD(S) = { W  I W is a FT tokenization of 
S over  G and D}. 

This definition is in fact a descriptive interpretat ion of the widely  r ecommended  
conventional  constructive forward  max imum tokenization procedure  (Liu 1986a, 1986b; 
Liang 1986, 1987; Chen and Liu 1992; Webster and Kit 1992). 

Example 3 (cont.) 
The character string S -- abcd has the word  string abc/d as its sole FT tokenization in 
TD(S) = {a/b/c/d,  a/b/cd, a/bc/d, a/bcd, ab/c/d, ab/cd, abc/d}, i.e., FD(S) = {abc/d}. 

Example 2 (cont.) 
Fo(fundsand) = {"funds and"}, i.e., the character string fundsand has its sole FT tok- 
enization "funds and". 

Example 4 (cont.) 
FD (S) = {"the blueprint"}, i.e., the word  string "the blueprint" is the only FT tokenization 
for the character string S = theblueprint. 

Lemma 4 
For all S E ~*, there are IFD(S)I < 1 and FD(S) c_ CD(S). 

That is to say, any character string has, at most, a single FT tokenization. Moreover,  
if the FT tokenization exists, it is a CT tokenization. 

Proof 
Cer t a in  character strings do not  have FT tokenization on some dictionaries, even if they 
have ma ny  possible tokenizations. For example,  given the alphabet  G = {a, b, c, d} and 
the dict ionary D = {a, abc, bcd}, there is TD(abcd) = {a/bcd}. But the single tokenization 
does not fulfill condit ion (3) in the definition above for k = 1, because the longer word  
abc exists in the dictionary. 

5 Note,  as a widely  adop ted  convent ion,  in case k ~ 1, Wl • Wk_ 1 represents  the  e m p t y  word  s tr ing v 
and  C l . . .  Ck-1 represents  the e m p t y  character  s t r ing e. 
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Assume both  X = Xl . . .  Xm and Y = y l . . .  ym' are FT tokenizations, X ~ Y. Then, 
there must  exist k, 1 < k < rain(m, m'), such that Xk, = Yk', for all k', 1 < k' < k, but  
Xk # yk. Since G(X) = G(Y), there must  be IXkl # lYkl. Consequently,  either X or Y is 
unable to fulfill condition (3) of definition 14. By contradiction, there must  be X = Y. 
In other words,  any character string at most  has single FT tokenization. 

Assume the FT tokenization X = xl . . .  Xm is not  a CT tokenization. By Theorem 3, 
there must  exist a CT tokenization Y = y l . . .  ym' such that X # Y and Y < X. Thus, 
by  the cover relation definition, for any substring Ys of Y, there exists substring Xs 
of X, such that IYsl < IXsl and G(Xs) = G(Ys). Since X # Y, there must  exist k, 
1 < k < min(m,m') ,  such that Xk, = yk', for all k', 1 <_ k' < k, but  IXkl <_ lYkl. This leads 
to a conflict with condit ion (3) in the definition. In other words,  X cannot  be an FT 
tokenization if it is not  a CT tokenization. [] 

6.2 Backward Maximum Tokenization 
Let G be an alphabet, D a dict ionary on the alphabet, and S a character strings over  
the alphabet. 

Definition 15 
A tokenization W = Wl-..Wm C To(S) is a backward maximum tokenization of S 
over G and D, or BT tokenization for short, if for any k, 1 < k < m, there exist i and 
j, 1 < i G j < n, such that 

1. G ( W k + l  . .  . W i n )  = C j + l  . .  . Cn ,  

2. Wk = Ci . . . Cj, and 

3. For any i', 1 < i' < i, there is ci . . . .  cj ~ D. 

The backward maximum tokenization operation is a mapping  BD: ~* -~ 2 D" defined 
as: for any S E ~*, Bo(S) = { W  I W is a BT tokenization of S over  ~ and D}. 

This definition is in fact a descriptive interpretation of the widely  r ecommended  con- 
ventional constructive backward max imum tokenization procedure  (Liu 1986a, 1986b; 
Liang 1986, 1987; Chen and Liu 1992; Webster and Kit 1992). 

Example 3 (cont.) 
For the character string S = abcd, the word  string a/bcd is the only BT tokeniza- 
tion in To(S) = {a/b/c /d ,  a/b/cd, a/bc/d,  a/bcd, ab/c/d,  ab/cd, abc/d}. That is, Bo(S) = 
{a/bcd}. 

Example 2 (cont.) 
For the character string S = fundsand, there is Bo(fundsand) = {"fund sand"}. That is, 
the word  string "fund sand" is the only BT tokenization. 

Example 4 (cont.) 
For the character string S = theblueprint, there is BD(S) = {"the blueprint"}. That is, the 
word  string "the blueprint" is the only BT tokenization. 

Lemma 5 
For all S E ~*, there are IBD(S)I ~ 1 and BD(S) C_ CD(S). 
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That is, any character string has at most  one BT tokenization. Moreover, if the BT 
tokenization exists, it is a CT tokenization. 

Proof 
Parallel to the proof for Lemma 4. [] 

6.3 Shortest Tokenization 
Definition 16 
The shortest tokenization operation SD is a mapping SD: ~* --* 2 D• defined as: for 
any S in ~*, SD(S) = {W I IW[ = minW'ETD(s)IW'I}" Every tokenization W in SD(S) is a 
shortest tokenization, or ST tokenization for short, of the character string S. 

In other words, a tokenization W of a character string S is a shortest tokenization 
if and only if the word string has the min imum word string length among all possible 
tokenizations. 

This definition is in fact a descriptive interpretation of the constructive shortest 
path finding tokenization procedure proposed by Wang (1989) and Wang, Wang, and 
Bai (1991). 

Example 3 (cont.) 
Given the character string S = abcd. For the dictionary D = {a, b, c, d, ab, bc, cd, abc, bcd}, 
both abc/d and a/bcd are ST tokenizations in TD(S) = {a/b/c/d, a/b/cd, a/bc/d, 
a/bcd, ab/c/d, ab/cd, abc/d}. That is, SD(S) = {abc/d, a/bcd}. For D' = {a, b, c, d, ab, bc, cd}, 
however, there is SD, (S) = {ab/cd}. Note, in this case, the CT tokenization a/bc/d is 
not in So,(S). 

Example 2 (cont.) 
For the character string S = fundsand, there is SD(fundsand) = {"funds and", "fund 
sand"}. That is, both "funds and" and "fund sand" are ST tokenizations. 

Example 4 (cont.) 
For the character string S = theblueprint, there is SD(S) = {"the blueprint"}. That is, the 
word string "the blueprint" is the only ST tokenization. 

Lemma 6 
SD(S) c_ Co(S) for all S E E*. That is, every ST tokenization is a CT tokenization. 

Proof 
Let X be an ST tokenization, X E SD(S). Assume X is not a CT tokenization, X ~ CD(S). 
Then, by Theorem 3, there exists a CT tokenization Y ~ CD(S), Y ~ X, such that Y < X. 
By the definition of the cover relation, there is IYI < IXI. In fact, as X ~ Y, there must  
be IY[ < IXI. This is in conflict with the fact that X is an ST tokenization. Hence, the 
lemma is proven by contradiction. [] 

6.4 Theorem 
Theorem 5 
FD(S)UBD(S ) C CD(S) and SD(S) C_ Co(S) for all S E G*. Moreover, there exists S E E*, 
such that FD(S) t_; BD(S) • Co(S) or SD(S) # CD(S). That is, the forward max imum 
tokenization, the backward max imum tokenization, and the shortest tokenization are 
all true subclasses of critical tokenization. 
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Proof 
The first part is the combination of Lemma 4, 5, and 6. The second part is exemplified 
by Example 3 above. [] 

6.5 Principle of Maximum Tokenization 
The three tokenization definitions in this section are essentially descriptive restatements 
of the corresponding constructive tokenization procedures, which in turn are realiza- 
tions of the widely followed principle of maximum tokenization (e.g., Liu 1986; Liang 
1986a, 1986b; Wang 1989; Jie 1989; Wang, Su, and Mo 1990; Jie, Liu, and Liang 1991a, 
b; Yeh and Lee 1991; Webster and Kit 1992; Chen and Liu 1992; Guo 1993; Wu and Su 
1993; Nie, Jin, and Hannah 1994; Sproat et al. 1996; Wu et al. 1994; Li et al. 1995; Sun 
and T'sou 1995; Wong et al. 1995; Bai 1995; Sun and Huang 1996). 

The first work closest to this principle, according to Liu (1986, 1988), was the 
5-4-3-2-1 tokenization algorithm proposed by a Russian MT practitioner in 1956. This 
algorithm is a special version of the greedy-type implementation of the forward max- 
imum tokenization and is still in active use. For instance, Yun, Lee, and Rim (1995) 
recently applied it to Korean compound tokenization. 

It is understood that forward maximum tokenization, backward maximum to- 
kenization and shortest tokenization are the three most representative and widely 
quoted works following the general principle of maximum tokenization. However, 
the principle itself is not crystal-clear in the literature. Rather, it only serves as a gen- 
eral guideline, as different researchers make different interpretations. As Chen and 
Liu (1992, 104) noted, "there are a few variations of the sense of maximal matching." 
Hence, many variations have been derived after decades of fine-tuning and modifi- 
cation. As Webster and Kit (1992, 1108) acknowledged, different realizations of the 
principle "were invented one after another and seemed inexhaustible." 

While researchers generally agree that a dictionary word should be tokenized as 
itself, they usually have different opinions on how a non-dictionary word (critical) frag- 
ment should be tokenized. While they all agree that a certain form of extremes must be 
attained, they nevertheless have their own understanding of what the form should be. 

Consequently, it should come as no surprise to see various kinds of theoretical 
generalization or summarization work in the literature. A good representative work 
is by Kit and his colleagues (Jie 1989; Jie, Liu, and Liang 1991a, b; Webster and Kit 
1992), who proposed a three-dimensional structural tokenization model. This model, 
called ASM for Automatic Segmentation Model, is capable of characterizing up to eight 
classes of different maximum or minimum tokenization procedures. Among the eight 
procedures, based on both analytical inferences and experimental studies, both forward 
maximum tokenization and backward maximum tokenization are recommended as 
good solutions. Unfortunately, in Webster and Kit (1992, 1108), they unnecessarily 
made the following overly strong claim: 

It is believed that all elemental methods are included in this model. 
Furthermore, it can be viewed as the ultimate model for methods 
of string matching of any elements, including methods for finding 
English idioms. 

The shortest tokenization proposed by Wang (1989) provides an obvious coun- 
terexample. As Wang (1989) exemplified 6, for the alphabet G = {a, b, c, d, e} and the 

6 The original example is " ~  "~ J~ ~ -~ ", a widely quoted Chinese phrase difficult to tokenize. Its 
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dictionary D = {a, b, c, d, e, ab, bc, cd, de}, the character string S = abcde has FT set 
FD(S) = {ab/cd/e}, BT set BD(S) = {a/bc/de} and ST set SD(S) = {ab/cd/e, a/bc/de, 
ab/c/de}. Clearly, the ST tokenization ab/c/de, which fulfills the principle of maximum 
tokenization and is the desired tokenization in some cases, is neither FT nor BT tok- 
enization. Moreover, careful checking showed that the missed ST tokenization is not in 
any of the eight tokenization solutions covered by the ASM model. In short, the ASM 
model is not a complete interpretation of the principle of max imum tokenization. 

Furthermore, the shortest tokenization still does not capture all the essences of 
the principle. "For instance, given the alphabet G = {a, b, c, d} and the dictionary D = 
{a, b, c, d, ab, bc, cd}, the character string S = abcd has the same tokenization set FD(S) = 
BD(S) = SD(S) = {ab/cd} for FT, BT and ST, but  a different CT tokenization set 
CD(S) = {ab/cd, a/bc/d}. In other words, the CT tokenization a/bc/d is left out in all 
the other three sets. As the tokenization a/bc/d is not a subtokenization of any other 
possible tokenizations, it fulfills the principle of max imum tokenization. 

It is now clear that, while the principle of max imum tokenization is very useful in 
sentence tokenization, it lacks precise unders tanding in the literature. Consequently, no 
solution proposed in the literature is complete with regards to realizing the principle. 

Recall that, in the previous sections, the character string tokenization operation 
was modeled as the inverse of the generation operation. Under  the tokenization oper- 
ation, every character string can be tokenized into a set of different tokenizations. The 
cover relationship between tokenizations was recognized and the set of tokenizations 
was proven to be a poset (partially ordered set) on the cover relationship. The set 
of critical tokenizations was defined as the set of min imum elements in the poset. In 
addition, it was proven that every tokenization has at least one critical tokenization 
as its supertokenization and only critical tokenization has no true supertokenization. 

Consequently, a noncritical tokenization would  conflict with the principle of max- 
imum tokenization, since it is a true subtokenization of others. As compared with its 
true supertokenization, it requires the extra effort of subtokenization. On the other 
hand,  a critical tokenization would  fully realize the principle of max imum tokeniza- 
tion, since it has already attained an extreme form and cannot be simplified or com- 
pressed further. As compared with all other tokenizations, no effort can be 
saved. 

Based on this understanding,  it is now apparent w h y  forward max imum tok- 
enization, backward maximum tokenization, and shortest tokenization are all special 
cases of critical tokenization, but  not vice versa. In addition, it has been proven, in 
Guo (1997), that critical tokenization also covers other types of max imum tokenization 
implementations such as profile tokenization and shortest tokenization. 

We believe that critical tokenization is the only type of tokenization completely 
fulfilling the principle of max imum tokenization. In other words, critical tokenization is 
the precise mathematical  description of the commonly  adopted principle of maximum 
tokenization. 

7. Further Di scuss ion  

This section explores some helpful implications of critical tokenization in effective 
tokenization disambiguation and in efficient tokenization implementation. 

desired tokenization, in many contexts, is " ~ ~ / J~ / ~r~ -~  - 
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7.1 String Generation and Tokenization versus Language Derivation and Parsing 
The relationship between the operations of sentence derivation and sentence parsing in 
the theory of parsing, translation, and compiling (Aho and Ullman 1972) is an obvious 
analogue with the relationship between the operations of character string generation 
and character string tokenization that are defined in this paper. As the former pair 
of operations is well established, and has great influence in the literature of sentence 
tokenization, many researchers have, either consciously or unconsciously, been trying 
to transplant it to the latter. We believe this worthy of reexamination. 

Normally, sentence derivation and parsing are governed by complex grammars. 
Consequently, the bulk of the work has been in developing, representing, and process- 
ing grammar. Although it is a well known fact that some sentences may have several 
derivations or parses, the focus has always been either on (1) grammar enhancement, 
such as introducing semantic categories and consistency checking rules (selectional 
restrictions), not to mention those great works on grammar formalisms, or on (2) am- 
biguity resolution, such as introducing various heuristics and tricks including leftmost 
parsing and operator preferences (Aho and Ullman 1972; Aho, Sethi, and Ullman 1986; 
Alien 1995; Grosz, Jones, and Webber 1986). 

Following this line, we observed two tendencies in tokenization research. One is 
the tendency to bring every possible knowledge source into the character string gener- 
ation operation. For example, Gan (1995) titled his Ph.D. dissertation Integrating Word 
Boundary Disambiguation with Sentence Understanding. Here, in addition to traditional 
devices such as syntax and semantics, he even employed principles of psychology 
and chemistry, such as crystallization. Another is the tendency of enumerating al- 
most blindly every heuristic and trick possible in ambiguity resolution. As Webster 
and Kit (1992, 1108) noted, "segmentation methods were invented one after another 
and seemed inexhaustible." For example, Chen and Liu (1992) acknowledged that the 
heuristic of maximum matching alone has "many variations" and tested six different 
implementations. 

We are not convinced of the effectiveness and necessity of both of the schools of 
tokenization research. The principle argument is, while research is by nature trial-and- 
error and different knowledge sources contribute to different facets of the solution, it is 
nonetheless more crucial and productive to understand where the core of the problem 
really lies. 

As depicted in this paper, unlike general sentence derivation for complex natural 
languages, the character string generation process can be very simple and straight- 
forward. Many seemingly important factors such as natural language syntax and se- 
mantics do not assume fundamental roles in the process. They are definitely helpful, 
but only at a later stage. Moreover, as emphasized in this paper, the tokenization 
set has some very good mathematical properties. By taking advantage of these prop- 
erties, the tokenization problem can be greatly simplified. For example, among the 
huge number of possible tokenizations, we can first concentrate on the much smaller. 
critical tokenization set, since the former can be completely reproduced from the lat- 
ter. Furthermore, by contrasting critical tokenizations, we can easily identify a few 
critically ambiguous positions, which allows us to avoid wasting energy at useless 
positions. 

7.2 Critical Tokenization and the Syntactic Graph 
It is worth noting that similar ideas do exist in natural language derivation and parsing. 
For example, Seo and Simmons (1989) introduced the concept of the syntactic graph, 
which is, in essence, a union of all possible parse trees. With this graph representation, 
"it is fairly easy to focus on the syntactically ambiguous points" (p. 19, italics added). 
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These syntactically ambiguous points are critical in at least two senses. First, they 
are the only problems requiring knowledge and heuristics beyond the existing syntax. 
In other words, any syntactic or semantics development should be guided by ambi- 
guity resolution at these points. If a semantic enhancement does not interact with any 
of these points, the enhancement is considered ineffective. If a grammar revision in 
turn leads to additional syntactically ambiguous points, such a revision would be in 
the wrong direction. 

Second, these syntactically ambiguous points are critical in efficiently resolving 
ambiguity. After all, these points are the only places where disambiguation decisions 
must be made. Ideally, we should invest no energy in investigating anything that is 
irrelevant to these points. However, unless all parse trees are merged together to form 
the syntactic graph, the only thing feasible is to check every possible position in every 
parse tree by applying all available knowledge and every possible heuristic, since we 
are unaware of the effectiveness of any checking that occurs beforehand. 

The critical tokenization introduced in this paper has a similar role in string tok- 
enization to that of the syntactic graph in sentence parsing. By Theorem 3, critical tok- 
enization is, in essence, the union of the whole tokenization set and thus the compact 
representation of it. As long as the principle of maximum tokenization is accepted, the 
resolution of critical ambiguity in tokenization is the only problem requiring knowl- 
edge and heuristics beyond the existing dictionary. In other words, any introduction of 
"high-level" knowledge must at least be effective in resolving some critical ambiguities 
in tokenization. This should be a fundamental guideline in tokenization research. 

Even if the principle of maximum tokenization is not accepted, critical ambiguity in 
tokenization must nevertheless be resolved. Therefore, any investment, as mentioned 
above, will not be a waste in any sense. What needs to be undertaken now is to 
substitute something more precise for the principle of maximum tokenization. It is 
only at this stage that we touch on the problem of identifying and resolving hidden 
ambiguity in tokenization. That is one of the reasons why this type of ambiguity is 
called hidden. 

7.3 Critical Tokenization and Best-Path Finding 
The theme in this paper is to study the problem of sentence tokenization in the frame- 
work of formal languages, a direction that has recently attracted some attention. For 
instance, in Ma (1996), words in a tokenization dictionary are represented as pro- 
duction rules and character strings are modeled as derivatives of these rules under 
a string concatenation operation. Although not stated explicitly in his thesis, this is 
obviously a finite-state model, as evidenced from his employment of (finite-) state 
diagrams for representing both the tokenization dictionary and character strings. The 
weighted finite-state transducer model developed by Sproat et al. (1996) is another 
excellent representative example. 

They both stop at merely representing possible tokenizations as a single large 
finite-state diagram (word graph). The focus is then shifted to the problem of defining 
scores for evaluating each possible tokenization and to the associated problem of 
searching for the best-path in the word graph. To emphasize this point, Ma (1996) 
explicitly called his approach "evaluation-based." 

In comparison, we have continued within the framework and established the criti- 
cal tokenization together with its interesting properties. We believe the additional step 
is worthwhile. While tokenization evaluation is important, it would be more effective 
if employed at a later stage. 

On the one hand, critical tokenization can help greatly in developing tokenization 
knowledge and heuristics, especially those tokenization specific understandings, such 
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as the observation of "one tokenization per source" and the trick of highlighting hidden 
ambiguities by contrasting competing critical tokenizations (Guo 1997). 

While it may not be totally impossible to fully incorporate such knowledge and 
heuristics into the general framework of path evaluation and searching, they are ap- 
parently employed neither in Sproat et al. (1996) nor in Ma (1996). Further, what has 
been implemented in the two systems is basically a token unigram function, which 
has been shown to be practically irrelevant to hidden ambiguity resolution and not to 
be much better than some simple maximum tokenization approaches such as shortest 
tokenization (Guo 1997). 

On the other hand, critical tokenization can help significantly in boosting tokeniza- 
tion efficiency. As has been observed, the tokenization of about 98% of the text can 
be completed in the first parse of critical point identification, which can be done in 
linear time. Moreover, as practically all acceptable tokenizations are critical tokeniza- 
tions and ambiguous critical fragments are generally very short, the remaining 2% of 
the text with tokenization ambiguities can also be settled efficiently through critical 
tokenization generation and disambiguation (Guo 1997). 

In comparison, if the best path is to be searched on the token graph of a complete 
sentence, while a simple evaluation function such as token unigram cannot be very 
effective in ambiguity resolution, a sophisticated evaluation function incorporating 
multiple knowledge sources, such as language experiences, statistics, syntax, seman- 
tics, and discourse as suggested in Ma (1996), can only be computationally prohibitive, 
as Ma himself acknowledged. 

In summary, the critical tokenization is crucial both in knowledge development for 
effective tokenization disambiguation and in system implementation for complete and 
efficient tokenization. Further discussions and examples can be found in Guo (1997). 

8. Summary 

The objective in this paper has been to lay down a mathematical foundation for sen- 
tence tokenization. As the basis of the overall mathematical model, we have introduced 
both sentence generation and sentence tokenization operations. What is unique here 
is our attempt to model sentence tokenization as the inverse problem of sentence 
generation. 

Upon that basis, both critical point and critical fragment constitute our first group 
of findings. We have proven that, under a complete dictionary assumption, critical 
points in sentences are all and only unambiguous token boundaries. 

Critical tokenization is the most important concept among the second group of 
findings. We have proven that every tokenization has a critical tokenization as its 
supertokenization. That is, any tokenization can be reproduced from a critical tok- 
enization. 

Critical ambiguity and hidden ambiguity in tokenization constitute our third group 
of findings. We have proven that tokenization ambiguity can be categorized as either 
critical type or hidden type. Moreover, it has been shown that critical tokenization 
provides a sound basis for precisely describing various types of tokenization ambigu- 
ities. 

In short, we have presented a complete and precise understanding of ambiguity 
in sentence tokenizations. While the existence of tokenization ambiguities is jointly 
described by critical points and critical fragments, the characteristics of tokenization 
ambiguities will be jointly specified by critical ambiguities and hidden ambiguities. 
Moreover, we have proven that the three widely employed tokenization algorithms, 
namely forward maximum matching, backward maximum matching, and shortest 

593 



Computational Linguistics Volume 23, Number 4 

length matching, are all subclasses of critical tokenization and that critical tokenization 
is the precise mathematical  description of the principle of max imum tokenization. 

In this paper, we have also discussed some important  implications of the notion 
of critical tokenization in the area of character string tokenization research and de- 
velopment.  In this area, our  pr imary  claim is that critical tokenization is an excellent 
intermediate representat ion that offers much  assistance both  in the deve lopment  of 
effective tokenization knowledge  and heuristics and in the improvement  and imple- 
mentat ion of efficient tokenization algorithms. 

Besides providing a f ramework  to better unders tand  previous  wor  k, as has been 
a t tempted here, a good formalization should also lead to new questions and insights. 
While some of the findings and observations achieved so far (Guo 1997) have been 
ment ioned here, much  more work  remains to be done. 
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