
Floating Constraints in Lexical Choice

Michael Elhadad*
Ben Gurion University in the Negev

Jacques Robin~
Universidade Federal de Pernambuco

Kathleen McKeown t
Columbia University

Lexical choice is a computationally complex task, requiring a generation system to consider
a potentially large number of mappings between concepts and words. Constraints that aid in
determining which word is best come from a wide variety of sources, including syntax, semantics,
pragmatics, the lexicon, and the underlying domain. Furthermore, in some situations, different
constraints come into play early on, while in others, they apply much later. This makes it difficult
to determine a systematic ordering in which to apply constraints. In this paper, we present a
general approach to lexical choice that can handle multiple, interacting constraints. We focus on
the problem of floating constraints, semantic or pragmatic constraints that float, appearing at a
variety of different syntactic ranks, often merged with other semantic constraints. This means that
multiple content units can be realized by a single surface element, and conversely, that a single
content unit can be realized by a variety of surface elements. Our approach uses the Functional
Unification Formalism (Fu~) to represent a generation lexicon, allowing for declarative and
compositional representation of individual constraints.

1. Introduction

Given a request to communicate, a language generator typically must select infor-
mation from an underlying domain representation and determine how to order this
information, ultimately realizing the representation as sentences by selecting words
and linearly ordering them under the syntactic constraints of the language. The prob-
lem of determining what words to use for the concepts in the domain representation
is termed lexical choice. In an effort to make domain representations independent of
language, there may be a variety of different words that can be used to express any
concept in the domain, and a language generator must choose which one is most ap-
propriate in the current context. A one-to-one mapping between each domain concept
and a word of the language would imply that concepts are represented by words,
clearly an undesirable situation. Just as there is no reason to assume that a concept
uniquely determines a word, there is no reason to assume that a single concept must
map to a single word; a domain concept may be expressed by multiple words, or
conversely, a single word may express a combination of concepts (Talmy 1985; Zock
1988).

Avoiding encoding any assumptions about the mapping between domain and
language has the benefit of portability; the architecture and some knowledge sources
of the generator can be reused for a variety of different applications in quite different

* Mathematics and Computer Science Department, Beer Sheva, 84105 Israel. E-mail: elhadad@cs.bgu.ac.il
t Computer Science Department, New York, NY 10027 USA. E-mail: kathy@cs.columbia.edu
:~ Departamento de Informatica, Recife, PE 50740-540 Brazil. E-mail: jr@di.ufpe.br

(~) 1997 Association for Computational Linguistics

Computational Linguistics Volume 23, Number 2

domains. However, it means the task of lexical choice is computationally complex,
requiring consideration of a potentially large number of mappings between concepts
and words. This is complicated by the fact that constraints on lexical choice come from
a wide variety of sources:

• Syntax (the choice of a particular verb influences the syntactic forms that
can be used to realize its arguments, which in turn constrains the words
used to lexical)ze these arguments). For example, if the main verb to
allow is selected, then the object must be either a clause (allow one to select)
or a noun-group (allow the selection). 1

• Semantics (the concept itself and how it is taxonomized in the domain
influence which word should be used). For example, when discussing
basketball, the words rebound and point realize distinct concepts under
the generic concept of a player "performance."

• The lexicon (the choice of one word can constrain the choice of other
words in a sentence). For example, the selection of rebound as object
noun would entail preferring to grab over to score as main verb, while the
selection of point would entail the opposite verb choice, since to grab
rebounds and to score points are lexical collocations, whereas ?to score
rebounds and ?to grab points are not.

• The domain (the same words are used to refer to different concepts in
different domain sublanguages). For example, rebound means different
things in the basketball domain and in the stock-market domain (IBM
rebounded from a 3 day loss vs. Magic grabbed 20 rebounds).

• Pragmatics (information about speaker intent, hearer background, or
previous discourse plays a role). This may lead to the decision to refer to
the same situation as a glass half full or half empty.

Furthermore, interaction between constraints is multidirectional, making it difficult
to determine a systematic ordering in which constraints should be taken into account.
In fact, earlier work on lexical choice (Danlos 1986) implied that a new ordering of
constraints, and thus a new architecture for lexical choice, must be developed for each
new domain.

In this paper, we present a general approach to lexical choice that can handle
multiple, interacting constraints. Our architecture positions the lexical choice module
between a language generator's content planner and surface sentence generator, in
order to take into account conceptual, pragmatic, and linguistic constraints on word
choice. We show how the Functional Unification Formalism (FUF) (Elhadad 1993a),
originally developed for representing syntactic grammars (Kay 1979), can be used to
represent a generation lexicon, allowing for declarative and compositional represen-
tation of independent constraints. The order of constraint application is determined
dynamically through unification, allowing for different orderings as required. Since
any approach must deal with a combinatorial explosion of possible mappings and
ordering of constraints, computational efficiency is in general an issue. We show con-
trol techniques we have developed within FUF to reduce overall search. In this paper,

1 The options are different in French for example, where the corresponding verb governs a VP permet de
sdectioner.

196

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

we illustrate our model for lexical choice as it has been implemented in ADVISOR-
II (Elhadad 1993c), a system that can advise students about course selection, but
we also draw on examples from two other systems based on the same model but
within different generation architectures: STREAK, a system for generating basketball
game summaries (Robin 1994a; Robin and McKeown 1996) and COOK (Smadja and
McKeown 1991), a system that generates stock market reports. 2 We have used this
same model for lexical choice in other systems we have developed, such as COMET
(McKeown et al. 1990), a multimedia explanation system for equipment maintenance
and repair, and PLANDOC (Kukich et al. 1994), an automated documentation system
under collaborative development with Bellcore.

We focus on the problem of floating constraints, constraints that cannot be mapped
in a systematic way from an input conceptual representation to the linguistic structure.
Instead, such constraints float, appearing at a variety of different levels in the resulting
linguistic structure, depending on other constraints in the input. Such constraints pose
problems (see discussion in Elhadad and Robin [1992]) for the top-down recursive
building of the linguistic structure used by most generation algorithms (Meteer et al.
1987; Shieber et al. 1990); these algorithms typically only handle structural constraints,
constraints that are consistently expressed at a given linguistic rank (e.g., the sentence,
clause, group, or word rank) (Halliday 1985) in the application domain sublanguage.
We consider two different types of floating constraints:

• Interlexical constraints, which arise from restrictions on lexical
co-occurrences such as collocations (Smadja 1991) (they are orthogonal to
the mapping from input content units onto output linguistic form since
they both originate from the lexicon and act upon the lexicon).

• Cross-ranking constraints, which arise from the fact that an input
network of content units is not isomorphic with the resulting linguistic
structure, allowing a single content unit to be realized by surface
elements of various linguistic ranks (cross-ranking proper), or multiple
content units to be realized by the same surface element (merging).

Sentences (1) and (2) below, generated by COOK, illustrate cross-ranking con-
straints. They show how time and manner can be mapped to two different surface
elements of different syntactic rank in the sentence, among many other possibilities.
Sentences (3) and (4), generated by STREAK, show how game result and manner can
be realized as two separate surface elements or can be merged into a single element,
the verb.

(1) Wall Street Indexes opened strongly. (time in verb, manner as adverb)

(2) Stock indexes surged at the start of the trading day. (time as PP, manner in
verb)

(3) The Denver Nuggets beat the Boston Celtics with a narrow margin,
102-101. (game result in verb, manner as PP).

(4) The Denver Nuggets edged out the Boston Celtics 102-101. (game result
and manner in verb)

2 The differences between the system architectures of these three systems are discussed in Section 6.1.2.

197

Computational Linguistics Volume 23, Number 2

In these examples, the input conceptual constraints (time and manner) float, ap-
pearing at a variety of different syntactic ranks (here, verb and circumstantial), and
are sometimes merged with other semantic constraints.

Which content units are floating and which are structural depends on the domain
and the particular target sublanguage. Our corpus analysis of the basketball domain,
for example, indicates that historical knowledge is floating, whereas game result in-
formation is structural. Similarly, in the student advising domain, we found course
evaluation (e.g., how difficult or interesting a course is) to be floating, whereas the
description of the assignments required (e.g., how many there are or whether they
involve writing essays, software, or proofs) in a course is structural.

Floating constraints have not been addressed in a general way in previous work;
most systems implicitly hardwire the choices or permit only one or two of many pos-
sibilities. In contrast, our model for lexical choice accommodates floating constraints,
resulting in a system with a high degree of paraphrasing power.

In the following sections, we first present our general model for lexical choice,
illustrating it with a relatively simple example. We then discuss different types of con-
straints and the problems they pose, presenting the techniques we have developed
within FUF to address these issues, turning from structural constraints, to pragmatic
cross-ranking constraints, and to interlexical constraints. Finally, we compare our ap-
proach with other work on lexical choice, closing with a summary of our contributions.

2. An Architecture for Lexical Choice

The place of lexical choice in the overall architecture of generation systems has varied
from project to project. Due to the varied nature of the constraints on lexical choice,
exactly how lexical choice is done often depends on the type of constraints a system
design accounts for. For example, if syntactic and lexical constraints are the research
focus, it may make sense to delay lexical choice until late in the generation process,
during syntactic realization. If only conceptual constraints are accounted for, lexical
choice may be done early on, for example, during content planning by associating
concepts with the words or phrases that can realize them.

In this section, we describe a general model for lexical choice as part of an overall
generation system architecture. Due to the wide variety of constraints on word selec-
tion that we consider, lexicalization is positioned after the content of the generated text
has been determined and before syntactic realization takes place. We detail the nature
of input and output to the lexical choice module, thus specifying the tasks the lexical
choice module performs and the tasks that are expected to be done elsewhere in the
system. We illustrate, through a relatively simple example that depends on a single
type of constraint, how FUF and unification are used for lexicalization. Our criteria
for a model for lexical choice are fourfold:

.

.

3.

.

It must be able to use the full variety of constraints whether pragmatic,
semantic, lexical, or syntactic.

It must be able to apply constraints in a flexible order.

It must avoid encoding assumptions about the mapping between
domain concepts and lexical structure.

It must be able to handle floating constraints.

198

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

Communication Request

Content Specification

Lexical
~' L 1 Chooser

I Surface Realization

~l . (Lexical ~ .l C Lexica-----~

T
I r :m: ionl I i° 1 I 1

Figure 1
Possible placements of lexical choice within a generator's architecture.

Text
~t

2.1 Lexical Choice within a Generation System Architecture
Generation systems perform two types of tasks: one conceptual, determining the con-
tent of the text to be generated, and one linguistic, determining the form of that
text (McDonald 1983; McKeown 1985). Typically, a generator has two modules, each
corresponding to one of these two tasks, a content planner and a linguistic realizer.
While many systems allow for interaction across these components, there is general
consensus that these two components can be separated (Reiter 1994). Furthermore,
within the linguistic component, there appears to be further consensus that the task
of syntactic realization can be isolated. As evidence, note that a number of dedicated
syntactic realization components have been developed such as SURGE (Elhadad and
Robin 1996), NICEL (Matthiessen 1991), MUMBLE (Meteer et al. 1987), and TAGs (Yang,
McCoy, and Vijay-Shanker 1991; Harbusch 1994). Such components expect as input a
specification of the thematic structure of the sentence to generate, with the syntactic
category and open-class words of each thematic role. 3 Thematic structure involves roles
such as agent, pa t i en t , instrument, etc. It is opposed to surface syntactic structure
which involves roles such as subjec t , objec t , adjunct, etc. Due to general syntac-
tic alternations (Levin 1993) such as passive, dative, it-extraposition, or clefting, the
mapping from thematic roles onto surface syntactic roles is one-to-many. The role of
the syntactic grammar is to (1) map the thematic structure onto a surface syntactic
one, (2) enforce syntactic rules such as agreement, (3) choose the closed-class words,
(4) inflect the open-class ones, and (5) linearize the surface syntactic tree into a natural
language string. These tasks indicate the kind of information the syntactic grammar
needs as input. For example, unless the system is to choose randomly, it needs enough
information to choose between different syntactic options available in the grammar.
Furthermore, input must either specify all words, or provide enough features so that
the syntactic grammar can lexicalize any words that are syntactically determined.

Lexical choice could be carried out at any number of places within this standard
architecture. Figure I shows the typical language generation architecture used in many
systems, indicating the different places for lexical choice to occur. One option would
be to position lexical choice as part of syntactic realization, as just a very specific type
of syntactic decision (i.e., option 3 in Figure 1). Researchers who work on reversible

3 Words are traditionally d iv ided into (a) open-class words such as nouns, verbs, adjectives and adverbs
and (b) closed-class words (also called fimction words) such as articles, pronouns, and conjunctions.
Open classes are large and constantly expanding while closed classes are small and stable.
Distinguishing elements in an open class requires semantics while in a closed class, it can be done on
syntactic grounds only.

199

Computational Linguistics Volume 23, Number 2

grammar formalisms, using the same grammar to both parse and generate language,
take this approach (Van Noord 1990; Shieber and Shabes 1991; Strzalkowski 1994).
The systemic grammar paradigm also takes this approach, where lexical choice is the
most "delicate" of decisions, occurring as a by-product of many high-level syntactic
choices. However, in computational implementations of the systemic paradigm, such
as NIGEL (Mann and Matthiessen 1983), only the syntactic constraints on lexical choice
are handled during syntactic realization. The semantic constraints on lexical choice
are in effect taken into account in the input knowledge representation (i.e., option 1
in Figure 1).

There are two problems with option 3 (during syntactic realization). First, the range
of constraints on lexical choice covered in this line of work is quite restricted and we
have some question about whether it could be extended to include the pragmatic
constraints considered here. Furthermore, since words are selected only once the full
syntactic tree is constructed, it would be quite difficult, if not impossible, to account for
floating constraints. Such constraints cannot be considered solely from local positions
within a constructed tree, but require some global knowledge of interaction between
semantic units.

If lexical choice is not part of the syntactic realization component, then all decisions
regarding open-class word selection must be made before the grammar is invoked#
They then must occur either as part of content planning or after all content has been
determined and expressed in a language-independent manner. While some researchers
have directly associated words with each concept in the domain-knowledge base (e.g.,
Reiter 1991; Swartout 1983), this approach does not allow for consideration of syntac-
tic and lexical constraints unless a phrasal lexicon is used (e.g., Kukich 1983b; Danlos
1986; Jacobs 1985; Hovy 1988). Using a phrasal lexicon, however, means hand-encoding
the many mappings of multiple constraints onto multiword phrasings. It thus does
not allow for compositional lexical representation (Pustejovsky and Boguraev 1993),
and entails a combinatorial explosion in the number of entries to cover the variations
of phrases that are possible in different contexts. This approach thus does not allow
for scaling up paraphrasing power (see Robin and McKeown [1996] for a quantita-
tive evaluation of the scalability gains resulting from the compositional word-based
approach).

By waiting until content planning is complete, lexical and syntactic constraints can
be represented explicitly and independently of one another, instead of being embedded
into full phrases, allowing for a more economical and flexible word-based lexicon that
incorporates phrasal constraints.

The only remaining option is to position the lexical choice module between the
content planner and the syntactic realization module. Note that some high-level de-
cisions about sentence structure must be made early on with this architecture (i.e.,
before syntactic realization), since, for example, selecting the verb imposes syntactic
constraints on how its arguments can be realized. This is desirable since it allows a
system to take into account only those syntactic constraints on lexical choice that are
relevant. In fact, in the eight domains for which we have implemented generators,
we have never found a case where other syntactic decisions made during realization
force the lexical chooser to undo an earlier decision. This experience strongly supports
modularization between lexical choice and syntactic realization. 5

4 In fact, most portable syntactic components mentioned earlier, such as SURGE, MUMBLE, and TAGs,
expect as input a fully lexicalized specification, thus supporting this approach.

5 The only argument for option 3 is that it allows for an integrated account of the influence of surface
structure on lexical choice within a single component. However, our experience (corroborated by

200

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

As we will show, this architecture allows us to convey several aspects of the
semantic content using the same word and at the same time, allows us to realize the
same semantic concept at a variety of syntactic ranks depending on the situation. In
particular, by selecting words before a syntactic tree has been constructed, the lexical
syntactic features associated with alternate lexical choices can constrain the high-level
structure of the final tree, which is a key feature to handling floating constraints.

2.2 Input and Output
Given this organization, input to the lexical choice module will be structures from the
application domain representation selected during content planning, possibly aug-
mented with discourse relations. Following our criteria for generation, the structure
of the conceptual input will not be committed to any linguistic structure, in order
to avoid encoding assumptions about realization into the domain application, and
in order to free the content planner from reasoning about linguistic features when
determining what information should be included. Thus, it should be possible for a
conceptual structure to be realized by a clause, a nominalization, a noun-noun mod-
ifier, a predicative adjective, or a prepositional phrase. Similarly, the mapping need
not be one-to-one. Several conceptual elements may be realized by the same linguistic
constituent, and conversely, several linguistic constituents may be needed to realize a
single conceptual element.

For example, consider the conceptual input to ADVISOR-II's Lexical Chooser whose
graph is outlined at the top tier of Figure 2. The domain from which concepts are
selected is an expert system rule base, which uses gradual rules of inference (e.g., the
more assignments in a class, the harder the class). The input is a set of three relations,
each of which is represented similarly by a set of attribute-value pairs in the feature
structure form shown in the central tier of Figure 2, except for cardinality, which
reduces to an integer. This content representation does not indicate which relations
should appear as the head element in the linguistic structure and which should appear
as dependents. Nor does it indicate which syntactic relations should be used.

As a result, many different paraphrases of this content can be generate d, as il-
lustrated by the five given at the bottom tier of Figure 2. Note that while in (1) the
relation a s s ign t - type surfaces as the main element in the syntactic structure, in (2)-(5)
it appears as a dependent element. Note also the syntactic variety of these dependent
elements. This example illustrates that, in contrast to much previous work in gen-
eration (but see Meteer [1990]), we do not assume that relations will be realized as
verbs and objects as their arguments. Instead, the Lexical Chooser must reason about
how different domain entities can be realized. The ability to realize relations by com-
pact constituents such as predicative adjectives or noun-noun modifiers allows for the
fluency of the sentences of Figure 2. Realizing all relations in the Figure 2 input as
clauses would result in rather cumbersome sentences such as: Programming is the kind
of assignments of the class whose topic is AI and the number of these assignments is six.

Note that in order to choose between these sentences, the Lexical Chooser needs
information other than just content encoded in the domain representation. In general,
the Lexical Chooser needs information about discourse and about speaker intent. For
this particular example, it needs information about the speaker's focus and her per-
spective, at this point in the discourse. Such information must be part of the input to
the Lexical Chooser and can typically be provided by a content planner (McKeown

Reiter's [Reiter 1994]) shows that the influences of syntax on lexical choice can be accounted for before
syntactic realization.

201

Computational Linguistics Volume 23, Number 2

AI AI-assignt "~, programming

/ ~ b e r

6

i semr

cat set]
assignments [1] cardinality 6

generic_elt [cat assignment]

class [2] name ai
[cat assignment_activity]

activity [3] name programming

7]] class [2] relation1 args assignt [1]

assignt [11 relation2 args activity [3]

.

.

.

4.

.

The six AI assignments require programming. (relation ass ignt_type as main
clause)

AI has six assignments which involve programming. (relation ass ignt_type as
relative clause)

AI has six assignments of programming nature. (relation ass ignt_type as PP)

AI has six programming assignments. (relation ass ignt_type as predicative
adjective)

AI has six implementation assignments. (relation ass ignt_type as
noun-noun modifier)

Figure 2
An example of an input conceptual network with paraphrases that can be generated from it.

1985; Polgu~re 1990; McCoy and Cheng 1991; Carcagno and Iordanskaja 1993), which
must keep track of how focus shifts as it plans the discourse, or text. Similarly, any
goals of the speaker must be provided as input to the Lexical Chooser. In the student
advising domain, argumentative intent, or the desire of the speaker to cause the hearer
to evaluate the information provided in a particular light, plays an important role. For
example, whether the six programming assignments should be viewed as a plus of AI
or a minus will depend both on hearer 6 goals and on what action the speaker 7 thinks
the hearer should pursue (i.e., take AI or not). Such goals, or argumentative intent, are
used by the content planner in reasoning about what information to include. Again,

6 In o u r case , the s y s t e m user.
7 In o u r case, the s y s t e m .

202

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

since such goals are available to the content planner, they can easily be provided as
input to the Lexical Chooser.

2.3 Two Tasks for Lexical Choice
Given the input and output specified above, this leaves two tasks for the Lexical
Chooser:

• Syntagmatic decisions: choosing among the many possible mappings
from the fiat conceptual network it receives as input onto the thematic
tree structure it must produce as output, (e.g., the choice of expressing
the ass ignt_type relation in the network of Figure 2 as the main verb
and the card ina l relation as a noun modifier in paraphrase [1]).

• Paradigmatic decisions: choosing among alternative lexicalizations
inside a particular thematic structure, (e.g., the choice of the verb to
require to express the ass ignt_type relation in paraphrase [1] instead of
to involve in [2]).

While syntagmafic decisions may seem to be more syntactic in nature, they are
directly intertwined with various lexical choices. Selecting the verb, or a higher-level
relation such as a connective between two clauses, automatically determines overall
thematic structure, while selecting which concept in the input will serve as head of
the sentence directly influences choice of words. Minimally, syntagmatic decisions in-
dude determining the main process, which constrains the set of possible verbs, s For
example, in paraphrase (4) of Figure 2, this means choosing:

• To map the relation class_assignt as the main process of the sentence.

• A possess ive thematic structure for that main process.

• To map the arguments class and assignt of class_assignt onto
respectively the possessor and possessed roles of the possessive
process.

Further syntagmatic choices determine which concepts will function as modifiers
of any of these roles, ultimately surfacing as relative clauses, prepositional phrases,
or adjectival describers. This mapping of conceptual structure to linguistic structure is
carried out first in the Lexical Chooser. We call this initial stage involving syntagmatic
decisions phrase planning. Then, the Lexical Chooser selects the actual words that
are used to realize each role. We call this subsequent stage involving paradigmatic
decisions lexicalization proper.

Floating constraints are handled in both of these stages: for example merging two
content units in a single linguistic unit is a phrase planning decision, whereas picking
the appropriate collocate of an already chosen word is a paradigmatic decision.

2.4 An Implementation Based on the FUF/SURGE Package
The implementation of ADVlSOR-II builds on a software environment dedicated to the
development of language generation systems: the FUF/SURGE package (Elhadad 1993a,

8 Here we use the word "process" in the systemic sense, see Section 2.4.2.

203

Computational Linguistics Volume 23, Number 2

1993c). FUF (Functional Unification Formalism) is a programming language based on
functional unification (Kay 1979). 9 Both the input and the output of a FUF program
are feature structures called Functional Descriptions (FDs). The program itself, called
a Functional Unification Grammar (FUG), is also a feature structure, but one which
contains disjunctions and control annotations. The output FD results from the unifi-
cation of this FUG with the input FD. The disjunctions in the FUG make unification
nondeterministic.

Functional unification has traditionally been used to represent syntactic grammars
for sentence generation (e.g., Appelt 1983; McKeown 1985; Paris 1987) and FUF comes
as a package with SURGE, a grammar of English implemented in FUF. SURGE is usable
as a portable front-end for syntactic processing. FUF is the formalism part of the package,
a language in which to encode the various knowledge sources needed by a generator.
SURGE is the data part of the package, an encoded knowledge source usable by any
generator. Using the FUF/SURGE package, implementing a generation system thus con-
sists of decomposing nonsyntactic processing into subprocesses and encoding in FUF
the knowledge sources for each of these subprocesses. Each such knowledge source is
represented as a FUG. 1° In the case of ADVISOR-II, the focus of nonsyntactic processing
is lexical choice. ADVISOR-II thUS essentially consists of a pipeline of two FUGs: a lex-
ical FUG encoding the domain-specific lexical chooser and the domain-independent
syntactic FUG SURGE. Lexical choice is performed by unifying the conceptual input
with the lexical FUG or lexicon. The resulting lexicalized thematic tree is then unified
with SURGE, which produces the final sentence.

We now briefly overview the FUF language and then the SURGE syntactic grammar
before explaining in detail how unification is used to perform lexical choice.

2.4.1 FUF: A Functional Unification Formalism. Functional unification is based on two
principles: information is encoded in simple and regular structures called functional
descriptions (FDs) and FDs can be manipulated through the operation of unification. 11
A Functional Unifier takes as input two FDs and produces a new FD if unification
succeeds and failure otherwise. Note that contrary to structural unification (SU, as used
in Prolog for example), functional unification (FU) is not based on order and length
(see Shieber [1992] and Carpenter [1992] for recent and comprehensive descriptions of
feature structures).

An important property of FDs is their ability to describe structure sharing (or reen-
trancy): an FD can describe an identity equation between two attributes. For example,
subject-verb agreement in a sentence is described by the FD:

subject [number [1]]]

verb [number [1]]

In this FD, the notation [1] indicates that the value of the attribute number under subject
must be identical to that of the attribute number under verb, whatever it may be. In
FUF, tags like [1] are encoded with the path notation such as {verb number}. A path
is best understood as a pointer within the FD. Because paths can be used with no
constraints, the graph encoding an FD can include loops and does not need to be a
tree.

9 FUF is currently implemented in Common Lisp.
10 To avoid overloading the word "grammar," we will use "FUG" to refer to the common representation

formalism and "syntactic grammar" to refer to syntactic data encoded in SURCE using this formalism.
11 FDs are often called feature structures or attribute value matrices in the literature.

204

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

The a l t keyword expresses disjunction in FUF. The value of the a l t keyword
is a list of FDs, each one called a branch. When unifying an input FD with such a
disjunction, the unifier nondeterministically selects one branch that is compatible with
the input. Disjunctions encode the available choice points of a system and introduce
backtracking in the unification process. In this paper, alts are represented using the
following standard notation for disjunctions in feature structures:

ALT name-of-alt }

branch1
branch2

A disjunction can be embedded in another one if necessary. In addition, disjunctions
can be named using the d e f - a l t nota t ion, and referred to in other places using
the notation (:! name). This notation allows for a modular notation of large gram-
mars written in FUF. Other FUF constructs are introduced as needed in the rest of the
paper.

2.4.2 SURGE: A Wide-coverage Syntactic Front-End For Generation. SURGE is a
wide-coverage syntactic grammar of English implemented in FUF and usable as a
syntactic front-end portable across domains. It has been progressively developed over
the last seven years and extensively tested for the generation of texts as varied as
multimedia explanations (McKeown et al. 1990), stock market reports (Smadja and
McKeown 1991), student advisory sessions (Elhadad 1993c), telephone planning engi-
neer activity reports (Kukich et al. 1994; McKeown, Kukich, and Shaw 1994), taxation
correspondence, visual scene descriptions (Abella 1994), didactic biology term deft-
nitions (Lester 1994), basketball game summaries (Robin 1994a), workflow diagram
descriptions (Passoneau et al. 1996), news article summaries (McKeown and Radev
1995), intensive care patient summaries (Dalai et al. 1996), and web-page access de-
mographics.

SURGE represents our own synthesis, within a single working system and compu-
tational framework, of the descriptive work of several (noncomputational) linguists.
Our main source of inspiration were: Halliday (1985) and Winograd (1983) for the
overall organization of the grammar and the core of the clause and nominal subgram-
mars, Fawcett (1987) and Lyons (1977) for the semantic aspects of the clause, Pollard
and Sag (1994) for the treatment of long-distance dependencies and Quirk et al. (1985)
for the many linguistic phenomena not mentioned in other works, yet encountered
in many generation application domains. Since many of these sources belong to the
systemic linguistic school, SURGE is mostly a functional unification implementation
of systemic grammar rules. In particular, the type of FD it accepts as input specifies
a "process" in the systemic sense, i.e., any type of situation involving a given set of
participants (or thematic roles). This situation can be an event, a relation, or state in
addition to a process in its most common, aspectually restricted sense. In this broader
systemic sense, a process is thus a very general concept, simply denoting a semantic
class of verbs sharing the same thematic roles. However, SURGE also includes aspects
of lexical grammars, such as subcategorization.

Furthermore, while SURGE is essentially systemic in terms of the type of thematic
structure it expects as input, it differs from a purely systemic grammar implementation
such as NIGEL (Mann and Matthiessen 1983) in terms of control. Because it is based on
functional unification, SURGE is driven by both the structure of the grammar and that

205

Computational Linguistics Volume 23, Number 2

of the input, working in tandem. In contrast, NIGEL is driven solely by the structure of
the grammar, as encoded in its system networks.

2.4.3 Lexical Choice by Functional Unification. We apply FUF to lexical choice by
representing the lexicon as a FUG whose branches specify both constraints on lexical
choice (as tests) and the lexical features selected as a result of the different tests. Lexical
choice is performed automatically by unifying the lexicon, or lexical FUG, with the
conceptual input. During unification, the tests probe both the input conceptual network
and the linguistic tree under construction.

FUF is particularly suited for the representation of lexical constraints for a va-
riety of reasons, some of which have been discussed elsewhere (e.g., McKeown and
Elhadad 1990; McKeown et al. 1990). First, FUF allows the representation of constraints
on lexical choice in a declarative and compositional manner. This means that each con-
straint can be represented separately and the ordering on how the constraints apply is
determined dynamically through unification. Because the constraints are represented
separately, lexical features are added as each constraint apphes, thus compositionally
constructing the set of features that define the final choice. Finally, because unification
is the governing process, constraints are bidirectional.

Given the wide variety of constraints on lexical choice (Robin 1990) and the unpre-
dictable manner in which they interact, these features of FUF are particularly desirable.
Since in different contexts, different constraints play more or less of a role, unification
can determine dynamically which constraints are triggered and in what order. This is
a benefit in several different scenarios. For example, sometimes a constraint is stated
in the input while at other times it may be derived from the choice of another word
in the sentence. If the constraint is available, it can influence the choice of that word;
if not, then if the word is selected based on other constraints, it will trigger the con-
straint, which may in turn trigger selection of other words. With lexical constraints
that hold between two or more words, it is not critical which word is chosen first.
Examples of such patterns of interaction are given in the following sections.

2.5 A Simple Example
To see how lexicalization works for our simple example sentence AI has six assign-
ments, we will only consider semantic constraints. The input specification received by
the Lexical Chooser is shown in Figure 3. The conceptual representation in the in-
put is encoded as an FD under the semr (SEMantic Representation) attribute. In this
example, it is a simple encoding in FUF notation of a binary relation CLASS_ASSIGNT
holding between two entities: the individual AI and the set ASSIGNT_SET1. The link
between the arguments of the relation and its fillers is indicated by path values (of
[1] and [2] respectively). In the matrix notation used here, we use a number in brack-
ets (In]) to both label a value and subsequently represent the path to that value. As
the Lexical Chooser proceeds, it adds features to this feature structure, representing
the syntactic elements of the clause that is to be produced. The output is shown in
Figure 4. It consists of the input semr attribute enriched by a syntactic structure of
category clause (cf. note 1) with lexical items specified for each linguistic constituent
(cf. note 3 and the features next to notes 4 and 5 of the figure). This output FD is then
fed to the SURGE syntactic realization component, to eventually produce the expected
sentence.

In the architecture we are describing, the Lexical Chooser must meet the require-
ments of the underlying application, which feeds it its input, on the one hand, and
on the other hand it must produce an output acceptable by the syntactic realization
component. The particular semantic features (name of the relations and of the argu-

206

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

nt

AI AI-assignt

semr

assignments

class

relation1

cat set]
name assignt_setl

[1] cardinality 6
gen.ic l, [co, as.gnm..,]

[2] name ai

Figure 3
Conceptual input to the Lexical Chooser in FD format.

ments) are specific to the ADVISOR-II domain. The particular thematic roles found in
the output are characteristic of SURCE. The mapping process is generic.

The Lexical Chooser first traverses the input conceptual structure (which appears
under semr) to decide what syntactic category will be chosen to realize it. In this case,
the Lexical Chooser decides to map a semantic relation to a simple clause. This decision
is done during phrase planning, a process we detail in Section 3. As the clause is being
constructed, the feature (cat clause) is added (cf. Note 1 in Figure 4) and the syntactic
structure of a clause is constructed. A clause skeleton is added to the top level of the
FD (cf. notes 2, 4, and 5).

Since the main verb has not yet been selected, the Lexical Chooser cannot proceed
further and determine which participants (or verb arguments) will be inserted in the
clause, and how they will map to the arguments of the input semantic relation. But the
phrase planning component has already determined to use the main verb to realize the
input relation. To represent this decision, the Lexical Chooser copies information from
the top-level semantic representation in the semr feature under process (cf. note 2), thus
indicating that the main verb maps to the semantic relation CLASS_ASSIGNT. This is a
general feature of the technique: the Lexical Chooser incrementally builds a syntactic
structure, and each time a new linguistic constituent is introduced, a subconstituent
from the semr is copied under the semr of the syntactic subconstituent, representing the
mapping between semantic and syntactic constituents. This process is the generation
counterpart of a compositional semantic interpretation.

The next task of the Lexical Chooser is to select a word or phrase to realize the
relation CLASS_ASSIGNT. The verb is selected by recursively unifying the process de-
scription (including its newly assigned semr feature, cf. note 2) with a disjunction
of the verbs stored in the lexicon. The relevant fragment of the lexicon is shown in
Figure 5.

The selected entry contains two types of features: syntagmatic (constraints on
daughter nodes in the syntactic tree) and paradigmatic (choice of alternative lexical
entries for the same node in the tree). 12 First the verb to have is selected (cf. note 3

12 A generation lexicon is indexed by concepts instead of words. Each of its entries groups the alternative
words to express a given concept.

207

Computational Linguistics Volume 23, Number 2

semr

cat

process

lex_cset

% Tests
assignments
class

[1].. . %cf.Fig.3
[2].. . %cf.Fig.3

% Relation1 is of type class-assignt.
% It is mapped to the process of the main clause.
[name [3] class-assignt]

relationl argl [1]
arg2 [2]

% Enrichment: semr is mapped to a clause
% of process type possessive

clause

cat
semr name
cat verb-group

type possessive
lex ,have It

class-relation
[3]

% Indicates the syntactic constituents to be recursively lexicalized

{.1 I l}

participants

% Clause complements
'% Pointer to the semr subconstituent

semr [1]

possessor [4]
% Linguistic features from the lexicon

| cat proper
L lex "AI"

[2]
np
[cat noun]

lex "assignment"
possessed no

plural
plural
yes
yes
[value 6]

semr

cat

head

[5] definite
number
ref _number
quantitative
exact
cardinal

Figure 4
Output from the Lexical Chooser.

in Figure 4) as the default option for possessive verbs---English uses a possessive
metaphor to refer to the link existing between a class and its assignments (a class
"owns" the assignments). 13 As discussed below, this is a domain-specific decision that
only applies to the particular relation CLASS_ASSIGNT.

Once the verb class is known, the transitivity of the clause is determined, and
the clause skeleton can be extended by specifying the verb's complements. In SURGE,
possessive clauses expect two participants, named POSSESSOR and POSSESSED. The
second part of the lexical entry therefore determines how the s e m r features of the two
syntactic participants are to be linked to the semantic arguments of the input semantic
relation (in our case, this is done by the FUF pointers next to notes 4 and 5 in Figure 4).

This mapping is domain-specific, and is completely contained in the lexicon en-

13 Under different conditions, the Lexical Chooser could select one of the other verbs represented in the
entry, such as to require or a construction such as in c l a s s , there is ass ignment .

208

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

% First-level index: relation type is indexed by type of first argument.

DEF-ALT RELATIONS
: index (process semr cat)
[[s r [cot c,os.e,otion]]]
| % This extends into the named alt
| % class-relations below
L :! CLASS-RELATIONS

[process [semr [cat student_relation]]]
[:! STUDENT-RELATIONS

• . . Other types of relations . . .

% Second-level index: relations by name.

DEF-ALT CLASS_RELATIONS
: index (process semr name)

% For each type of class_relation, determine possible
% lexicalizafion and its cat and identify sub-constituents

[class [1]]
semr assignments [2]

 oc ss [s r [nome c ss ssignt]]
ALT ASSIGNMENrI~

: bk-class a o

% Lexicalizations: C requires A, C has A
% there is A in C, in C they do A

% Branch 1: C requires A

% Branch 2: C has A
[type possessive]

process lex "have"
% lex_cset declaration to handle recursion

lcx_cset ([3] [4])

possessee [4][sem~ [2]]

% Branch 3: In C there is A
process [type existential]
lex_cset ([5] [61)

participants [located [5] [semr [2]]]

circumstances [location [6] [semr [1]]]

. . . Other types of classmelafions . . .

Figure 5
Fragment of the lexicon for Verb selection.

try for the domain relation CLASS_ASSIGNT. In contrast to previous lexical choice ap-
proaches, such as Bateman et al. (1990), we make no claims that the linguistic relation of
possession used in this case is more general than the domain relation CLASS_ASSIGNT.
That is, we do not attempt to fit each domain relation under a general ontology based
on linguistic generalizations. Such fixed categorization of domain relations in effect
prevents a generator from realizing the same domain relation at various linguistic

209

Computational Linguistics Volume 23, Number 2

ranks and thus drastically reduces its paraphrasing power. 14 The only information this
mapping encodes is that one option to lexicalize the domain relation CLASS_ASSlGNT
in English is a possessive clause.

At this point, the top-level unification of the input with the Lexical Chooser is
completed. The intermediate FD corresponds to the features next to notes 1, 2, 4, and
5 in Figure 4. The verb has been selected and the clause structure has been built.

In order to continue the lexicalization of the arguments, the Lexical Chooser must
specify which constituents in this FD require further processing. This is accomplished
by adding a lex_cset (LEXical Constituent SET) declaration to the (lexical) FUG. The
value of lex_cset is a list of pointers to the constituents of the FD as shown in Figure 5.
Constituents bring structure to functional descriptions. 15 To handle constituents, the
complete unification procedure implemented in FUF is:

.

.

3.

Unify top-level input with the lexicon (i.e., the single unification step
described just above).

Identify constituents in result (i.e., read the lex_cset attribute).

Recursively unify each constituent with the lexicon.

The lexical entry for an argument-bearing word (usually a verb) includes a lex_cset
declaration. In the example, it specifies the two complements, POSSESSOR and POS-
SESSED, each of which will eventually be realized as an NP. When this is the case,
the head noun of the NP realizes the argument of the conceptual relation. When this
argument is shared by other relations in the input conceptual network, those other
relations are realized as nominal modifiers. Lexicalizing such complex NPs requires
determining:

• Which relations in the complex NP will appear as premodifiers and
which as postmodifiers.

• Which postmodifiers will be realized as prepositional phrases and which
as relative clauses.

• Selecting the features the grammar needs in order to select a determiner,
if any.

Details on how the linguistic features appearing under the NP constituents are
selected are given in Elhadad (1993b, 1996).

In summary, the Lexical Chooser proceeds as follows:

.

.

A stage of phrase planning first processes the semantic input and
determines to which syntactic category it is to be mapped.

A skeletal FD for the selected category enriches the semantic input.

14 Note that it is not the very idea of using an ontological upper-model that we criticize here (with all its
advantages in terms of knowledge inheritance and reuse) but the use of the most common linguistic
realization of each concept as the main criteria for classification.

15 SURaE also uses the special feature cset to encode the surface syntactic constituents of the sentence,
following Kay (1979). Thus, two cross-cutting constituent structures, thematic and syntactic, can be
represented in the same FD. SURCE ignores the lex_cset features and recurses according to the cset
declarations.

210

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

Figure 6

IO(~ winner ~//team ~ k
Bulls Jazz Jazz-stmak~

(~ number
3

~ t pr°gram~
ming

y
6

Networks of semantic relations with shared arguments.

.

.

.

(a)
(b)

The head word for the linguistic constituent is selected by looking up the
semantic feature in (i.e., unifying the semr feature with) the lexicon.

The lexical entry for the head word is responsible for:

Providing a lexical item with its lexical features.
Mapping semantic subconstituents to the complements of the
head word.

The lex_cset attribute triggers recursion on the immediate descendants of
the linguistic head. The linguistic structure is therefore incrementally
expanded as each head is lexicalized in turn. The FUF default control
regime develops this structure in breadth-first order.

3. Phrase Planning in Lexical Choice

When the input semantic network contains more than one relation, the Lexical Chooser
must decide how to articulate the different predicates into a coherent linguistic struc-
ture. We refer to this stage of processing as "phrase planning" because of its close
relationship to paragraph planning. In a simplistic generation system, all semantic
relations would be mapped to clauses, while entity and set descriptions would be
mapped to noun phrases. This strategy is not felicitous when dealing with multiple
relations, as illustrated by the two examples whose inputs and corresponding alterna-
tive outputs are shown in Figure 6 and Figure 7, respectively.

If every relation is to be realized as a clause, then the only option for lexicalizing
the relations 1 and 2 in Example 1 of Figure 7 is to generate two separate sentences
as in (1), or to embed one of the relations as a relative clause modifier of the shared
argument as in (2) or (3). Our corpus analysis (Robin and McKeown 1993), however,
has shown that sentences in the basketball report domain tend to be more syntactically
complex than sentences (1) to (3). Sentences (4) and (5) illustrate the type of complexity
we found: the two semantic relations are merged into a single sentence, but the second
relation is realized as a prepositional adjunct of different types. Example 2, in the
ADVI$OR-II domain, shows other options for realizing attached relations: as noun-
noun modifiers (AI assignments) or premodifier (programming assignments). To account
for this observed syntactic complexity, the Lexical Chooser must be able to accept as
input networks of several semantic relations, sharing certain arguments. The semantic
networks corresponding to Examples 1, 2, and 3 are shown graphically in Figure 6.

211

Computational Linguistics Volume 23, Number 2

Example 1 (left ne twork of Figure 6):
(1) Two sentences:
The Jazz defeated the Bulls.
They extended their winning streak to three games.
(2) One sentence - bea t as head - No lexical optimization:
The Jazz who extended thei r winning streak to three games, defeated the Bulls.
(3) One sentence - s t r e a k as head - No lexical optimization:
The Jazz who defeated the Bulls, extended their winning streak to three games.
(4) One sentence - bea t as head - With lexical optimization:
The Jazz defeated the Bulls for their third straight win.
(5) One sentence - s t r e a k as head - With lexical optimization:
The Jazz extended their winning streak to three games with a victory over the Bulls.

Example 2 (right ne twork of Figure 6, perspect ive alternation with fixed focus):
(6) AI has six programming assignments. (perspective c l a s s _ a s s i g n t , focus aI)
(7) The six AI assignments require programming. (perspective a s s ig n t_ ty p e , focus AI)

Example 3 (right ne twork of Figure 6, focus alternation with fixed perspective):
(8) AI requires six programming assignments. (perspective c l a s s _ a s s i g n t , focus AI)
(9) Six programming assignments are required in AI. (perspective c l a s s _ a s s i g n t , focus

assignt_set 1)

Figure 7
Alternative outputs for the input of Figure 6.

3.1 Selecting the Head Relation and Building its Argument Structure
The Lexical Chooser must first decide which relation to map to the main clause, and
which one to embed as a modifier. 16 We refer to this decision as perspect ive selec-
tion. The notion of perspective is related to the not ion of focus as used, for example,
in McKeown (1985). However , the perspect ive is a relation in the conceptual ne twork
whereas the focus is an entity. Once the perspect ive is chosen, focus can shift be tween
the participants of a relation, by switching the order of the complements , as in sen-
tences (8) and (9) of Figure 7. This is in contrast to sentences (6) and (7) in the same
figure, where perspective switches f rom c l a s s _ a s s i g n t to a s s i g n t _ t y p e (with the fo-
cus being the same). We have not investigated further which pragmatic factors affect
the selection of perspective. Our research has focused on building into the Lexical
Chooser the ability to realize any choice of perspect ive on the structures p roduced
by the content planner. We thus assume that perspect ive is given in the input to the
Lexical Chooser. Figure 2 shows in FD form the input the Lexical Chooser receives
for the example that produces sentences (6) to (9) (the ne twork form for this input
is shown on the right in Figure 6), depending on the values of the addit ional input
features perspect ive and focus omit ted in Figure 6.

The ADVISOR-II system expects in its input up to four semantic relations, the
highest number of relations that we observed expressed by a single sentence in our

16 Note that while an object cannot in general serve as a verb, a relation can serve as clause, noun, and a
variety of different modifiers. Thus, while we are restricted to selecting a relation as a main clause, we
are not restricted in how we do the mapping of other input relations to syntactic constituents.

212

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

model corpus of advising dialogues. The clause planning process has two compo-
nents: one, domain specific, maps from the domain relations to a clause structure, and
one, generic, maps the clause structure to the appropriate types of syntactic modifiers
(relative clause, prepositional adjunct, adjectival premodifier, or noun-noun modifier).

To explain this process, we will go through the clause planning of the example
input shown in Figure 2 step-by-step. Assume that the content planner has decided
the focus is on aI, and the perspective is on the c l a s s - a s s i g n t relation. First, the head
constituent of the linguistic structure is built from the description of the c l a s s - a s s i g n t
relation.

This mapping is shown in the top half of Figure 8. The left-hand side shows the
conceptual structure that is the input to the Lexical Chooser. The right-hand side shows
the linguistic structure that is constructed. At this stage, the conceptual relation that
will be realized as the head has been selected (shown by the dotted line pointing to
the node c l a s s - a s s i g n t) and the Lexical Chooser has decided to use a process (i.e.,
ultimately a verb) to realize it. In addition, the ro l e s feature is added as a generic
argument structure for the clause. The roles point to the appropriate arguments of the
class-assignt (again, note the dotted lines to the nodes AI and AI-assignt). Note,
however, that during this stage of phrase planning, neither the syntactic category
nor the lexical head of the constituent are yet chosen. The input conceptual graph
is merely transformed into a semantic tree. It is only during the subsequent stage of
lexicalization (proper), when the specific verb (to have in this example), is selected. 17
In the implementation, generic roles (role1, role2) are used to point to the arguments
of a process as long as the specific verb is not selected. They are mapped to clausal
participants (e.g., CARRIER, ATTRIBUTE) only once the verb is chosen.

3.2 Attaching the Remaining Relations as Modifiers
The second step of the mapping is to map the second relation, assignt_type, onto
modifiers of the arguments of the head clause. The ass ignt_type is mapped onto
the modifier slot of the a t t r i b u t e role of the head clause, when it is found that the
assignt_type and class_assignt share an argument.

This mapping is illustrated in the bottom half of Figure 8 for the example sentence:

(5) AI has programming assignments.

The modifier description has the same format as a clause in the linguistic structure.
The process of the clause is mapped to the relation a s s i g n t - t y p e and the process
roles to the arguments of a s s ign t - type . This does not mean that the modifier will
necessarily be realized by a clause as in the following sentence:

(6) AI has assignments which involve programming.

It can also be realized by an adjective or a noun. But these modifiers are analyzed as
being derived from the relative clause construction using only linguistic derivations,
following Levi (1978). Thus, sentence (5) above is analyzed as being derived from
(6) by deletion of the predicate involve and migration of its object, programming, to a
premodifier of the head assignments.

Another option to attach a second relation is to add it as a separate clause to avoid
deeply embedded structures. For example, the clause combination, sentence (7) below,

17 The same process generalizes to the treatment of nominal heads.

213

Computational Linguistics Volume 23, Number 2

AI ~c lass

Al'assignt ~ -a-'ssig~n: ,

programming (~ activity 1

I
I

[lex = "hale'__]..~rrier 2 ~ t e

[lex="Al"] (== head X~lfler

[lex = "assignment"] / ~ 2 identifier

P 7 roles - ~

deleted 1 ~) t ified

conceptual

Figure 8
Construction of a clause structure.

[lex = "programming"]

linguistic

is preferred over the embedded combination, sentence (8) below, because in the latter
the relative clause is twice embedded:

(7) Intro to AI has many assignments which consist of writing essays.
You do not have experience in writing essays.

(8) Intro to AI has many assignments which consist of writing essays in which you do
not have experience.

In summary, the first step of the mapping from conceptual network to clause is
(1) to select a perspective among the conceptual relations of the network, which deter-
mines a head clause, and (2) to attach the remaining relations as either embedded or
subordinate modifiers of the head clause. The perspective is selected using focus con-
straints; the choice between embedding or subordination is based on simple stylistic
criteria. The output of this stage is a hierarchical structure where heads correspond to
linguistic constituents of a given category (clause or NP), but where the lexical heads
are not yet selected.

These two operations constitute clause planning, similar to text planning at the
paragraph level. A similar process for NP planning is described in Elhadad (1996).
Once the head clause structure has been built, it is passed to the rest of the Lexical
Chooser, which determines which syntactic forms can be selected for each modifier,
when appropriate lexical resources are found.

These operations of phrase planning are possible in this approach because the
conceptual input is not already linguistically structured. Such planning is a major
source of paraphrasing power, and since it is controlled by pragmatic factors (as ex-
plained in Section 4) it also increases the sensitivity of the generator to the situation
of enunciation.

214

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

TAKE(S,C)
S enjoy C

INTEREST(C,S) /

ASSIGNMENT(C,A)
~____________~C ire A requ

DIFFICULT(A,S)

TAKE(S,C) ~ WIN(X,Y)

DIFFICULT(C,S) / . . - - W " S struggle with C LARGE(WIN) / " " " W ~

Figure 9
Merging two semantic units onto a single lexical item.

X crush Y

4. Cross-ranking and Merged Realizations

The two structures that the Lexical Chooser has to match--a network of semantic
units and a syntactic structure--are in general not isomorphic. This can be explained
by two factors: a combination of semantic elements can be expressed by a single
surface element, or a single semantic element by a combination of surface elements
(Talmy 1985, 57). This non-isomorphism between syntactic and semantic structures is
a pervasive phenomenon, as illustrated by Talmy's extensive cross-linguistic analysis
of constructions expressing motion and causation (Talmy 1976, 1983).

This discrepancy between the structures of the input and output of the Lexical
Chooser imposes two constraints: since several semantic units can be realized by the
same lexical item, the Lexical Chooser must be able to merge semantic units, and since
the same semantic unit can be realized at different syntactic levels, the Lexical Chooser
must be able to handle cross-ranking realization--that is, to dispatch a semantic unit
from a given level in the semantic network onto several different ranks of the syntactic
structure.

An example of merging is provided by verbs that convey an evaluative connota-
tion, as illustrated in Figure 9. TM Here, the verb enjoy, used in the student enjoyed the AI
class, conveys two semantic units:

The student took the AI class (a binary relation between the AI class and
the student)2 9

The student found the AI class interesting (an argumentative evaluation).

By choosing a verb with connotations such as enjoy, the Lexical Chooser satisfies two
input constraints at once.

An example of cross-ranking realization is shown in Figure 10. All four sentences
in this example convey similar information and satisfy the same argumentative intent:
they evaluate the AI class as high on the scale of difficulty. The difference is that this
evaluation is realized at four distinct syntactic ranks.

In (1), the evaluation is realized by selecting the judgment determiner many and
relying on the commonsense inference rule "the more assignments in a class, the more
difficult it is." Here the Lexical Chooser decided to use the marked evaluative expres-
sion many instead of six to refer to the number of assignments. Judgment determiners
include many, few, a great number of, etc. In (2), the use of a scalar adjective directly

18 In which student , c lass , and assignments are abbreviated S, C, and A, respectively.
19 We do not address the issue of deciding whether presupposed content units will be conveyed in the

output.

215

Computational Linguistics Volume 23, Number 2

.

2.

.

4.

Judgment determiner: "[AI has many assignments.]"

Predicative scalar adjective: "[AI, which is difficult, has seven
assignments.]"

Connotative verb: "[AI requires seven assignments.]"

Argumentative connective: "AI is interesting but [it has six assignments]."

Figure 10
Cross-ranking of argumentative evaluation.

realizes the evaluative intention of the speaker. Scalar adjectives include difficult, inter-
esting, important, etc. In (3), the choice of the connotative main verb require can also be
related to the speaker's intention to evaluate AI as a difficult class. The verb to require
merges the expression of the relation between the class and the assignments with the
connotation that AI is difficult. In contrast, the verb to have only expresses the first
semantic unit and does not have any connotation with respect to difficulty.

Finally, in (4), the argumentative connective but projects an evaluation on the
clauses it connects in an indirect way. The clause AI has seven assignments is not eval-
uative taken alone; but when it is contrasted with the first evaluation AI is interesting
by way of a but, it becomes an argument that must be opposed to interesting, and
the whole sentence supports this second argument. In this case, the speaker relies
on two commonsense rules that predict that (a) the more a course is interesting, the
more a student wants to take it and (b) the more a course is difficult, the less a
student wants to take it. Such common sense relations are called topoi by Ducrot
(Anscombre and Ducrot 1983). The modeling of argumentative evaluation using topoi
for text generation is described in detail in Elhadad (1995).

In summary, the same content unit--the evaluation of the class of AI on the scale of
difficulty--can be realized by very different linguistic devices: connective, main verb,
noun modifier, and determiner sequence. We use the term floating constraints to de-
scribe input constraints such as evaluations, which can be realized at different syntactic
levels. Figures 11 and 12 show how these floating constraints are distinguished from
structural constraints such as semantic predications. Structural constraints require the
presence of syntactic constituents at a given linguistic rank in the output and thus
guide the structural mapping process from the conceptual network to the thematic
tree. For example, when the input relation STUDENT-CLASS is mapped to a clause, the
predicate to take determines how the arguments of the relation are mapped onto the
thematic roles of the clause: STUDENT to AGENT and CLASS to RANGE. In contrast, float-
ing constraints are conveyed by either semantically richer wordings for the obligatory
constituents introduced by the structural constraints (e.g., in Figure 12 changing the
verb to have into to require or the determiner six into many to add the evaluation of AI
as a difficult class) or by optional constituents (e.g., in Figure 12 the connective but or
the qualifier difficult).

Both merging of semantic units in a single site and cross-ranking of a single seman-
tic unit to different syntactic sites, are found in other domains as well. For example, in
the basketball domain, the semantic unit describing a game result (victory or defeat)
can be merged with an evaluation of the ease or the predictability of the result in
verbs like to outlast, to crush, to surprise, etc. as shown in Figure 9. Similarly, the phe-
nomenon of cross-ranking is not restricted to evaluative connotations. For example, in

216

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

[Relation = student-dass] [cat = clause]
C - - ~ ~ N ~ - - - - - - : - - - ~ ~ ' (~ participants

class/ ~studen, "take" / ~
/ ~ agent/

Figure 11
Structural constraint.

[cat complex-clause]
connec~ve~~rective

I " " proc 7 ~cipants

. - " / ' " . > 0 (3
-<~2 llex="require"] / ~

:: 7 T

-.. [lex = "difficult"] [/ex = "many"] [lex = "~lgm~ent~"l
".)~

Figure 12
Floating constraint.

the following sentences taken from stock market reports (Kukich 1983b; Smadja 1991),
the semantic unit expressing the time appears as a floating unit at different syntactic
levels:

• Stock prices got off to a strong start. [time in both (prepositional) verb
and object]

• Wall Street Indexes opened strongly. [time in verb only]

• Stock indexes surged at the start of the trading day. [time in adjunct]

Thus, this phenomenon is a pervasive aspect of lexicalization. The need to perform
cross-ranking realization and to deal with floating constraints requires that the input
to the generator be neutral to linguistic form. This is in sharp contrast with previous
generators (Meteer et al. 1987; Bateman et al. 1990), whose input already determines
linguistic structure (e.g., semantic relations are always realized as clauses, and individ-
uals always as noun phrases). The distinction between the structure of the conceptual
input and the linguistic structure used to realize it implies that the Lexical Chooser
must not only perform paradigmatic choices (select among substitutable items, e.g.,
between require and necessitate), but also syntagmatic choices (determine the linguistic

217

Computational Linguistics Volume 23, Number 2

structure corresponding to a given input specification, e.g., select be tween a clause
and a nominalization, determine which construction will realize an evaluation). In
previous work, these structural decisions were made imphcitly at the content deter-
minat ion stage, when building the input to a text generator, and usually were done
through hand-coding. In this section, we show how these decisions can be made by
the Lexical Chooser in an efficient way.

4.1 Merging of a Conceptual Unit with an Argumentative Evaluation
We first illustrate the implementat ion of floating constraints in a Lexical Chooser taking
as example the merging of a conceptual unit wi th an argumentat ive evaluation.

Consider the task of mapping an argumentat ive evaluat ion onto a simple clause.
In this simple example, the input is made up of two semantic units: a conceptual
relation, e.g., c l a s s _ a s s i g n t (a s s i g n t _ s e t l , a i) and an argumentat ive evaluation,
e.g., e v a l (a i , d i f f i c u l t y) . For this example, we will restrict the available sites in
the syntactic clause capable of realizing the evaluat ion to be: the main verb, modifiers
of the NP realizing the class (i.e., p remodify ing adjective or relative clause), and the
determiner sequence. 2°

The input description for this configuration of semantic units is shown in Fig-
ure 13 both graphically and as an FD matrix. In the graphical representation, argu-
mentat ive evaluations are represented as wav y lines, and semantic predications as
straight lines. The dot ted line indicates that the two evaluations (many assignments
and difficulty) are par t of an argumentat ive ru le - -a t opos - -wh ich reads: the more a
class has assignments the more difficult it is. In the FD matrix, the evaluations and the
conceptual relations are represented under two separate top-level features of the input
semr (f l o a t i n g and s t r u c t u r a l respectively). This representat ion does not commit the
Lexical Chooser to map the evaluations to any part icular site a pr ior i - -highl ight ing
the floating nature of evaluations.

Therefore, one of the tasks of the Lexical Chooser, is to decide to which node in
the linguistic tree the argumentat ive evaluations will be attached. In the overall flow
of control fol lowed by FUF (discussed in Section 2.5), semantic relations are m ap p ed
onto a linguistic tree, which is expanded top-down, breadth-first. So the decision to
attach an evaluation at a given node in the linguistic structure must also be made
top-down. This order of decision making is shown in Figure 14 and is fol lowed as the
clause structure is constructed.

At each stage of this traversal, the Lexical Chooser checks whether there is lexical
material available in the lexicon to realize the evaluat ion at the specified syntactic
level. For example, at the verb level, the Lexical Chooser checks whether there exists a
verb that expresses the c l a s s _ a s s i g n t relation and has for connotat ion that the c l a s s
argument is difficult. In this case, the verb require can be selected. If, however, the
evaluation was on the scale of interest, no appropriate verb could be found (there
is no verb expressing both that a course is interesting and that it involves certain
assignments). At the NP level, the Lexical Chooser would then check whether there
exists a scalar adjective that can realize the evaluation.

20 In the implementation of ADVISOR-II, the Lexical Chooser also considers as potential sites connectives
and indirect argumentative evaluations--i.e., relying on a topos relation of the form "the more a class has
assignments, the more difficult it is," one can realize the evaluation of a class as difficult by evaluating
as large the set of assignments it requires. In that case, a modifier of the NP assignments realizes the
evaluation on the entity class.

218

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

N Class-assig nt

+ +

cardinality difficulty

semr

floating

structural

% Evaluative Relation
cat topos

scale
left orientation

value
evaluated
scale

right orientation
value
evaluated

6cardinality-I-]

[11
difficulty++]

[2]

% Objective relation: AI has 6 assignments
cat set]

assignments [1] cardinality 6
generic_elt [cat assignment]

class [2] name ai

I assignt [11 relationl args class [2]

Figure 13
Lexical Chooser input for one semantic unit and one floating constraint. Example of
corresponding output sentence: AI has many assignments, so it is difficult.

can the evaluation be ~ / / ~ ¢ Is there an appropriate connotative verb?

expressed at the clause level?
Is there an appropriate adverbial?

Is there an appropriate pre-modifying
can the evaluation be ~ adjective?

expressed at the NP level?

I Can an evaluative relative clause be added?

I can the evaluation be Is a judgment determiner appropriate?
expressed at the determiner level?

Figure 14
Order of decisions during top-down traversal for mapping argumentative evaluations.

The w a y these dec is ions are i m p l e m e n t e d in FUF is s h o w n in F igures 15 a n d 16.
The overa l l p rocess is s h o w n in F igure 15: the Lexical C h o o s e r first t r ies to a t t ach the

219

Computational Linguistics Volume 23, Number 2

Input semantic net:
[[structural I0 = semr floating

has been packaged as follows by the phrase planning branch:

... %cf.Fig.13
.%cf.Fig.13]]

11 =

process [semr ...]
roles [1 [semr [1] %Understructural]]

2 [semr [2] % Under s t ruc tura l]

ao [sem r [3] % Under floating]

CONJ LEX-CLAUSE
cat
process

ALT MAP-AO-CLAUSE
:bk-class ao

% At the top-level of the clause, AO can be mapped to:
% (1) Verb with connotation
% (2) An adverbial
% If no lexical resource is found at this level:
% Try to attach AO at another level

% Branch 1: No AO specified in input - nothing to do
[ao NONE]

% Branch 2: Attach AO down to verb
[ao [4]GIVEN]

process [ao . [conveyed proc s]]

% Branch 3: Attach AO to adverb
ao [5] GIVEN]
adverb [ao [5][conveyed adverb]]

% Branch 4: Delegate AO to other constituents
[ao GIVEN]

ao [conveyed ANY]

clause
[cat verb_group]

:! roles

Figure 15
Lexicon fragments mapping a floating constraint at the clause level.

element expressing argumentat ive evaluation 21 (A0 attribute in the figure) to an appro-
priate constituent (in the map-ao-c lause alt). Then the regular structural constraints
are dealt with (in the r o l e s alt). The map-ao-c lause alt implements the following
algorithm: if no AO is specified in the input, nothing needs to be done (first branch).
Since unification is bidirectional, a feature [a v] in a grammar branch can be either
a test for the presence of the feature or the instruction to enrich the input FD with
that feature if it is not present. The FUF keyword g iven is used to specify that the
feature is intended only as a test. If an AO is specified, then it can be attached either

21 More of ten k n o w n as speaker in tent ion or goal.

220

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

In the context of I1 in Fig. 15 for the reference to [1] and [2]:

DEF-ALT ASSIGNMENTS
: bk_class ao

% Branch 1: C requires A - Argumentative evaluation
attributive
"require"
G I V E N % Only if ao is specified in input

process

type
lex
ao

evaluated
scale

ao conveyed
orientation

(.I >
carrier [41[semr

[5] [semr attribute

lex_cset

participants

[i]name "difficulty"]]
verb_level
+

.1]]
[21]

% Branch 2: C has A - no AO connotation
[type possessive]

process lex "have II

% lex_cset declaration to handle recursion

lex_cset ([6] [7] >

[possessor [6][semr [1]]]
participants

possessed [7][semr [2]]

% Branch 3: In C there is A - no AO connotation
process [type ex/stential]

tex~set ([SJ [91)
participants [located [8][scmr [2]]]
circumstances [location [9][semr [1]]]

Figure 16
Three alternative lexical entries satisfying an AO constraint.

on the process (branch 2) of the clause, or as an adverbial (branch 3). In last recourse,
it can be "delegated" to another lower-level constituent (brafich 4). Note that at this
level of processing, the Lexical Chooser does not yet know whether appropriate lexical
material wil l be found to satisfy the constraint of expressing the AO connotation. For
example, when deciding to try branch 2, we still do not know whether an appropriate
verb will be found. So we just try to attach the AO at a certain level, and wait until
the Lexical Chooser arrives at the level of the verb in its traversal of the constituent
tree to verify whether our decision was justified. This is the equivalent of a prediction
step in a top-down parsing algorithm.

In the end, we must find an appropriate lexical element that will satisfy the re-
quirement to express AO. Such an element is shown in Figure 16. It is the lexical
entry for the semantic relation assignments, which holds between a class and its as-
signments. Three options are listed to realize this relation: c l a s s require assignment,
c l a s s have assignment and in c l a s s there is assignment. Only the verb to require con-
veys an argumentative evaluation (that the class is difficult). When it is selected, the
feature [[ao [[conveyed verb - level]]]] is added- -which signals that the AO is effectively
expressed at the verb level.

In summary, the process develops as follows: at the clause level, choose a site for
the AO. Here we committed AO to the verb by copying the feature AO from the clause

221

Computational Linguistics Volume 23, Number 2

level under the process constituent, with the feature conflation:

ao [4]GIVEN]
process [ao [4]]

Then proceed with regular structural traversal of the constituent tree: process, argu-
ments, then under process, verb. At the verb level, we look up the lexicon for an appro-
priate entry to realize the process. In this case, the process is already enriched with a
copy of the AO annotation. So we select the verb to require, which satisfies this request.
The AO constraint is thus satisfied, and the [ao conveyed] feature is instantiated--which
means that the AO constraint is satisfied.

Now, imagine that no lexical entries were found to express the AO constraint,
neither at the verb level, nor at the adverbial level. In this case, the AO constraint must
be mapped down to an NP participant of the clause. The mapping inside the NPs is
not described in the map-ao-clause alt, because, at this level, the Lexical Chooser has
no knowledge of which NPs will be added to the syntactic structure. Instead, the AO
constraint is simply delegated to another constituent. When a new NP constituent is
constructed by the Lexical Chooser, the alt map-ao-np will perform a function similar
to map-ao-clause but within the NP.

At the clause level, the delegation is encoded using the feature:

[ao [conveyed ANY]]

The aNY feature is a powerful construct of FUF that imposes that a feature be instan-
tiated at the end of the unification process. Because unification is order-independent, aNY
constraints can only be checked after the entire grammar has been traversed at all the
levels. In our example,

[ao [conveyed ANY]]

declares that AO must eventually be instantiated to a ground value---that is, that some
lexical element has finally taken the responsibility of expressing the AO.

If we look back at the flowchart in Figure 14, we see that the algorithm just
described deterministically maps the AO to the first slot found in the constituent tree
that can account for it. We discuss in the next section how to add variety to this
decision and allow a nondeterministic selection of the AO realization site.

4.2 BK-CLASS: Smart Backtracking for Efficient Cross-ranking Realization
The process just described is a search process where the Lexical Chooser tries to find
an appropriate site for the realization of a floating constraint. This search is not tightly
constrained, since, for example, at the clause level, the Lexical Chooser maps the AO
feature to different sites without knowing in advance whether the sites are capable
of handling it. For example, the AO element is first tentatively mapped to the verb,
without knowing whether an appropriate connotative verb will eventually be found.

On the other hand, the construction of the linguistic structure depends on this
mapping; for example, if the argumentative evaluation is mapped to a qualifier, an-
other type of semantic element will not be mapped to the same site. 22 Thus, it is not
possible to first build the whole linguistic structure ignoring the AO constraint and
then subsequently examine which sites are available for the AO.

22 Here, we assume a simplistic stylistic constraint of limitating the number of postmodifiers to one.

222

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

In summary, the problem of finding an appropriate site to attach a floating con-
straint is inherently a hard search problem, which cannot be handled efficiently by
straightforward search techniques. Additional knowledge must be added to control
the search and make it efficient. In this section we introduce bk-class , a control tool
implemented in FUF, which reduces the search space in a significant way and makes
the implementation of such lexicalization tasks practical.

A version of dependency-directed backtracking (de Kleer et al. 1979), bk-c lass is
specialized to the case of FUF. The bk-c lass construct relies on the fact that in FUF,
a failure always occurs because there is a conflict between two values for a certain
attribute at a leaf location in the input FD, as already enriched by some features
from the FUG at the point of failure within the recursive unification process. In our
example, backtracking is triggered by the requirement that the value of the subattribute
conveyed of the attribute ao be instantiated, when the actual subattribute is not. The
path {A0 conveyed} defines the address of the failure, i.e., the only decision points
in the backtracking stack that could have caused the failure. Identifying the address
of a failure requires additional control knowledge that must be declared in the FUG.
More precisely, we allow the FUG writer to declare certain paths in the FUG to be of
a certain bk-class. We then require the explicit declaration in the FUG of the choice
points that correspond to this bk-class. In such cases, the writer must realize that
the decisions within the class are interdependent, but she need not have knowledge
of which one is most likely to succeed.

For example, the statement: (de f ine-bk-c lass A0 conveyed) specifies that all
paths ending with the attribute conveyed are of class AO. In addition, we tag in the
FUF program all alts that have an influence on the handling of the AO constraint with
a declaration (:bk-class A0) as shown in Figures 15 and 16.

To illustrate how bk-class helps in dealing with floating constraints, consider
again the require example discussed in the previous subsection. In the lexicon frag-
ment of Figure 15, costly backtracking is avoided by forcing a fixed order for the
consideration of the possible sites to express the AO: first verb, then adverb, and fi-
nally argument NP. Also the alternative option of a separate clause is not considered.

To overcome the limitation of this deterministic site selection for the AO attach-
ment and allow a variety of possible outputs, we can force a random selection in the
a l t map-A0-clause of Figure 15. This is achieved by adding an (:order :random)
annotation to the a l t map-A0-clause, which becomes:

(d e f - a l t map-ao-clause (:bk-c lass A0) (:order :random) . . .)

With this annotation, FUF nondeterministically chooses one of the four branches of
the disjunction. In this manner, the algorithm shown in Figure 14 is not performed in
a fixed order. As a consequence, the Lexical Chooser can map the AO evaluation to a
noun modifier, even though it was possible to merge it into the verb--producing either
AI requires six assignments or AI, which is difficult, has seven assignments. In the Lexical
Chooser of ADVISOR-II, the AO mapping mechanism also interacts with the phrase
planning component and maps the AO to a dedicated evaluative clause--producing
in our example the complex clause AI has seven assignments; therefore it is difficult. A
random selection among these options adds significantly to the variety of possible
outputs.

This randomization can also lead to computationally expensive dead-ends. The
AO mapping grammar describes three possible attachment sites for AO, leading to
the sentences:

• AI requires six assignments.

223

Computational Linguistics Volume 23, Number 2

• AI, w h i c h is difficult, has six assignments.

• AI has six assignments; therefore it is difficult.

If one of these sites is not available, another one must be chosen. Unfortunately, it
can take time to realize that a given site is not available. The possibilities are outlined
below.

• Case 1: all sites available: all three sentences can be generated.

• Case 2: the NP site is not avai lable because another modifier must be
attached to the same NP. This would occur, for example, in sentences
like AL which is taught by Smith, has six assignments.

• Case 3: the verb site is not avai lable because there is no connotative
verb that simultaneously conveys the structural relation and the AO
evaluation. This would occur, for example, in sentences like AL which is
difficult, deals with some mathematical topics, since there is no English verb
that expresses the relation "deal with" together with a connotation of
difficulty in the domain sublanguage of ADVISOR-II.

• Case 4: both the verb site and the N P site are no t avai lable (the
combination of case 2 and 3 above): only a complex clause can be
generated.

The problem is that at the time the map-ao-clause disjunction is traversed, we do
not yet know whether the corresponding sites are available. The following scenarios
illustrate how the late detection of availability can lead to a prohibitive search time:

• Case 1: All sites avai lable . The order in which map-ao-clause is
traversed determines which sentence is generated. No price is paid
computationally, since all choices lead directly to an acceptable
configuration.

• Case 2: NP site not avai lable---Verb site tried first in map-ao-c lause . In
this case again, there is no time wasted, the Lexical Chooser "guesses"
right the first time.

• Case 3: NP site not avai lable - N P site tried first. In this case, the
Lexical Chooser goes the wrong way and must backtrack. Backtracking
is triggered only when the

[ao [conveyed A N Y]]

constraint is checked, which is at the end of the unification process. This
means that full lexicalization of the input is performed--ignoring the AO
constraint--and at the end, a failure is discovered. Using a simple
chronological backtracking control, such a late failure is the worst
possible scenario. All possible options starting at the wrong guess in
map-ao-clause are systematically explored, until finally, the
raap-ao-clause choice point is tried again, leading to an acceptable
sentence.

224

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

D

e

c

i

S

i

O

n

M
a

k

i

n

g

I Lexicalize ASSIGNMENT relation I

Figure 17
Backtracking and BK-CLASS.

Map AO constraint

I Choose verb site - Delay [ANY] 1

I Map args to complements 1

Processall (
subconstituents

> <

Check ANY:

AO IS NOT CONVEYED

B

a

c

k

t

r

a

c

k

i

n

g

Case 4: T w o sites (verb and NP) not a v a i l a b l e m b o t h tried before the
c o m p l e x c lause opt ion. The scenario is the same, except that when
backtracking reaches the map-ao-clause, it starts once more with a
wrong guess, and the same wasteful search is triggered.

The bk -c l a s s construct solves this problem efficiently by jumping back directly to
the map-ao-clause when the ANY failure is detected at address {ao conveyed}. This is
possible only if the grammar writer has declared the map-ao-clause as a choice point
of class a0. Figure 17 illustrates the search process, and how bk -c l a s s affects it. When
the unifier fails at a location of class A0, it directly backtracks to the last choice point
of class a0, ignoring all intermediate decisions.

In our example, when the ANY constraint fails, we directly backtrack to the last
AO choice point encountered, which was in the map-ao-np disjunction. If no other
option is left in the NP, we backtrack up to the alt map-ao-clause of Figure 16. We
therefore use the knowledge that only the verb, the NP, or an additional clause can
satisfy the AO constraint in a clause to drastically reduce the search space. Thanks
to the bk -c l a s s construct, this knowledge is locally expressed at each relevant choice
point, retaining the possibility of independently expressing each constraint in the FUF
program.

To evaluate the practical effect of bk-c lass , we have measured the number of
backtracking points required to lexicalize different clauses illustrating the scenario
discussed above. Table 1 summarizes these measurements, performed on the lexical
chooser for ADVISOR-II.

225

Computational Linguistics Volume 23, Number 2

Table 1
Measuring the effect of bk-class.

Backtrack points

Input Output w/o bk w / bk

All sites available AI requires six assignt. 46 46
AL which is hard, has six assignt. 59 59
AI has six assignt., therefore it is hard. 189 189

Verb unavailable
NP site tried first
two clauses tried first
Verb site tried first

NP unavailable
NP site tried first

NP and verb unavailable
two clauses tried last

AL which is hard, deals with math.
AI deals with math, therefore it is hard.
AI, which is hard, deals with math.

58 58
59 59

8,379 86

AL requires six assignt. 10,546 124

AI, deals with math, therefore it is hard. 15,580 128
AL has six assignt., therefore it is hard. 22,719 189

The number of backtracking points required to lexicalize each example clause is
listed with and without bk-class . The first group, with all sites available, indicates
the size of the lexicon. The numbers can be interpreted as the number of decisions the
Lexical Chooser makes to lexicalize a basic clause for which practically no backtracking
is required. It roughly corresponds to the number of unretracted decisions made by
the Lexical Chooser and is the optimal number of backtracking points that a search
control regime can obtain for the given input. Without bk-class , the wide variation in
number of backtracking points among the examples indicates the exponential nature
of the blind search that floating constraints impose on the standard control regime.
In contrast, with bk-class , the variation in number of backtracking points remains
within a factor of three among all the examples.

The dependency-directed mechanism implemented in FUF with bk-c lass therefore
complements a general top-down control regime to make the processing of floating
constraints efficient. The performance penalty imposed by a floating constraint de-
pends on the number of sites in the syntactic structure where it can be realized. For
example, the AO constraint can be realized at three levels and it may require the uni-
fier to retraverse the same FUG branches three times until it finds a site to convey the
AO constraint. Each floating constraint can be characterized by its range of possible
attachment nodes.

The bk-c lass mechanism improves the efficiency of functional unification while
preserving its desirable properties--declarativeness and bidirectional constraint satis-
faction. It is a declarative statement of dependency between a decision in the FUG and
a class of constraints in the input. Using bk-class , however, is not always easy for
the FUG writer since it requires thinking about the control strategy of the unifier--the
same drawback as for PROLOG'S c u t mechanism. We are currently investigating the
use of abstract interpretation techniques (Cousot and Cousot 1977) to automatically
determine where bk-c lass annotations are necessary and thus ease the task of the
programmer.

5. Interlexical Constraints

Interlexical constraints occur when a pair of content units is realizable by alternative
sets of collocations (Smadja and McKeown 1991). This is the case, for example, in the

226

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

following situation:

• A domain relation R is realizable by two verbs V1 and V2

• A domain entity E is realizable by two nouns N1 and N2.

• <V1,NI> and (V2,N2) are verb-object collocations.

• (V1,N2) and <V2,N1) are not verb-object collocations.

We observed the influence of interlexical constraints in our corpus of newswire
basketball reports used in developing STREAK. The act of performing strictly better
than ever before can alternatively be lexicalized by the collocations to break a record
or to post a high. However, even though the elements of the collocation are dependent
on different portions of the input network, they are not interchangeable. One can
say neither ?to break a high nor ?to post a record. For other relations, the words are
interchangeable; for example, one can say either to equal a high or to equal a record.

The input for these collocations is shown in Figure 18. It includes two relations:
performance(player, statistic) and improve(performance, maximum), which in-
dicate that a player's performance improves some previously set maximum. The verb
of the collocation realizes these two semantic relations, such as to break or to post simul-
taneously indicating (I) a relation between a player and one of its game statistics and
(2) that this statistic is strictly higher than some previous maximum. If, in contrast, the
statistic was even with the previous maximum, then the verb equal or match would be
selected instead. Whether the object is high or record depends on the type of maximum.
In this domain, a maximum can occur for a variety of different reference sets. It can
be a maximum for a player, for a team, or for a league. The noun high is used when
the performance is a maximum of past performances by the same player while record
is used when it is maximum over past performances of other players as well.

These semantic constraints on individual word choice are orthogonal to the inter-
lexical constraints between verb and object. It is possible, therefore, to encode interlex-
ical constraints in various locations in the Lexical Chooser. One possibility is to encode
the verb-object collocation with the lexicalization options for the predicate. This means
that both the lexicalization of the predicate and that of its collocationally constrained
argument are chosen all at once. Such simultaneous choices hinder the modularity of
the Lexical Chooser and declarative representation of individual constraints. With this
organization, the choice of verb must be indexed by the semantic constraints from the
arguments even though these constraints do not directly influence predicate choice.
Furthermore, if this constraint is encoded in the lexical entry for the predicate, it will
have to be repeated for the other domain relations that can take the same concept
as an argument, such as equal. This is undesirable since the verbs for lexicalizing
this relation are not collocationally restricted, as indicated by the validity of all the
following forms: to equal a high, to match a high, to equal a record, to match a record.

A second possibility is to represent the semantic constraints on verb and noun
choice separately; where there are several possible verbs for a given semantic con-
straint, the verb is chosen randomly. The collocational constraints between verb and
noun are represented with the noun in this scheme. In this case, modularity in the
representation of individual constraints is preserved. Semantic constraints on the re-
spective lexicalizations of the predicate and its argument are independently encoded.
However, the orthogonal interlexical constraint can trigger backtracking: for example,
if the verb to break is first randomly chosen for the relation improve and then the noun
high gets selected because the input indicates the player as the reference set for the
maximum concept, the Lexical Chooser must backtrack to select the verb post instead.

227

Computational Linguistics Volume 23, Number 2

semr

structural

floating

% Relation 1 marked as structural by the content planner
% Stockton scored 45 points

name performance
[ca t p l a y e r]

actor [1] n a m e Stockton
relation1 surname John

perf [2] value 45
unit points

% Relation 2 marked as floating by the content planner
% This performance improves Stockton's max imum

relation2 args past_perf [3]

[]

% Past performance that the n e w performance [2] improves:
% Maximum of the set of all scoring+ performances scored by Stockton

cat maximum
cat set

ref _set generic_elf actor [1] cat statistic
perf unit points

Figure 18
Test input for the sentence John Stockton posted a high with 45 points.

In order to both preserve modularity and avoid backtracking, the solution is to de-
lay the choice of one collocate until the other one is chosen. We have implemented this
in FUF through a control mechanism termed :wait, which allows explicit representa-
tion of the interlexical constraints along with modular representation of the individual
semantic constraints on word choice. The :wait mechanism is used to indicate that
a particular choice should be delayed until some other specific choice point in the
grammar. Again, the grammar writer must know that the two decisions are interde-
pendent, but does not need to know which one will take priority. Here, the choice
of verb is delayed until the head of the object is selected. Figure 19 shows how the
:wait annotation of FUF implements such a delay. In this case, the choice of verb is
suspended until its object noun collocates have been chosen. Therefore, no backtrack-
ing occurs even though the respective semantic constraints on the lexicalization of
the predicate and its argument are kept separate. The :wait annotation is a general
control facility that allows optimizing a FUG whenever it is known that two decision
classes are dependent on one another. The case illustrated in this paper, where these
two decisions classes are verb choice and object head noun choice, is only one of the
many types of optimizations made possible by the use of :wait (see Elhadad [1993c]
for other types).

6. Other Approaches to Lexical Choice

6.1 FUF-based Systems
In this section, we present four applications, developed at Columbia, which use FUF
for lexical choice. The first two use a very similar approach to ADVISOR-II, while the
last two incorporate the same model within distinct system architectures.

228

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

DEF-ALT LEX_SCORE

% Branch 1: . . .

% Branch 2: Verbs merging a PERFORMANCE structural relation
% and an IMPROVE floating relation
% Unifies with result of clause planning on input of Fig.18

process [semr[nameperformance]]

roles perf [1] GIVEN
floating GIVEN

[Process i semr [name improve]] i]
floating new_perf [1]

roles oldqoer f [cat maximum]
:! IMPROVE-MAX_VERBS

DEF-ALT IMPROVE_MAX_VERBS
% Choice of verb delayed until object is lexicalized

: order random
wait (participants affected head lex \ /

% Purely lexical test since done when object noun already chosen
% Branch 1: break a record

process [lex "break"]

affected head [lex "record"]]
% Recurse on both arguments

lex_cset < [] [] >

% Branch 2: post
process

participants

lex-cset

a high
[lex "post"]

agent [3]
affected [4][head [lex

% Recurse on both arguments

(L31 t4]>
"high"]]]

"DEF-CONJ LEX-MAX

semr [cat maximum]
cat np

ALT SEMANTIC-CONSTRAINT-ON-NOUN
% Choose noun for max. with no reference to embedding verb
% Branch 1: record

[semr [ref.set [generic_elt [actor [cat{teamleague}]]]]
head [lex "record"]

% Branch 2: high
[semr [ref~set [generic_elt [actor [catplayer]]]]]

head [lex "high"]

Figure 19
Use of :wait to preserve modularity and avoid backtracking.

229

Computational Linguistics Volume 23, Number 2

6.1.1 Systems with Similar Architectures. Two applications developed at Columbia
use FUF for lexical choice in much the same way as ADVI$OR-II: COMET (COordinated
Multimedia Explanation Testbed) (Feiner and McKeown 1990; Elhadad et al. 1989)
and PLANDOC (McKeown, Robin, and Kukich 1995). These systems are more limited,
however, in that they do not handle floating constraints, and thus lexical choice consists
of a one-to-one mapping between conceptual and linguistic structures. This mapping
focuses on the paradigmatic decisions and can be efficiently performed using the
simple default top-down regime of recursive unification. But in effect, this shifts the
burden of performing most syntagmatic decisions to the Content Planner, which must
then hand to the Lexical Chooser a tree-structured input that already prefigures the
(lexicalized) thematic tree that the Lexical Chooser in turn passes on to SURGE.

In COMET, a system which generates multimedia explanations for equipment main-
tenance and repair, the major research focus is the co-ordination of multiple media
and some word choices are influenced by decisions made by the graphics component.
For example, to determine how to refer to an object in an accompanying illustration,
the Lexical Chooser takes into account how the object is depicted (McKeown et al.
1992). COMET also considers constraints from the user and from previous discourse
in selecting words. This case has some similarities with floating constraints; if a word
is unknown to the user, an alternative word that can simply be substituted in the
sentence may not exist. Instead, COMET must replan the entire sentence when an al-
ternative word is not available, reinvoking its content planner (McKeown, Robin, and
Tanenblatt 1993).

PLANDOC is an automated documentation system under joint development by
Columbia and Bellcore. It produces one to two page reports documenting the activi-
ties of telephone planners. While PLANDOC does include a wide variety of paraphrases,
some of which involve different word choices, and handles interactions between dif-
ferent choices, lexical choice was not the primary issue in this system. Instead, the
focus was on the systematic use of conjunction with ellipsis and its interaction with
syntagmatic paraphrases, in order to produce concise, yet fluent, summaries. FUF was
used as a tool for developing the Lexical Chooser, but with less-novel results on the
topic of lexical choice.

6.1.2 Systems with Different Architectures. Two other applications developed at
Columbia also use FUF for lexical choice, but within a different system architecture:
COOK (Smadja and McKeown 1991) and STREAK (Robin 1994b). Some of the examples
discussed in this paper within the framework defined by the architecture of ADVISOR-
II originated from the respective domains for which these two other systems were
implemented.

The focus in COOK, a system for generating stock market reports, was on interlexi-
cal constraints such as those presented in Section 5. By representing in FUF collocations
that were automatically derived from a corpus of stock market reports, COOK could
merge phrasal and single word constraints in the same lexicon as well as handle inter-
actions between collocations. The way lexical choice is performed in COOK differs from
the way it is performed in all the other FUF-based systems in that it is not driven by a
top-down traversal of the input conceptual structure. Instead, lexical entries (individ-
ual words or collocations) are chosen in afixed order in terms of the syntactic function
they will ultimately occupy in the output sentence: first the verb arguments, then the
main verb, finally the adjuncts. This bottom-up regime is less efficient than the top-
down regime for handling the structural constraints described in Section 4. However,
it allows indexing the lexicon by <lexical item, syntactic function> pairs rather than
by concepts, a property that is handy for using syntactically marked collocations auto-

230

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

matically produced by a domain-independent tool with no semantic knowledge such
a s XTRACT (Smadja 1991).

The focus in STREAK was the definition of a draft-and-revision architecture for
generating the type of very complex sentences used in newswire reports to summarize
quantitative data about a basketball game and its historical background. STREAK relies
on revision rules drawn from a corpus analysis of such reports (Robin and McKeown
1993) to incrementally generate such complex sentences. While the draft-and-revision
approach of STREAK sets it apart from all the other FUF-based generators, the Lexical
Chooser of STREAK is akin to the Lexical Chooser of ADVISOR-II in that:

• It handles floating constraints.

• Its input is a linguistically unbiased fiat semantic network.

• It is based on top-down recursive functional unification.

There is, however, an important difference in the architectures of the two systems.
STREAK handles the structural constraints and the floating constraints in two sepa-
rate passes. Structural constraints are handled during an initial draft-building pass
and floating constraints during a subsequent revision pass. This is in contrast with
ADVISOR-II, which handles both types of constraints simultaneously. In STREAK, the
Lexical Chooser is thus called first to build the draft and then again at each revision
increment. The need for revision in STREAK primarily stems from the necessity in writ-
ten summaries to concisely pack many facts into very complex sentences, as observed
in newswire stories. For example, in the corpus of basketball reports that served as
model output for STREAK, some sentences conveyed up to 12 conceptual relations and
contained up to 46 words. In contrast, in the corpus of student advising sessions that
served as model output for ADVISOR-II, no sentences conveyed more than four con-
ceptual relations or contained more than 25 words. For the sentences of more ordinary
complexity found in dialogues, revision is not needed and simultaneously combining
semantic units into a single word can be achieved far more efficiently in a single pass.

6.2 Other Systems
In this section we overview approaches to lexical choice that do not rely on a FuF-based
lexicon. We have classified them according to where they position the task of lexical
choice in the overall generation architecture. For each class of systems, we describe
the constraints on lexical choice that were considered.

6.2.1 After Content Planning and Before Syntactic Realization. This approach is the
most common among text generation systems. The surface realization component is
separated into two successive modules: lexical choice followed by syntactic realization.
The lexical choice module builds the linguistic structure and chooses all open-class
words. The syntactic realization component deals with agreements, ordering of con-
stituents, choice of closed-class words, and in most systems can also perform syntactic
transformations on the structure provided by the Lexical Chooser (such as passiviza-
tion, dative movement, there-insertion, or it-extraposition). This is the approach used
in the systems TEXT (McKeown 1985), GENARO-MUMBLE (Conklin 1983; Meteer et al.
1987), PENMAN (The Penman NLG 1989), SPOKESMAN (Meteer 1990), EPICURE (Dale
1992), KALIPSOS (Nogier 1990) and in the generators based on the Meaning-Text The-
ory (MTT) (Mel'Suk and Pertsov 1987) such as: FOC (Bourbeau et al. 1990), GossIP
(Carcagno and Iordanskaja 1993) and LFS (Iordanskaja et al. 1994).

231

Computational Linguistics Volume 23, Number 2

1. Main Verb with Adjunct: Prices increased by 20%.

2. Object Noun with Postmodifier: Prices showed an increase of 20%.

3. Subject Noun with Premodifier: A 20% increase has been reported.

Figure 20
Cross-ranking paraphrasing in the Meaning-Text Theory.

These systems primarily use semantic and syntactic constraints in selecting the
words to use. Typically, each semantic concept has an entry in the lexicon. The lexical
entry for the semantic head (usually the verb, but indicated by either the semantic
representation or the underlying application) is accessed first. The word chosen can
depend on the semantic features of the arguments to the head (thus, this scheme basi-
cally follows Goldman's [1975] use of discrimination networks). It is at this point that
the overall syntactic structure is determined. This lexical entry then usually invokes
the lexical entries for the arguments to the head and this control is followed until
all input arguments have been lexicalized. In these systems, pragmatic constraints
are not consistently accounted for and when interlexical constraints are accounted for
they are encoded as phrasal entries. Perspective on the input conceptual structure is
fixed; thus, different entry points into this input structure cannot determine what the
syntactic head of the sentence will be (except in SPOKESMAN [Meteer 1990]). In other
words, the conceptual structure determines linguistic structure. Lexical choice was not
a major research issue in any of these systems (unlike the work presented here), with
two exceptions: KALIPSOS and MTT-based generators.

Research for KALIPSOS focused on mapping multiple conceptual elements to the
same word using matching of conceptual graphs. It also allowed for some decision
making in determining the perspective of the clause, selecting the verb that covers the
largest portion of the input network. Unlike our work, it handled primarily semantic
and syntactic constraints on choice and thus, for example, does not dispatch conceptual
nodes to different syntactic ranks.

Paraphrasing power using a word-based lexicon is also a central issue in MTT, a
generation-oriented and highly stratificational linguistic theory in which sentences are
represented at multiple layers, five of which are relevant to the task of lexical choice
(Polgu6re 1990).

ADVISOR-II and MTT-based systems are similar in that lexical choice in both starts
from a flat conceptual network (the Conceptual Communicative Representation (CCR)
layer in the case of MTT-based systems), they perform choice of perspective as well
as syntagmatic choices, and they take into account interlexical constraints.

There are also three main differences:

The M T T approach is more stratified. In GOSSIP and LFS, lexical choice is
decomposed into a pipeline of four mappings between the five layers of
MTT representations. In ADVISOR-II, the input flat conceptual network
(corresponding to the CCR in MTT) is directly mapped onto the output
lexicalized syntactic tree. 23

23 It is interesting to note that the most applied among MTr systems, FOG, directly maps the CCR onto a
DSyntR. It may be an indication that all the intermediary representations defined in the MTr are not
necessary in all domains.

232

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

M T T makes the different types of lexical choices in a fixed order: first,
paradigmatic choices that depend only on semantic constraints, then
perspective choice, followed by syntagmatic choices, and finally
paradigmatic choices that depend on interlexical constraints. ADVISOR-II
starts with perspective choice and then interleaves syntagmatic and
paradigmatic choices.

M T T does not handle pragmatic constraints that float across the whole spectrum of
linguistic ranks (i.e., all the way from connectives linking several clauses
or sentences down to determiners) such as the argumentative evaluations
generated by ADVISOR-II. MTT also does not explicitly distinguish
between structural and floating constraints, which makes considering the
connective or determiner as alternative sites to clausal or nominal sites
problematic. This is significant, since using a connective or a determiner
instead of a semantically rich verb or a noun modifier allows for a more
implicit expression of floating constraints (at least in the case of
argumentative evaluations). MTT does, however, allow cross-ranking
paraphrasing limited to the clause and NP ranks, as illustrated by the
examples in Figure 20 (taken from Boyer and Lapalme [1985]).

6.2.2 During Surface Realization, Interleaved with Syntactic Realization. In this ap-
proach, lexical choice is considered as one linguistic decision like any other one, and,
therefore, it is not isolated in a dedicated component. Instead, the syntactic grammar
contains very specific rules for lexical insertion.

This approach is generally associated with the use of either:

• A phrasal lexicon such as in the generation systems ANA (Kukich 1983a),
PI-IRF.D (Jacobs 1985) and PAULINE (Hovy 1988).

• A lexicalist reversible grammar (Strzalkowski 1994), such as a synchronous
TAG (Shieber and Shabes 1991), especially in conjunction with the
semantic-head-driven algorithm to generation (Shieber et al. 1990).

In a phrasal lexicon entry, all the syntactic constraints between the elements of the
template are already preselected, so there is no need for much syntactic realization:
constituents are already ordered, their syntactic category is fixed in the phrasal tem-
plate, closed-class words are already selected. Alternations like passivization or dative
movement are encoded by defining, for each domain concept, several different tem-
plates, one for each combination of these orthogonal options (and thus failing to cap-
ture the generality of these syntactic transformations independently of specific words
and concepts). Interlexical constraints pose no problem since mutually constrained
words are not chosen individually but all at once by accessing a phrasal template (it
is just a matter of encoding only the entries corresponding to valid collocations). Sim-
ilarly, floating constraints are less of a problem for the phrasal approach, since most
alternative locations for their expression remain for the most part within the scope of
a phrasal template. However, the price to pay for this simplicity is high: generators
relying on a phrasal lexicon simply do not scale up. Extending their paraphrasing
power and semantic coverage requires hand-coding a combinatorially explosive num-
ber of phrasal templates. With a more compositional approach, such scaling up can
be achieved by adding only few words along with the constraints that bind some of
them (see Robin and McKeown [1996] for a corpus-based quantitative evaluation of
the scalability gains achievable through compositionality).

233

Computational Linguistics Volume 23, Number 2

In most approaches based on a lexicalist grammar, the semantic structure is tra-
versed and a semantic head is selected; after the head is selected, all the syntactic
decisions that depend on this head are performed; then the dependent constituents
are identified and lexicalized in turn. Lexicalization and syntactic realization are, there-
fore, interleaved as the linguistic structure is being built. With this approach, only a
restricted range of constraints on lexical choice can easily be handled: in most cases
only the semantic and syntactic constraints coming from the local constituent influence
what word is selected. Interlexical and pragmatic constraints are not discussed and we
have some doubts about how easy it would be to incorporate them in this approach.
Since words are selected only as the full syntactic tree is constructed, it would be
difficult to take floating constraints into account, which collapse different portions of
the semantic input into different portions of the syntactic tree.

6.2.3 During Content Planning and Before Syntactic Realization. Another class of
generation systems positions the task of lexical choice somewhere during the process of
deciding what to say, before the surface generator is invoked. This positioning allows
lexical choice to influence content and to drive syntactic choice. Danlos (1986) chooses
this ordering of decisions for her domain. In her system, a lexicon grammar first selects
lexical items for the predicative elements of the conceptual input. A discourse grammar
is then used to combine clauses into valid discourse organization patterns, which also
determine syntactic realization (choice passive/active for example). Danlos's system
thus performs content determination and lexical choice before discourse organization
and syntactic realization (a very original position). Since all the possible combinations
of alternative discourse organizations and alternative syntactic forms need to be hand-
coded in the discourse grammar, this approach suffers from the same drawback as the
phrasal lexicon approach: it is not compositional and thus does not scale up.

Rubinoff's (1992) IGEN also addresses the problem of the interaction between con-
tent decisions and linguistic decisions and implements an architecture that relies on
explicit negotiation between the two components: the content planner requests a set of
options from the Lexical Chooser to realize a certain conceptual element, and the Lex-
ical Chooser replies with annotated options. The content planner selects among these
annotations as it proceeds and combines the preferred options into an English mes-
sage. Rubinoff designed a language of annotations that maintains a good separation
of knowledge between the conceptual and linguistic components.

Other researchers advocate folding the lexicon into the knowledge representation.
In this approach, as soon as a concept is selected for the text, the words associated with
it in the knowledge base would automatically be selected as well. This is the approach
in KING (Jacobs 1987) and FN (Reiter 1991). In this approach, interlexical and syntactic
constraints on lexical choice are not addressed, thus restricting the coverage of the
domain sublanguage of the generator to sentences where these constraints do not
come into play. McDonald's (1983) use of realization classes allows for the advantages
of this approach while nonetheless allowing for syntactic constraints to play a role.
He makes use of inheritance within a knowledge base (McDonald 1981) to associate
generic concepts such as 0BJECT directly with a phrase category such as NP, but
allows for individuations of the concept to have exceptions. Options are expressed
in realization classes. While this does allow for a given input semantic element to
be mapped to different syntactic constructions, this approach does not address the
problem of merging semantic concepts in a single word, nor does it address interlexical
constraints.

234

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

7. Conclus ion

In this paper, we have presented a general model for lexical choice, which allows a
generation system to take into account a wide range of constraints on word selection in
a compositional, flexible, and yet efficient fashion. By positioning the Lexical Chooser
after content selection and before syntactic realization, both conceptual and linguistic
constraints can influence word choice. Critically, our work has focused on the problem
of floating constraints, providing a mechanism that allows the choice of a single word
to realize several semantic concepts and conversely allows a single semantic concept
to be realized by multiple words at distinct linguistic ranks. Our technique for lexical
choice is characterized by the following features:

• It is capable of handling a wide variety of constraints on lexical selection
(co-occurrence restrictions, connotation of lexical items, syntactic and
conceptual properties, and pragmatic effects).

• Interaction among these constraints is easily handled through the use of
a unification formalism to describe lexical entries.

• Floating constraints can be attached at different levels of the generated
syntactic structure, and several conceptual elements can be merged onto
a single linguistic item, providing for more compact and lexically richer
output.

• Syntagmatic decisions are also made by the Lexical Chooser, so that an
input conceptual structure can be mapped to a variety of linguistic
structures. For example, the selection of "perspective" in a clause is
guided by the available lexical resources (which verbs exist to express a
given conceptual relation) and by pragmatic considerations (which
relation is highlighted as the topic of the discourse).

Our implementation of the Lexical Chooser as a functional unification grammar
allows the separate, declarative representation of different constraints, with unification
allowing for interaction between constraints. Furthermore, within this framework we
have developed an algorithm for lexical selection, and the consequent building of
syntactic structure, such that at each choice point in the structure, the Lexical Chooser
considers all semantic concepts that can be realized, choosing a word that conveys as
many as possible or discharging a concept to dependent linguistic sites, at the end
checking that all concepts have been covered. In this framework, floating constraints
can be merged with other semantic constraints at any linguistic rank.

Finally, handling floating constraints requires that the same semantic structure is
mapped to different syntactic structures in different contexts. Thus, a Lexical Chooser
must also consider syntagmatic choice. We have presented an approach that allows
perspective to be chosen depending on the discourse focus. Different relations may be
chosen as the head of a syntactic structure, depending on the focus. This means that
the generation system encodes no a priori assumptions about which domain concepts
will be realized as which syntactic constituents.

Any lexical selection algorithm that handles such a wide range of constraints must
deal with the issue of computational complexity. To ensure an efficient Lexical Chooser,
we have developed a collection of techniques in the FUF programming environment
to limit the cost of operations required during lexical choice. We have described in
this paper lazy evaluation (with the : wait annotation) and dependency-directed back-
tracking (with the :bk-c3.ass annotation) and shown how it reduces the cost of lexical

235

Computational Linguistics Volume 23, Number 2

choice. With the help of these tools, we have implemented sophisticated lexical opti-
mizations in ~uF.

Our work results in an interpreter for an efficient Lexical Chooser, which allows
handl ing of a wide variety of interacting constraints. In future work, we plan to in-
vestigate the construction of domain- independent lexicon modules and methods for
organizing large scale lexica, topics that we did not address in this work. This will
require extending our work to provide tools for representing content of the lexicon in
addit ion to the tools for manipulat ing and representing content that we have detailed
here.

Acknowledgments
This research was partially supported by a
joint grant from the Office of Naval
Research and the Advanced Research
Projects Agency under contract
N00014-89-J-1782, by National Science
Foundation Grants IRT-84-51438 and
GER-90-2406, and by the New York State
Science and Technology Foundation under
the auspices of the Columbia University
CAT in High Performance Computing and
Communications in Health Care, a New
York State Center for Advanced Technology.
We would like to thank the anonymous
reviewers for their helpful comments.

References
Abella, A. 1994. From pictures to words:

Generating locative descriptions of objects
in an image. In Proceedings of the Image
Understanding Workshop, Monterey, CA,
November.

Anscombre, J. C. and O. Ducrot. 1983.
L'argumentation dans la langue. Philosophie
et langage. Pierre Mardaga, Bruxelles.

Appelt, D. 1983. Telegram: A grammar
formalism for language planning. In
Proceedings of the 8th International Joint
Conference on Artificial Intelligence. IJCAI.

Bateman, J. A., R. T. Kasper, J. D. Moore,
and R. A. Whitney. 1990. A general
organization of knowledge for natural
language processing: The Penman
upper-model. Technical Report, ISI,
Marina del Rey, CA.

Bourbeau, L., D. Carcagno, E. Goldberg,
R. Kittredge, and A. Polgu~re. 1990.
Bilingual generation of weather forecasts
in an operations environment. In
Proceedings of the 13th International
Conference on Computational Linguistics,
Helsinki University, Finland. COLING.

Boyer, M. and G. Lapalme. 1985. Generating
paraphrases from meaning-text semantic
networks. Computational Intelligence, pages
103-117, August-November.

Carcagno, D. and L. Iordanskaja. 1993.
Content determination and text

structuring: Two interrelated processes. In
H. Horacek and M. Zock, editors, New
Concepts in Natural Language Generation:
Planning, Realization and Systems. Frances
Pinter, London and New York.

Carpenter, B. 1992. The Logic of Typed Feature
Structures with Applications to Unification
Grammars, Logic Programs and Constraint
Resolution, Cambridge Tracts in
Theoretical Computer Science, volume 32.
Cambridge University Press, Cambridge.

Conklin, E. 1983. Data-driven Indelible
Planning of Discourse Generation Using
Salience. Ph.D. thesis, University of
Massachusetts, Amherst, MA.

Cousot, P. and R. Cousot. 1977. Abstract
interpretation: A unified lattice model for
static analysis of programs by
construction or approximation of
fixpoints. In Proceedings of the Fourth ACM
Symposium on the Principles of Programming
Languages, pages 238--252, Los Angeles,
CA.

Dalai, M., S. K. Feiner, K. R. McKeown,
D. Jordan, B. Allen, and Y. alSafadi. 1996.
Magic: An experimental system for
generating multimedia briefings about
post-bypass patient status. In Proceedings
of the American Medical Informatics
Association, Washington, D.C., October.

Dale, R. 1992. Generating Referring
Expressions. ACL-M1T Press Series in
Natural Language Processing, Cambridge,
MA.

Danlos, L. 1986. The Linguistic Basis of Text
Generation. Studies in Natural Language
Processing. Cambridge University Press,
Cambridge.

de Kleer, J., J. Doyle, G. L. Steele, and
G. J. Sussman. 1979. Explicit control of
reasoning. In Winston P.J. and R.H.
Brown, editors, Artificial Intelligence: An
MIT Perspective. MIT Press, Cambridge,
MA, pages 93-116.

Elhadad, M. 1993a. Fuf: The universal
unifier--user manual, version 5.2.
Technical Report CUCS-038-91, Columbia
University, New York.

236

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

Elhadad, M. 1993b. Generating
argumentative judgment determiners. In
Proceedings of the 11th National Conference on
Artificial Intelligence, pages 344-349. AAAI.

Elhadad, M. 1993c. Using Argumentation to
Control Lexical Choice: A Unification-based
Implementation. Ph.D. thesis, Computer
Science Department, Columbia University,
New York.

Elhadad, M. 1995. Using Argumentation in
text generation. Journal of Pragmatics,
24:189-220.

Elhadad, M. 1996. Lexical choice for
complex noun phrases. Machine
Translation.

Elhadad, M. and J. Robin. 1992. Controlling
content realization with functional
unification grammars. In R. Dale,
H. Hovy, D. Roesner, and O. Stock,
editors, Aspects of Automated Natural
Language Generation. Springer Verlag,
pages 89-104.

Elhadad, M. and J. Robin. 1996. An
overview of surge: A reusable
comprehensive syntactic realization
component. Technical Report 96-03, Ben
Gurion University, Dept of Computer
Science, Beer Sheva, Israel, April.

Elhadad, M., D. Seligmann, S. Feiner, and
K. McKeown. 1989. A common intention
description language for interactive
multi-media systems. In A New Generation
of Intelligent Interfaces: Proceedings of
I]CAI89 Workshop on Intelligent Interfaces,
pages 46-52, Detroit, MI, August 22.

Fawcett, R. P. 1987. The semantics of clause
and verb for relational processes in
English. In M. A. K. Halliday and
R. P. Fawcett, editors, New Developments in
Systemic Linguistics. Frances Pinter,
London and New York.

Feiner, S. and K. McKeown. 1990.
Generating coordinated multimedia
explanations. In Proceedings of the IEEE
Conference on AI Applications, Santa
Barbara, CA, March.

Goldman, N. 1975. Conceptual generation.
In Roger Schank, editor, Conceptual
Information Processing. North-Holland,
Amsterdam, pages 289-374.

Halliday, M. A. K. 1985. An Introduction to
Functional Grammar. Edward Arnold,
London.

Harbusch, K. 1994. Towards an integrated
generation approach with tree-adjoining
grammars. Computational Intelligence,
10(4):579-590.

Hovy, E. 1988. Generating Natural Language
under Pragmatic Constraints. L. Erlbaum
Associates, Hillsdale, N.J.

Iordanskaja, L., M. Kim, R. Kittredge,
B. Lavoie, and A. PolguSre. 1994.
Generation of extended bilingual
statistical reports. In Proceedings of the 15th
International Conference on Computational
Linguistics. COLING.

Jacobs, P. 1985. Phred: a generator for
natural language interfaces. Computational
Linguistics, 11(4):219-242.

Jacobs, P. S. 1987. Knowledge-intensive
natural language generation. Artificial
Intelligence, 33:325-378.

Kay, M. 1979. Functional grammar. In
Proceedings of the 5th Annual Meeting of the
Berkeley Linguistic Society.

Kukich, K. 1983a. The design of a
knowledge-based report generator. In
Proceedings of the 21st Annual Meeting.
Association for Computational
Linguistics.

Kukich, K. 1983b. Knowledge-based Report
Generation: A Knowledge Engineering
Approach to Natural Language Report
Generation. Ph.D. thesis, University of
Pittsburgh.

Kukich, K., K. McKeown, J. Shaw, J. Robin,
N. Morgan, and J. Phillips. 1994.
User-needs analysis and design
methodology for an automated document
generator. In A. Zampolli, N. Calzolari,
and M. Palmer, editors, Current Issues in
Computational Linguistics: In Honour of Don
Walker. Kluwer Academic Publishers,
Boston.

Lester, J. C. 1994. Generating Natural
Language Explanations from Large-Scale
Knowledge Bases. Ph.D. thesis, Computer
Science Department, Universtity of Texas
at Austin, New York, NY.

Levi, J. 1978. The Syntax and Semantics of
Complex Nominals. Academic Press.

Levin, B. 1993. English Verb Classes and
Alternations: A Preliminary Investigation.
University of Chicago Press, Chicago.

Lyons, J. 1977. Semantics. Cambridge
University Press, Cambridge.

Mann, W. C. and C. M. Matthiessen. 1983.
Nigel: a systemic grammar for text
generation. Technical Report
ISI/RR-83-105, ISI, Marina del Rey, CA.

Matthiessen, C. M. 1991. Lexicogrammatical
choice in text generation. In C. Paris,
W. Swartout, and W. C. Mann, editors,
Natural Language Generation in Artificial
Intelligence and Computational Linguistics.
Kluwer Academic Publishers, Boston.

McCoy, K. F. and J. Cheng. 1991. Focus of
attention: Constraining what can be said
next. In C. Paris, W. Swartout, and
W. C. Mann, editors, Natural Language
Generation in Artificial Intelligence and

237

Computational Linguistics Volume 23, Number 2

Computational Linguistics. Kluwer
Academic Publishers, pages 103-124.

McDonald, D. 1981. Language production:
The source of the dictionary. In
Proceedings of the 19th Annual Meeting.
Association for Computational
Linguistics.

McDonald, D. 1983. Description directed
control: Its implications for natural
language generation. In Karen
Sparck-Jones, Barbara Grosz, and
Bonnie-Lynn Webber, editors, Readings in
Natural Language Processing. Morgan
Kaufmann Publishers.

McKeown, K. 1985. Using Discourse Strategies
and Focus Constraints to Generate Natural
Language Text. Studies in Natural
Language Processing. Cambridge
University Press, Cambridge.

McKeown, K. and M. Elhadad. 1990. A
contrastive evaluation of functional
unification grammar for surface language
generators: A case study in choice of
connectives. In Natural Language
Generation in Artificial Intelligence and
Computational Linguistics. Kluwer
Academic Publishers, Boston. (Also,
Columbia Technical Report CUCS-407-88).

McKeown, K. R., M. Elhadad, Y. Fukumoto,
J. G. Lim, C. Lombardi, J. Robin, and
E A. Smadja. 1990. Text generation in
comet. In R. Dale, C. S. Mellish, and
M. Zock, editors, Current Research in
Natural Language Generation. Academic
Press, pages 103-140.

McKeown, K. R., S. Feiner, J. Robin,
Seligmann D. D., and M. Tanenblatt. 1992.
Generating cross-references for
multimedia explanation. In Proceedings of
the lOth Annual Conference on Artificial
Intelligence, pages 9-16. AAAI.

McKeown, K., K. Kukich, and J. Shaw. 1994.
Practical issues in automatic
documentation generation. In Proceedings
of the ACL Applied Natural Language
Conference, Stuttgart, Germany, October.

McKeown, K. and D. Radev. 1995.
Generating summaries of multiple news
articles. In Proceedings of SIGIR, Seattle,
WA, July.

McKeown, K., J. Robin, and K. Kukich.
1995. Generating concise natural language
summaries. Information Processing and
Management. 31(5):703-733, September.
Special Issue on Summarization.

McKeown, K., J. Robin, and M. Tanenblatt.
1993. Tailoring lexical choice to the user's
vocabulary in multimedia explanation
generation. In Proceedings of the 31st
Annual Meeting. Association for
Computational Linguistics.

Mel'~uk, I. A. and N. V. Pertsov. 1987.
Surface-syntax of English, A Formal Model in
the Meaning-Text Theory. Benjamins,
Amsterdam and Philadelphia.

Meteer, M. W. 1990. The Generation Gap: The
Problem of Expressibility in Text Planning.
Ph.D. thesis, University of Massachusetts
at Amherst. Also available as BBN
Technical Report No. 7347.

Meteer, M. W., D. D. McDonald,
S. D. Anderson, D. Forster, L. S. Gay,
A. K. Huettner, and P. Sibun. 1987.
Mumble-86: Design and implementation.
Technical Report COINS 87-87, University
of Massachusetts at Amherst, Amherst,
MA.

Nogier, J. F. 1990. Un systeme de production de
language fonde sur le modele des graphes
conceptuels. Ph.D. thesis, Universit~ de
Paris VII.

Paris, C. L. 1987. The use of explicit user models
in text generation: Tailoring to a user's level of
expertise. Ph.D. thesis, Columbia
University. Also available as Technical
Report CUCS-309-87.

Passoneau, R., K. Kukich, J. Robin,
V. Hatzivassiloglou, L. Lefkowitz, and
H. Jing. 1996. Generating summaries of
workflow diagrams. In Proceedings of the
International Conference on Natural Language
Processing and Industrial Applications
(NLP-IA'96), Moncton, New Brunswick,
Canada.

The Penman NLG. 1989. The Penman user
guide. Technical report, Information
Science Institute, Marina Del Rey, CA.

Polgu~re, A. 1990. Structuration et mise en jeu
proc~durale d'un modele linguistique ddclaratif
dans un cadre de gdndration de texte. Ph.D.
thesis, Universit~ de Montreal, Quebec,
Canada.

Pollard, C. and I. A. Sag. 1994. Head Driven
Phrase Structure Grammar. University of
Chicago Press, Chicago.

Pustejovsky, J. and B. Boguraev. 1993.
Lexical knowledge representation and
natural language processing. Artificial
Intelligence, 63(1-2):193-223.

Quirk, R., S. Greenbaum, G. Leech, and
J. Svartvik. 1985. A Comprehensive
Grammar of the English Language. Longman.

Reiter, E. B. 1991. A new model for lexical
choice for open-class words.
Computational Intelligence, December.

Reiter, E. B. 1994. Has a consensus natural
language generation architecture
appeared and is it psycholinguistically
plausible? In Proceedings of the 7th
International Workshop on Natural Language
Generation, pages 163-170, June.

238

Elhadad, McKeown, and Robin Floating Constraints in Lexical Choice

Robin, J. 1990. Lexical choice in natural
language generation. Technical Report
CUCS-040-90, Columbia University.

Robin, J. 1994a. Automatic generation and
revision of natural language summaries
providing historical background. In
Proceedings of the 11th Brazilian Symposium
on Artificial Intelligence, Fortaleza, CE,
October.

Robin, J. 1994b. Revision-based generation
of natural language summaries providing
historical background: Corpus-based
analysis, design, implementation and
evaluation. Technical Report
CU-CS-034-94, Computer Science
Department, Columbia University, New
York. Ph.D. Thesis.

Robin, J. and K. McKeown. 1993. Corpus
analysis for revision-based generation of
complex sentences. In Proceedings of the
11th National Conference on Artificial
Intelligence, pages 365-372. AAAI.

Robin, J. and K. McKeown. 1996.
Empirically designing and evaluating a
new revision-based model for summary
generation. Artificial Intelligence, 85,
August. Special Issue on Empirical
Methods.

Rubinoff, R. 1992. Negotiation, Feedback and
Perspective within Natural Language
Generation. Ph.D. thesis, Computer Science
Department, University of Pennsylvania.

Shieber, S. 1992. Constraint-based Grammar
Formalism: Parsing and Type Inference for
Natural and Computer Languages. MIT
Press, Cambridge, MA.

Shieber, S. M. and Y. Shabes. 1991.
Generation and synchronous
tree-adjoining grammars. Computational
Intelligence, 7(4):220-228, December.

Shieber, S. M., G. Van Noord, R. M. Moore,
and Pereira E C. P. 1990. Semantic
head-driven generation. Computational
Linguistics, 16(1):30--42.

Smadja, E 1991. Retrieving Collocational
Knowledge from Textual Corpora. An
Application: Language Generation. Ph.D.
thesis, Computer Science Department,

Columbia University, New York.
Smadja, E A. and K. McKeown. 1991. Using

collocations for language generation.
Computational Intelligence, 7(4):229-239,
December.

Strzalkowski, T., editor. 1994. Reversible
Grammars in Natural Language Processing.
Kluwer Academic Publishers, Boston.

Swartout, W. 1983. The gist behavior
explainer. In Proceedings of the National
Conference on Artificial Intelligence, pages
402-407, Washington D.C. AAAI.

Talmy, L. 1976. Semantic causative types. In
M. Shibatani, editor, The grammar of
causative constructions. Syntax and
semantics, volume 6. Academic Press,
London.

Talmy, L. 1983. How language structures
space. In H. L. Pick and L. P. Acredolo,
editors, Spatial Orientation: Theory, Research
and Application. Plenum Press, New York
and London.

Talmy, L. 1985. Lexicalization patterns:
Semantic structure in lexical form. In
T. Shopen, editor, Grammatical Categories
and the Lexicon, Language typology and
syntactic description, volume 3.
Cambridge University Press, Cambridge.

Van Noord, G. 1990. An overview of
head-driven bottom-up generation. In
R. Dale, C. Mellish, and M. Zock, editors,
Current Research in Natural Language
Generation. Academic Press, pages
141-166.

Winograd, T. 1983. Language as a Cognitive
Process. Addison-Wesley.

Yang, G., K. McCoy, and K. Vijay-Shanker.
1991. From functional specification to
syntactic structure: Systemic grammar
and tree adjoining grammars.
Computational Intelligence, 7(4), December.

Zock, M. 1988. Natural languages are
flexible tools, that's what makes them
hard to explain, to learn and to use. In
M. Zock and G. Sabah, editors, Advances
in Natural Language Generation: An
Interdisciplinary Perspective. Pinter and
Ablex.

239

