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The need to model the relation between discourse structure and linguistic features of utterances 
is almost universally acknowledged in the literature on discourse. However, there is only weak 
consensus on what the units of discourse structure are, or the criteria for recognizing and gener- 
ating them. We present quantitative results of a two-part study using a corpus of spontaneous, 
narrative monologues. The first part of our paper presents a method for empirically validating 
multiutterance units referred to as discourse segments. We report highly significant results of 
segmentations performed by naive subjects, where a commonsense notion of speaker intention is 
the segmentation criterion. In the second part of our study, data abstracted from the subjects" 
segmentations serve as a target for evaluating two sets of algorithms that use utterance features 
to perform segmentation. On the first algorithm set, we evaluate and compare the correlation of 
discourse segmentation with three types of linguistic cues (referential noun phrases, cue words, 
and pauses). We then develop a second set using two methods: error analysis and machine learn- 
ing. Testing the new algorithms on a new data set shows that when multiple sources of linguistic 
knowledge are used concurrently, algorithm performance improves. 

1. Introduction 

Each utterance of a discourse contributes to the communicative import of preceding 
utterances, or constitutes the onset of a new unit of meaning or action that subse- 
quent utterances may add to. The need to model the relation between the structure of 
such units (referred to here as discourse segment structure) and linguistic features of 
utterances I is almost universally acknowledged in the literature on discourse. How- 
ever, natural language systems rarely exploit the relation between discourse segment 
structure and linguistic devices because there is very little data about how they con- 
strain one another. We have been engaged in a two-part study addressing this gap. 
We report on a method for empirically validating discourse segments, and on our 
development and evaluation of algorithms to identify these segments from linguistic 
features of discourse. We show that human subjects can reliably perform discourse 
segmentation using speaker intention as a criterion. We also show that when multiple 
sources of linguistic knowledge are used (referential noun phrases, cue words, and 
pauses), algorithm performance approaches human performance. 

The excerpt in Figure 1 illustrates the two aspects of discourse that our study 
addresses. 2 The first pertains to an abstract structure consisting of meaningful dis- 
course segments and their interrelations. The utterances in segments X and Z of Fig- 
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okay. 
SEGMENT X Meanwhile, 

there are three little boys, 
up on the road a little bit, 
and they see this little accident. 
And u-h they come over, 

and they help ] h i m ~  
and you know, 

help I h i m l  pick up the pears and everything. 
SEGMENT Y A-nd the one thing that struck me about the- three little boys that were there, 

is that one had ay uh I don't  know what  you call them, 
but it 's a paddle, 
and a ball-, 
is attached to the paddle, 
and you know you bounce it? 
And that sound was really prominent. 

SEGMENT Z Well anyway, 
so- u-m tsk all the pears are picked up, 

and I he ]'s on his way again, 

Figure 1 
Discourse segment structure and linguistic devices. 

ure 1--which describe how three boys come to the aid of another boy who fell off 
of a bike --are more closely related to one another than to those in the intervening 
segment Y--which describe the paddleball toy owned by one of the three boys. The 
second discourse feature of interest is that the usage of a wide range of lexicogram- 
matical devices seems to constrain or be constrained by this more abstract structure. 
Consider the interpretation of the referent of the boxed pronoun he in segment Z. The 
referent of the underlined noun phrase one in segment Y is the most recently mentioned 
male referent: without the segmentation, the reasoning required to reject it in favor of 
the intended referent of he is quite complex. However, segment Z begins with certain 
features that indicate a resumption of the speaker goals associated with segment X, 
such as the use of the phrase well anyway, and the repeated mention of the event of 
picking up the pears. In terms of the segmentation shown here, the referents intro- 
duced in segment X are more relevant for interpreting the pronoun in segment Z. Note 
also that cue words (italicized) explicitly mark the boundaries of all three segments. 
Our work is motivated by the hypothesis that natural language technologies can more 
sensibly interpret discourse, and can generate more comprehensible discourse, if they 
take advantage of this interplay between segmentation and linguistic devices. 

In Section 2, we give a brief overview of related work. In Section 3, we present our 
analysis of segmentation data collected from a population of naive subjects. Our results 
demonstrate an extremely significant pattern of agreement on segment boundaries. In 
Section 4, we use boundaries abstracted from the data produced by our subjects to 
quantitatively evaluate algorithms for segmenting discourse. In Section 4.1, we discuss 
the coding and evaluation methods. In Section 4,2, we test an initial set of algorithms 
for computing segment boundaries from a particular type of linguistic feature, either 
referential noun phrases, cue phrases, or pauses. In Section 4.3.1, we analyze the errors 
of our initial algorithms in order to identify a set of enriched input features, and to 
determine how to combine information from the three linguistic knowledge sources. 
In Section 4.3.2, we use machine learning to automatically construct segmentation 
algorithms from large feature sets. Our results suggest that it is possible to approach 
human levels of performance, given multiple knowledge sources. In Section 5, we 
discuss the significance of our results and briefly highlight our current directions. 
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2. Related Work 

There is much debate about what to define discourse segments in terms of, and what 
kinds of relations to assign among segments. The nature of any hypothesized interac- 
tion between discourse structure and linguistic devices depends both on the model of 
discourse that is adopted, and on the types of linguistic devices that are investigated. 
Here we briefly review previous work on characterizing discourse segments, and on 
correlating discourse segments with utterance features. We conclude each review by 
summarizing the differences between our study and previous work. 

2.1 Characterizing the Notion of a Segment 
A number of alternative proposals have been presented, which relate segments to in- 
tentions (Grosz and Sidner 1986), Rhetorical Structure Theory (RST) relations (Mann 
and Thompson 1988) or other semantic relations (Polanyi 1988; Hobbs 1979). The lin- 
guistic structure of Grosz and Sidner's (1986) discourse model consists of multiutter- 
ance segments and structural relations among them, yielding a discourse tree structure. 
The hierarchical relations of their linguistic structure are isomorphic with the two other 
levels of their model, intentional structure and attentional state. Rhetorical relations do 
not play a role in their model. In Hobbs (1979) and Polanyi (1988), segmental structure 
is an artifact of coherence relations among utterances, such as elaboration, evaluation, 
cause, and so on. Their coherence relations are similar to those posited in RST (Mann 
and Thompson 1988), which informs much work in generation. Polanyi (1988) dis- 
tinguishes among four types of Discourse Constituent Units (DCUs) based on dif- 
ferent types of structural relations (e.g., sequence). As in Grosz and Sidner's (1986) 
model, Polanyi (1988) proposes that DCUs (analogous to segments) are structured as a 
tree, and in both models, the tree structure of discourse constrains how the discourse 
evolves, and how referring expressions are processed. Recent work (Moore and Paris 
1993; Moore and Pollack 1992) has argued that to account for explanation dialogues, 
it is necessary to independently model both RST relations and intentions. 

Researchers have begun to investigate the ability of humans to agree with one an- 
other on segmentation, and to propose methodologies for quantifying their findings. 
The types of discourse units being coded and the relations among them vary. Several 
studies have used trained coders to locally and globally structure spontaneous or read 
speech using the model of Grosz and Sidner (1986), including Grosz and Hirschberg 
1992; Nakatani, Hirschberg, and Grosz 1995; Stifleman 1995; Hirschberg and Nakatani 
1996. In Grosz and Hirschberg (1992), percent agreement (see Section 3.2) among 7 
coders on 3 texts under two conditions--text plus speech or text alone--is reported at 
levels ranging from 74.3% to 95.1%. In Hirschberg and Nakatani (1996), average relia- 
bility (measured using the kappa coefficient discussed in Carletta [1996]) of segment- 
initial labels among 3 coders on 9 monologues produced by the same speaker, labeled 
using text and speech, is .8 or above for both read and spontaneous speech; values 
of at least .8 are typically viewed as representing high reliability (see Section 3.2). 
Reliability labeling from text alone is .56 for read and .63 for spontaneous speech. 

Other notions of segment have also been used in evaluating naive or trained 
coders. Hearst (1993) asked naive subjects to place boundaries between paragraphs 
of running text, to indicate topic changes. Hearst reports agreement of greater than 
80%, and indicates that significance results were found that were similar to those 
reported in Passonneau and Litman (1993). Flammia and Zue (1995) asked subjects 
to segment textual transcriptions of telephone task-oriented dialogues, using minimal 
segmentation instructions based on a notion of topic: 18 dialogues were segmented 
by 5 coders (with varying levels of expertise in discourse), with an average pairwise 
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kappa coefficient of .45. To evaluate hierarchical aspects of segmentation, Flammia and 
Zue also developed a new measure derived from the kappa coefficient. Swerts (1995) 
asked 38 subjects to mark "paragraph boundaries" in transcriptions of 12 spontaneous 
spoken monologues; half of the subjects segmented from text alone and half from 
text plus speech. However, no quantitative evaluation of the results were reported. 
Swerts and Ostendorf (1995) also empirically derived discourse structure, using a 
spoken corpus of database query interactions. Although the labelers had high levels 
of agreement, the segmentations were fairly trivial. 

Isard and Carletta (1995) presented 4 naive subjects and 1 expert coder with tran- 
scripts of task-oriented dialogues from the HCRC Map Task Corpus (Anderson et al. 
1991). Utterance-like units referred to as moves were identified in the transcripts, and 
subjects were asked to identify transaction boundaries. Since reliability was lower than 
the .80 threshold, they concluded that their coding scheme and instructions required 
improvement. 

Moser and Moore (1995) investigated the reliability of various features defined in 
Relational Discourse Analysis (Moser, Moore, and Glendening 1995), based in part on 
RST. Their corpus consisted of written interactions between tutors and students, using 
3 different tutors. Two coders were asked to identify segments, the core utterance of 
each segment, and certain intentional and informational relations between the core 
and the other contributor utterances. As reported in their talk (not in the paper), 
reliability on segment structure and core identification was well over the .80 threshold. 
Reliability on intentional and informational relations was around .75, high enough to 
support tentative conclusions. 

Finally, a method for segmenting dialogues based on a notion of control was used 
in Whittaker and Stenton (1988) and Walker and Whittaker (1990). Utterances were 
classified into four types, each of which was associated with a rule that assigned a 
controller; the discourse was then divided into segments, based on which speaker had 
control. Neither study presented any quantitative analysis of the ability to reliably 
perform the initial utterance classification. However, in Whittaker and Stenton (1988), 
a higher level of discourse structure based on topic shifts was agreed upon by at least 
4 of 5 judges for 46 of the 56 control shifts. 

In sum, relatively few quantitative empirical studies have been made of how to 
annotate discourse corpora with features of discourse structure, and those recent ones 
that exist use various models such as the Grosz and Sidner model (1986), an informal 
notion of topic (Hearst 1994; Flammia and Zue 1995), transactions (Isard and Carletta 
1995), Relational Discourse Analysis (Moser and Moore 1995), or control (Whittaker 
and Stenton 1988; Walker and Whittaker 1990). The modalities of the corpora inves- 
tigated include dialogic or monologic, written, spontaneous or read, and the genres 
also vary. Quantitative evaluations of subjects' annotations using notions of agree- 
ment, interrater reliability, and /or  significance show that good results can be difficult 
to achieve. As discussed in Section 3, our initial aim was to explore basic issues about 
segmentation, thus we used naive subjects on a highly unstructured task. Our corpus 
consists of transcripts of spontaneous spoken monologues, produced by 20 different 
speakers. We use an informal notion of communicative intention as the segmentation 
criterion, motivated by Grosz and Sidner (1986) and Polanyi (1988), who argue that 
defining a segment as having a coherent goal is more general than establishing a reper- 
toire of specific types of segment goals. We do not, however, ask coders to identify 
hierarchical relations among segments. The hypothesis that discourse has a tree struc- 
ture has frequently been questioned (Dale 1992; Moore and Pollack 1992; Hearst 1994; 
Walker 1995), and the magnitude of our segmentation task precludes asking subjects 
to specify hierarchical relations. Finally, we quantify our results using a significance 
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test, a reliability measure, and, for purposes of comparison with other work, percent 
agreement. 

2.2 Correlation of Segmentation with Utterance Features 
The segmental structure of discourse has been claimed to constrain and be constrained 
by disparate phenomena, e.g., cue phrases (Hirschberg and Litman 1993; Grosz and 
Sidner 1986; Reichman 1985; Cohen 1984), plans and intentions (Carberry 1990; Lit- 
man and Allen 1990; Grosz and Sidner 1986), prosody (Hirschberg and Pierrehum- 
bert 1986; Butterworth 1980), nominal reference (Webber 1991; Grosz and Sidner 1986; 
Linde 1979), and tense (Webber 1988; Hwang and Schubert 1992; Song and Cohen 
1991). However, just as with the early proposals regarding segmentation, many of 
these proposals are based on fairly informal studies. It is only recently that attempts 
have been made to quantitatively evaluate how utterance features correlate with in- 
dependently justified segmentations. Many of the studies discussed in the preced- 
ing subsection take this approach. The types of linguistic features investigated in- 
dude  prosody (Grosz and Hirschberg 1992; Nakatani, Hirschberg, and Grosz 1995; 
Hirschberg and Nakatani 1996; Swerts 1995; Swerts and Ostendorf 1995), term repeti- 
tion (Hearst 1994), cue words (Moser and Moore 1995; Whittaker and Stenton 1988), 
and discourse anaphora (Walker and Whittaker 1990). 

Grosz and Hirschberg (1992) investigate the prosodic structuring of discourse. 
The correlation of various prosodic features with their independently obtained con- 
sensus codings of segmental structure (codings on which all labelers agreed) is an- 
alyzed using t-tests; the results support the hypothesis that discourse structure is 
marked intonationally in read speech. For example, pauses tended to precede phrases 
that initiated segments (independent of hierarchical structure) and to follow phrases 
that ended segments. Similar results are reported in Nakatani, Hirschberg, and Grosz 
(1995) and Hirschberg and Nakatani (1996) for spontaneous speech as well. Grosz and 
Hirschberg (1992) also use the classification and regression tree system CART (Brie- 
man et al. 1984) to automatically construct and evaluate decision trees for classifying 
aspects of discourse structure from intonational feature values. 

The studies of Swerts (1995) and Swerts and Ostendorf (1995) also investigate the 
prosodic structuring of discourse. In Swerts (1995), paragraph boundaries are empiri- 
cally obtained as described above. The prosodic features pitch range, pause duration, 
and number of low boundary tones are claimed to increase continuously with bound- 
ary strength (the proportion of subjects identifying a boundary). However, there is no 
analysis of the statistical significance of these correlations. In Swerts and Ostendorf 
(1995), prosodic as well as textual features are shown to be correlated with their in- 
dependenfly obtained (but fairly trivial) discourse segmentations of travel-planning 
interactions, with statistical significance. 

Hearst's (1994) TextTiling algorithm structures expository text into sequential seg- 
ments based on term repetition. Hearst (1994) uses information retrieval metrics (see 
Section 4.1) to evaluate two versions of TextTiling against independently derived seg- 
mentations produced by at least three of seven human judges. Precision was .66 for 
the best version, compared with .81 for humans; recall was .61 compared with .71 for 
humans. The use of term repetition (and a related notion of lexical cohesion) is not 
unique to Hearst's work; related studies include Morris and Hirst (1991), Youmans 
(1991), Kozima (1993), and Reynar (1994). Unlike Hearst's work, these studies either 
use segmentations that are not empirically justified, or present only qualitative analy- 
ses of the correlation with linguistic devices. 

After identifying segments, and core and contributor relations within segments, 
Moser and Moore (1995) investigate whether cue words occur, where they occur, and 
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what word occurs. In their talk, they presented results showing that the occurrence 
and placement of a discourse usage of a cue word correlates with relative order of 
core versus contributor utterances. For example, a discourse cue is more likely to occur 
when the contributor precedes the core utterance (p < .001). 

Finally, Whittaker and Stenton (1988) examined a wide variety of means for sig- 
naling discourse structure. Prompts, repetitions, and summaries rather than cue words 
more often signaled control-based discourse segment boundaries. No statistical anal- 
ysis of the significance of the differences was presented, however. By statistically an- 
alyzing distributions of discourse anaphora with respect to control-based discourse 
segments, Walker and Whittaker (1990) showed that shifts of attentional state (Grosz 
and Sidner 1986) occurred when shifts in control were accepted by all dialogue par- 
ticipants. 

In sum, relatively few studies correlate linguistic devices with empirically justified 
discourse segmentations. Quantitative evaluations of the correlations include the use 
of statistical measures and information retrieval metrics. As discussed in Section 4, we 
derive discourse segmentations based on the statistical significance of the agreement 
among our subjects. In contrast to studies investigating a single feature, we investigate 
three types of linguistic devices--referential noun phrases, prosody, and cue phrases. 
In addition, we are concerned with the extra step of developing segmentation algo- 
rithms rather than with the demonstration of statistical correlations. We first develop 
algorithms using each type of linguistic device in isolation, motivated by existing hy- 
potheses in the literature. Then we propose and evaluate methods for combining them. 
We use measures from information retrieval to quantify and evaluate our results. 

3. Intention-Based Segmentation 

Here we present the results of a study investigating the ability of naive subjects to 
identify the same segments in a corpus of spoken narrative discourse. Our first goal is 
purely exploratory. Despite the wide agreement that discourse structure and linguis- 
tic form are mutually constraining, there is little agreement on how to determine the 
structure of any particular discourse. Thus we do not assume that there are "correct" 
segmentations against which to judge subjects' responses. Also, as discussed in our 
previous work (Passonneau and Litman 1996), the subjects' performance suggests that 
segmentation is a fuzzy phenomenon. Because our study is exploratory, we took the 
conservative approach of defining a very open-ended segmentation task that allowed 
subjects great freedom in the number and size of the segments to identify. Our statisti- 
cal results indicate that, despite the freedom of the task, naive subjects independently 
perform surprisingly similar segmentations of the same discourse. We also show by 
example that subjects' segmentations reflect the presumed episode structure of the 
narrative. 

We ask subjects to segment discourse using a nonlinguistic criterion in order to 
avoid circularity when we later investigate the correlation of linguistic devices with 
segments derived from the segmentation task results. Abstracting statistically signif- 
icant results from the subjects' responses is thus the second goal of our study of the 
segmentation task. Here we briefly review our statistical results and summarize the 
motivation for our method of abstracting a single segmentation for a given narrative 
from a set of subjects' responses. As noted below, more detailed discussion of the 
statistic we use is presented elsewhere. What we also discuss here, which has not 
been presented in previous work, is a preliminary evaluation of the reliability of our 
method where we give a conservative lower bound suggesting that the method is 
reliable. 
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3.1 Methodology: Empirically Derived Segmentation 
The claim has been made that different people (investigators or subjects) are likely 
to assign similar segment boundaries or segment relations to a discourse (Grosz and 
Sidner 1986; Reichman 1985; Mann and Thompson 1988), but it has also been observed 
that discourse structure can be ambiguous (Pierrehumbert and Hirschberg 1987). Stud- 
ies asking subjects to assign topical units to sample discourses have shown that the 
resulting segments vary widely in both size and location (Rotondo 1984). Yet until 
recently, there has been little attempt to quantify the degree of variability among sub- 
jects in performing such a task. Here we present the results of our study of naive 
subjects performing a relatively unstructured segmentation task on a corpus of similar 
discourses. Full details are presented in Passonneau and Litman (1996). 

The corpus consists of 20 spoken narrative monologues known as the Pear stories, 
originally collected by Chafe (1980). Chafe recorded and transcribed subjects who had 
been asked to view the same movie and describe it to a second person. The movie 
contained 7 sequential episodes about a man picking pears. Chafe identified three 
types of prosodic phrases from graphic displays of intonation contours, as described 
in Section 4.1. The corpus contains just over 2,000 prosodic phrases with roughly 13,500 
words. 

For our study, each narrative was segmented by seven naive subjects (as opposed 
to trained researchers or trained coders), using an informal notion of communicative 
intention as the segmentation criterion. Except in rare cases, no subject segmented more 
than I narrative. As discussed above, a variety of criteria for identifying discourse units 
have been proposed. Our decision to use a commonsense notion of intention as the 
criterion is aimed at giving the subjects the freedom to choose their own segmentation 
criteria, and to modify the criteria to fit the evolving discourse. 

Two structural constraints were also imposed on the content units that subjects 
were asked to identify. First, subjects were asked to perform a linear rather than a 
hierarchical segmentation, where a linear segmentation simply consists of dividing a 
narrative into sequential units. Second, subjects were restricted to placing boundaries 
between the prosodic phrases identified by Chafe (1980). Subjects were presented with 
transcripts of the narratives formatted so that each non-indented new line was the 
beginning of a new prosodic phrase. The pause locations and durations transcribed 
by Chafe (see Section 4.1.2) were omitted, but otherwise all lexical and nonlexical 
articulations were retained. The instructions given to the subjects were designed to 
have as little bias as possible regarding segment size, and total number of segments. 3 
As we discuss further below, both the rate at which subjects assigned boundaries and 
the size of segments varied widely. 

Figure 2 shows the subjects' responses for the excerpt corresponding to Figure 1. 
The potential boundary sites are between the text lines corresponding to prosodic 
phrases. The left column shows the prosodic phrase numbers, which are explained 
later. There are 19 phrases, hence 18 boundary sites. The seven subjects are differ- 
entiated by distinct letters of the alphabet. Note that a majority of subjects agreed 
on only 3 of the 18 possible boundary sites, corresponding to the segmentation illus- 
trated in Figure 1. In general, subjects assigned boundaries at quite distinct rates, thus 
agreement among subjects is necessarily imperfect. All subjects assigned boundaries 
relatively infrequently. On average, subjects assigned boundaries at only 16.1% of the 
potential boundary sites (min = 5.5%; max = 41.3%) in any one narrative. Boundary 

3 These instructions will be made available at the web site for the Discourse Resource Initiative (DRI), 
currently at http://www.georgetown.edu/luperfoy/Discourse-Treebank/dri-home.html. 
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ii.'2 okay. 
'16 SUBJECTS (a, b, c, e, f, g) l 
i J 

22.1 Meanwhile, 
22.2 there are three little boys, 
22.3 up on the road a little bit, 
22.4 and they see this little accident. 
23.1 And u-h they come over, 
23.2 and they help him, 
23.3 and you know, 

[ 1 SUBJECT (c) ] 
23.4 help him pick up the pears and everything. 

[ 5 SUBJECTS (a, d, e, f, g) l 
24.1 A-nd the one thing that struck me about the- three little boys that were there, 

[1 SUBJECT (b)] 
24.2 is that one had ay uh I don't  know what you call them, 
24.3 but it's a paddle, 
24.4 and a ball-, 
24,5 is attached to the paddle, 
24.6 and you know you bounce it? 

[ 2 SUBJECTS (a, d)]  
25.1 And that sound was really prominent. 

14 SUBJECTS (d, e, f, g)] 
26.1 Well anyway, 

[2 SUBJECTS (b, c) l 
26.2 so- u-m tsk all the pears are picked up, 
26.3 and he's on his way again, 

Figure 2 
Sample of subjects' responses. 

locations were relatively independent of one another, as shown by the the fact that 
segments varied in size from 1 to 49 phrases in length (Avg. = 5.9). The assumption 
of independence is important for motivating statistical analyses of how probable the 
observed distributions are. 

Figure 3 shows two bar charts. The one on the left gives the results for the full 
narrative excerpted in Figure 1. The x-axis is the number of subjects, from 0 to 7. 
The y-axis, from top to bottom, corresponds to the potential boundary locations, with 
prosodic phrase locations numbered as in Figure 2. Each horizontal bar thus represents 
the number of subjects assigning a boundary at a particular interphrase location. Inter- 
estingly, there were 6 segment boundaries identified by at least five subjects, yielding 
7 segments that correspond closely to the 7 sequential episodes that Chafe (1980) used 
to describe the movie. The first 5 segments correspond to the first 5 episodes. The 6th 
segment corresponds to the 6th episode plus the beginning of the 7th, while the 7th 
segment corresponds to the end of the 7th episode. 

The large proportion of white space to black space in the left bar chart of Fig- 
ure 3 illustrates graphically that subjects assign boundaries relatively infrequently. The 
large regions of white space separated by very wide bars shows a striking consensus 
on certain segments (white space) and segment boundaries (wide black bars). To il- 
lustrate graphically the improbability of the occurrence of wide bars (high-consensus 
boundaries), we also show a typical random distribution for a parallel data set in the 
right-hand bar chart of Figure 3. To create this data, we repeatedly performed the 
following experiment, and randomly selected one result. First we created seven hypo- 
thetical subjects, each of whom assigns the same number of boundaries as one of the 
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Figure 3 
Bar chart of subjects' responses on one narrative (showing narrative episodes), compared to 
random distribution. 
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Figure 4 
Frequency that N subjects identify any boundary slot as a boundary. 

real subjects from the same number  of potential  boundary  slots. The hypothetical  sub- 
jects assign boundar ies  randomly  (but with no repetition). In the r andom distribution, 
there are few bars of width  3, and none of any greater width. 

We show below that, given the loosely structured task, the probabil i ty of the 
observed distribution depicted in Figure 3 is extremely low, hence highly significant. 
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The statistical test we use identifies x ~ 3 as the threshold separating insignificant 
boundaries from significant ones. The large scattering of narrow bars (1 < x ~ 2) 
illustrates the inherent noisiness of the data arising from the fact that subjects assign 
boundaries at varying rates. The histogram in Figure 4 gives a different view of the 
same point, showing the relative frequency of cases where N subjects place a boundary 
at a given location, for N from 0 to 7. The y-axis is normalized to represent the average 
narrative length of 100 phrases, thus the bar at N = 0 indicates that on average, 47.8 
of the 100 phrases were not classified as boundaries. 4 The large majority of responses 
(80%) fall within the bars for N = 0 (47.8%), N = 1 (23.0%), and N = 2 (10.0%), forming 
a rapidly descending curve. For N = 3 and above, the slope of the curve suddenly 
becomes linear, and much less steep, corresponding to a much more gradual decrease 
in frequency as values of N go to 7. That there should be any cases where six or 
seven subjects identify the same boundary is highly improbable, but on average, this 
happens 4.5 times per narrative. Summing the heights of the bars for N = 3 through 
N = 7 indicates that for an average narrative whose length is 100 phrases, there will 
be about 20 boundaries identified by three or more subjects. 

3.2 Results 
3.2.1 Evaluation Metrics. Again, our first goal in evaluating the segmentation data 
from our subjects is to explore the possibility that subjects given as little guidance 
as possible might yet recognize rather similar segments in the narrative corpus. To 
make this evaluation, we first use a significance test of the null hypothesis that the 
distributions could have arisen by chance. We then analyze the distributions in more 
detail to determine what aspects of the distribution are significant, and thereby to ab- 
stract significant data for use in defining segmentations for each narrative. The results 
indicate that the observed distributions are highly significant, i.e., unlikely to have 
arisen by chance. In Section 3.2.2, we briefly review Cochran's Q (1950), the statistic 
that we use, and the test of the null hypothesis. We then partition Cochran's Q to de- 
termine the lowest value on the x-axis in Figure 3 at which agreements on boundaries 
become statistically significant. The results indicate significance arises when at least 
three subjects agree on a boundary. 

Reliability metrics (Krippendorff 1980; Carletta 1996) are designed to give a robust 
measure of how well distinct sets of data agree with, or replicate, one another. They 
are sensitive to the relative proportion of the different data types (e.g., boundaries 
versus nonboundaries), but insensitive to the statistical likelihood that agreements 
will occur. We have already discussed how variable the subjects' responses are, both 
in number and placement of segment boundaries, so we know that our subjects are 
not replicating the same behavior. However, all 20 narratives show the same pattern of 
responses as illustrated in Figure 3: certain boundaries are identified by large numbers 
of subjects. For any one narrative, we should expect a new set of seven subjects to 
yield roughly the same set of segment boundaries. In other words, our method for 
abstracting a single set of boundaries from the responses of multiple subjects should 
be reproducible. In Section 3.2.3, we evaluate our method by using Krippendorff's c~ 
to evaluate the reliability of boundaries derived from one set of subjects compared 
with those derived from another set of subjects on the same narrative. 

4 Since the narratives vary in length and in relative frequency of boundaries placed by subjects, we 
normalized the data before averaging across narratives. Where L is the length of a narrative i, the 
actual frequency of cases where N subjects agree in narrative i is multiplied by 100/L, where 100 is the 
average narrative length. 
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Table 1 
Matrix representation of boundary data. 

Subject Potential Boundary Sites 

21.2 22.1 22.2 22.3 22.4 23.1 23.2 23.3 23.4 24.1 24.2 
22.1 22.2 22.3 22.4 23.1 23.2 23.3 23.4 24.1 24.2 24.3 

a 1 1 
b 1 1 
c 1 1 
d 1 
e 1 1 
f 1 1 
g 1 1 

Total 6 0 0 0 0 0 0 1 5 1 0 

Finally, for purposes  of comparison with other studies of segmentation,  we report  
percent  agreement.  Percent agreement  is high, but  as argued in Krippendorff  (1980), 
percent  agreement  is relatively uninformative because it fails to take into account 
the response rate of individual  subjects, a factor built  into both  Cochran 's  Q and 
Krippendorff ' s  a. 

3.2.2 Significance. The segmentat ion data from the 20 narratives can be represented as 
a set of 20 i x j matrices, each of the form shown in Table 1. Each matrix has a height 
of i -- 7 subjects and width  of j = n prosodic phrases less 1. (Table 1 is a partial matrix 
of width  j = 11.) The value in a cell Ci,j is a 1 if the ith subject assigned a boundary  
at site j, and blank if they did not. We use Cochran's  Q to evaluate the significance 
of the distributions in the matrices. 5 Cochran's  test evaluates the null hypothesis  that 
the sums of ls  in the columns, representing the total number  of subjects assigning a 
boundary  at the jth site (Tj), are randomly  distributed. It does so by evaluating the 
significance of the differences in column totals (Tj) across the matrix, with each row 
total ui (or total number  of boundar ies  assigned by subject i) assumed to be fixed. 
Where the average column total is T, the statistic is given by: 

Q = 
j(j - 1) ~(Tj  - 7) 2 

j(Y] ui) - (Y] u 2) 

Our results indicate that the agreement  among subjects is extremely significant. For 
the 20 narratives, the probabilities that the observed distributions could have arisen 
by  chance range from p = .1 x 10 -6 to p = .6 x 10 -9. 

We now turn to the second question addressed in the segmentat ion study, h o w  to 
abstract a set of empirically justified boundar ies  from the data. We do this by  selecting 
the statistically significant response data. Recall the large amounts  of white space in 
Figure 3, contrasting with the few sharp peaks where  m an y  subjects identify the same 
boundary,  which suggests that the significance of Q owes most  to the cases where 
columns have many  l 's. The question is, how man y  l ' s  is significant? We address this 
question by part i t ioning Q into distinct components  for each possible value of Tj (0 to 
7), based on part i t ioning the sum of squares in the numera tor  of Q into distinct samples 

5 We thank Julia Hirschberg for suggesting this test. 

113 



Computational Linguistics Volume 23, Number 1 

(Cochran 1950). Partitioning Q by the 8 values of Tj shows that Qj is significant at the 
p = .0001 level for each distinct Tj > 4 across all narratives. Probabilities become more 
significant for higher levels of Tj, and the converse. At Tj = 3, p is significant at the 
.01 level on 19 narratives, and for the remaining narrative p = .0192. When we look 
at correlation of segment boundaries with linguistic features, we use both thresholds 
Tj >_ 4, and Tj > 3 to select a set of empirically justified boundaries. On average, this 
gives us 12 (Tj >_ 4) or 20 (Tj >_ 3) boundaries for a 100-phrase narrative. 

3.2.3 Reliability. Reliability metrics provide a measure of the reproducibility of a 
data set, for example, across conditions or across subjects. Recently, discourse studies 
have used reliability metrics designed for evaluating classification tasks to determine 
whether coders can classify various phenomena in discourse corpora, as discussed in 
Section 2.1. The segmentation task reported here is not properly a classification task, 
in that we do not presume that there is a given set of segment boundaries that subjects 
are likely to identify. Given the freedom of the task and the use of untrained subjects, a 
reliability test would be relatively uninformative: it can be expected to range from very 
low to very high. In fact, sorting the 140 subjects into comparable pairs (i.e., subjects 
assigning a similar number of boundaries), a reliability metric that ranges between 
1 for perfect reliability and -1  for perfect unreliability (Krippendorff's a, discussed 
below) gives a wide spread of reliability values (from - .3  to .9; average = .34). Our 
method aims at abstracting away from the absolute differences across multiple subjects 
per narrative (N = 7) to derive a statistically significant set of segment boundaries. 
Thus, an appropriate test of whether our method is statistically reliable would be to 
compare two repetitions of the method on the same narratives to see if the results are 
reproducible. 

Although we do not have enough subjects on any single narrative to compare 
two distinct sets of seven subjects, we do have four narratives with data from eight 
distinct subjects. For each set of eight subjects, we created two randomly selected 
partitions (A and B) with four distinct subjects in each. Then we assessed reliability 
by comparing the boundaries produced by partitions A and B on the four narratives 
(using a boundary threshold of at least three subjects). Because we only have four 
subjects within each partition, this necessarily produces fewer significant boundaries 
than our method. In other words, this test can only give us a conservative lower 
bound for reliability. (Recall that significance of a boundary increases exponentially 
with the number of subjects who agree on a boundary.) But even with this conservative 
evaluation, reliability is fairly good on two narratives, and promising on average. 

A reliability measure indicates how reproducible a data set is by quantifying sim- 
ilarity across subjects in terms of the proportion of times that each response category 
occurs. This differs from a significance test of the null hypothesis (e.g., our use of 
Cochran's Q), where observed data is compared to random distribution. We use Krip- 
pendorff's a (1980) to evaluate the reliability of the two data sets from partitions A and 
B. The general formula for a is 1 - D_o_o where Do and DE are observed disagreements 

DE ' 
and expected disagreements. Computation of a is described below. 

Krippendorff's a reports to what degree the observed number of matches could 
be expected to arise by chance. Again in contrast with Cochran's Q, it is simply a 
ratio rather than a point on a distribution curve with known probabilities. Values 
range from 1 to -1,  with 0 representing that there are no more agreements observed 
in the data than would happen by chance. A value of .5 would indicate that the 
observed number of agreements is halfway between chance and perfect agreement. 
Negative values indicate the degree to which observed disagreements differ from 
chance. In principle, a is computed from the same type of matrix shown in Table 1, 
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Table 2 
Krippendorff's a comparing boundaries derived from two 
sets of 4 subjects on 4 narratives. 

Boundary Threshhold Narrative 

2 4 7 15 Average 

Tj _> 3 .50 .60 .73 .50 .58 

and can be applied to mult ivalued variables that are quantitative or qualitative. Here 
we summarize computat ion of a simplified formula for ~ used for comparing two 
data sets with a single, dichotomous variable. To exemplify the computation, we use 
the first two rows of Table 1, giving a matrix of size i = 2 x j = 11. The value of Do 
(proportion of observed disagreements) is then simply ~ ,  where M is the total number  

of mismatches (j being the potential number  of matches). In our example, Do has a 
value of 2 (.18). Where nl is the total number  of l ' s  and no is the total number  of 

lSx4 (.31). The detailed formula blanks, DE is given by j(2j-1)'~ In our example, DE is 
for c~ then simplifies to: 

( 2 j -  1)(M) 
c~--1 

n0nl 

This gives ~ -- .42, meaning that the observed case of one agreement out of two 
potential agreements on boundaries in our example is not quite halfway between 
chance and perfect agreement. Consider a case where two subjects had 12 responses 
each (j = 12), each subject responded with 1 half the time (nl = no -- 12), and 
wherever one put  a 1, the other did not (M = 12). The data contains the maximum 
number  of disagreements, yet ~ = -0.92, or somewhat  less than -1 ,  meaning that a 
small proportion of the observed disagreement would  have arisen by chance. 

Table 2 presents the reliability results from a comparison of boundaries found by 
two distinct partitions of subjects' responses on four narratives. An ~ of .80 using two 
partitions of seven subjects would  represent very good reproducibility, with values 
above .67 being somewhat  good (Krippendorff 1980). Note that reliability on narrative 
7 (.73) is good despite the small number  of subjects. Since, as noted above, we would  
expect reliability to be much higher if there were seven subjects, we believe that values 
above .5 for N = 4 subjects indicate reproducibility. On average c~ = .58 and the spread 
is low (or = .09). 

3.2.4 Percent Agreement. Both significance and reliability can stand alone as evalua- 
tion metrics, unlike percent agreement. However, we also report percent agreement in 
order to compare results with other studies. As defined in Gale, Church, and Yarowsky 
(1992), percent agreement is the ratio of observed agreements with the majority opinion 
to possible agreements with the majority opinion. As detailed in Passonneau and Lit- 
man (1996), the average percent agreement for our subjects on all 20 narratives is 89% 
(max. = 92%; rain. = 82%). On average, percent agreement is highest on nonbound-  
aries (91%; max.  = 95%; rain.  = 84%) and lowest on boundaries (73%; max.  = 80%; 
min .  = 60%), reflecting the fact that nonboundaries greatly outnumber  boundaries. 
These figures compare with other studies (74% to 95% in Grosz and Hirschberg [1992], 
depending upon discourse feature, and greater than 80% in Hearst [1993]). 
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3.2.5 Discussion. We have shown that an atheoretical notion of speaker intention is 
understood sufficiently uniformly by naive subjects to yield highly significant agree- 
ment across subjects on segment boundaries in a corpus of spoken narratives. Prob- 
abilities of the observed distributions range from .6 x 10 -9 to .1 x 10 -6 as given by 
Cochran's Q. The result is all the more striking given that we used naive coders on a 
loosely defined task. Subjects were free to assign any number of boundaries, and to 
label their segments with anything they judged to be the narrator's communicative 
intention. Partitioning Cochran's Q shows that the proportion of boundaries identified 
by at least three subjects was significant across all 20 narratives (p < .02). Significance 
increases exponentially as the number of subjects agreeing on a boundary increases. 
A conservative means for estimating a lower bound for the reliability of our method, 
using Krippendorff's c~ as a metric, suggests that the method is reliable. The reliability 
evaluation is conservative in part because it uses fewer subjects to derive boundaries. 
Note that it is conservative also because it is based on the proportion of identical 
matches between two data sets. This type of metric ignores the inherent fuzziness of 
segment location, as discussed in Passonneau and Litman (1996). We conclude that 
boundaries identified by at least three of seven subjects most likely reflect the validity 
of the underlying notion that utterances in discourse can be grouped into more-or- 
less coherent segments. What remains is the question of whether linguistic features 
correlate at all well with these segments. 

4. Algorithmic Identification of Segment Boundaries using Linguistic Cues 

As discussed in Section 2, there has been little work on examining the use of linguistic 
cues for recognizing or generating segment boundaries, 6 much less on evaluating the 
comparative utility of different types of information. In this section we present and 
evaluate a collection of algorithms that identify discourse segment boundaries, where 
each relies on a different type of linguistic information. We first introduce our method- 
ology (Section 4.1), then evaluate three initial algorithms, each based on the use of a 
single linguistic device frequently proposed in the literature: pauses, cue words and 
referential noun phrases, respectively (Section 4.2). 7 Each algorithm was developed 
prior to any acquaintance with the narratives in our corpus. We evaluate each algo- 
rithm by examining its performance in segmenting an initial test set of 10 of our 20 
narratives. We also evaluate a simple method for combining algorithms. These initial 
evaluations allow us to quantify the performance of existing hypotheses, to compare 
the utility of three very different types of linguistic knowledge, and to begin investi- 
gating the utility of combining knowledge sources. We then present two methods for 
enhancing performance: error analysis, and machine learning (Section 4.3). 8 Here we 
use the 10 narratives previously used for testing as training data. The resulting algo- 
rithms are then tested on 5 new narratives. By using enriched linguistic information 
and by allowing more complex interactions among linguistic devices, both methods 
achieve results that approach human performance. 

4.1 Methodology 
4.1.1 Algorithm Input and Output. Each algorithm is designed to replicate the sub- 
jects' segmentation task (break up a narrative into contiguous segments, with segment 
breaks falling between prosodic phrases). The input to each algorithm is a set of po- 

6 A notable exception is the l i terature on  pauses .  
7 This section d raws  from P as sonneau  and  L i tman  (1993). 
8 This section d raws  from Li tman  and  P as sonneau  (1995a). 
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21.2 

22.1 

22.2 

22.3 

22.4 

23.1 

23.2 

23.3 

23.4 

24.1 

24.2 

24.3 

24.4 

24.5 

24.6 

25.1 

26.1 

26.2 

26.3 

okay. 
(boundary) 

[.5 [.2] Meanwhile], 
(nonboundary) 

there are three little boys, 
(nonboundary) 

[.15] up on the road a little bit, 
(nonboundary) 

and they see this little accident. 
(nonboundary) 

[1.6 [.55] And u-h] they come over, 
(nonboundary) 

and they help him, 
(nonboundary) 

[.4? and [.2]] you know, 
( nonboundary ) 

help him pick up the pears and everything. 
(boundary) 

[2.7 |1.0] A-nd [1.15]] the one thing that struck me about the- [.3] three little boys that were there, 

is that one had ay uh [.4] I don't know what you call them, 

but it's a paddle, 

and a ball-, 

[.2] is attached to the paddle, 

and you know you bounce it? 

.. And that sound was really prominent. 

[4.55 Well anyway, 

[.45] so- u-m [.11 throat clearing [.451 tsk [1.15]] all the pears are picked up, 

and.. he's on his way again, 

Figure 5 
Excerpt from narrative 9, with boundaries. 

(nonboundary) 

(nonboundary) 

(nonboundary) 

(nonboundary) 

(nonboundary) 

(nonboundary) 

(boundary) 

(nonboundary) 

(nonboundary) 

tential boundary sites, coded with respect to a wide variety of linguistic features. The 
output  is a classification of each potential boundary  site as either boundary or non- 
boundary. In the target output,  we  classify a potential boundary  site as boundary if it 
was identified as such by at least i of the seven subjects in our empirical study, where 
we  use two values of i. Otherwise it is classified as nonboundary. In our experiments, 
we investigate the correlation of linguistic cues with boundaries  identified by both 
i = 3 and i = 4 subjects. 

Figure 5 is a modified version of Figure 2, showing  the classification of the sta- 
tistically validated boundaries in the same narrative excerpt. (The bracketed numbers 
represent pauses, as explained below.) The boxes in the figure show the subjects' re- 
sponses at each potential boundary site; if no box is shown,  none  of the seven subjects 
place a boundary at the site. The italicized parentheticals at each potential boundary  
site s how the resulting boundary  classification. Only 3 of the 18 possible boundary  
sites are classified as boundary, for both i = 3 and i = 4. 

4.1.2 Coding  of Linguistic Features. Given a narrative of n prosodic phrases, there 
are n - 1 potential boundary  sites between each pair of prosodic phrases Pi and Pi+l, 
i from 1 to n - 1. Each potential boundary  site in our corpus is coded for features 
representing the three different sources of linguistic information of interest: prosody, 
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Prosodic Features 

• be fore:+sentence . f ina l .contour , - sen tence . f ina l .contour .  
• after: +sentence.final.contour,-sentence.final.contour. 
o pause: true, false. 
• duration: continuous. 

Cue Phrase Features 

o cue1: t r u e ,  fa l se .  
• word1: also, and, anyway, basically, because, but, finally, first, like, meanwhile, no, now, oh, okay, only, 

or, see, so, then, well, where, NA. 
• cue2: t r u e ,  f a l se .  
• word2: and, anyway, because, boy, but, now, okay, or, right, so, still, then, NA. 

Noun Phrase Features 

o coref: +coref, -coref, NA. 
o infer: +infer, -infer, NA. 
o global.pro: +global.pro, -global.pro, NA. 

Combined Feature 

• cue-prosody: complex, true, false. 

Figure 6 
Features and their range of values. 

cue phrases, and referential noun phrases. The linguistic features used in our two 
sets of experiments are shown in Figure 6. Our initial experiments use only the fea- 
tures marked as "o," while our later experiments use the full feature set, along with 
modifications to the noun phrase features. 

Values for the prosodic features are obtained by automatic analysis of the tran- 
scripts, whose conventions are defined in Chafe (1980) and illustrated in Figure 5: 

. 

, 

3. 

. 

. 

"." and "?" indicate falling versus rising sentence-final intonational 
contours 

"," indicates phrase-final but not sentence-final intonation 

"[X]" indicates a pause lasting X seconds (measured to an accuracy of 
about .05 seconds) 

"[W [Y] lexical material [Z]]" indicates a sequence lasting W seconds 
where a Y second pause is followed by lexical material then a pause of Z 
seconds 

".." indicates a break in timing too short to be measured as a pause 

(The values in the transcripts are based in part on an analysis of displays of fundamen- 
tal frequency contours.) The features before and after depend on the final punctuation 
of the phrases Pi and Pi+l, respectively. The value is +sentence.final.contour if "." or 
"?", -sentence.final.contour if ",". Pause is assigned true if Pi+l begins with [X] (con- 
vention 3) (or with [W [Y] for convention 4), false otherwise. Duration is assigned 
X (convention 3) (or Y for convention 4) if pause is true, 0 otherwise. The prosodic 
features were motivated by previous results in the literature. For example, phrases be- 
ginning discourse segments were correlated with preceding pause duration in Grosz 
and Hirschberg (1992). These and other studies (e.g., Hirschberg and Litman [1993]) 
also found it useful to distinguish between sentence-final and non-sentence-final into- 
national contours. 
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The cue phrase features are also obtained by  automatic analysis of the transcripts. 
Cue1 is assigned true if the first lexical i tem in Pi+l is a member  of the set of cue 
words  summar ized  in Hirschberg and Litman (1993). Word1 is assigned this lexical 
i tem if cue1 is true, NA (not applicable) otherwise. 9 Cue2 is assigned true if cue1 is 
true and the second lexical i tem is also a cue word.  Word2 is assigned the second 
lexical i tem if cue2 is true, NA otherwise. As with the pause features, the cue phrase 
features were motivated by previous results in the literature. Initial phrase position 
(cue1) was correlated with discourse signaling uses of cue words  in Hirschberg and 
Litman (1993). A potential correlation between discourse signaling uses of cue words  
and adjacency patterns be tween cue words  (cue2) was also suggested. Finally, Litman 
(1996) found that treating cue phrases individually rather than as a class (word1, word2) 
enhanced the results of Hirschberg and Litman (1993). 

Two of the noun  phrase (NP) features are hand coded, along with Functionally 
Independent  Clause Units (FICUs; see below), following Passonneau (1994). The two 
authors coded independent ly  and merged their results. Coding was per formed on 
automatically created coding sheets for each narrative, consulting transcripts that were 
specially formatted to show prosodic phrase boundaries  and numbers,  but  which were 
otherwise identical to Chafe's (1980) original transcriptions. Boundary  data, which 
had been collected but  not  analyzed, was not  available. Comprehensive  operational 
definitions for recognition of reference features (coref and infer) are documented  in 
Passonneau (1994). The last NP feature, global.pro, is computed  from the coding of 
other features and of previously occurring boundaries.  

All three NP features are applied in the context of FICUs (Passonneau 1994). An 
FICU contains a single tensed clause that is neither a verb argument  nor  a restrictive 
relative clause, potentially with sentence fragments or repairs. If a new FICU (Cj) 
begins in prosodic phrase Pi+I, then NPs in Cj are compared  with NPs in previous 
FICUs and the feature values assigned as follows: m 

1. corer = +coref if any NPs in Cj and Cj-1 corefer; else corer = -coref 

2. infer = +infer if the referent of an NP in Cj can be inferred from Cj-1 on 
the basis of a pre-defined set of inference relations; else infer = -infer 

3. global.pro = +globaLpro if the referent of a definite p ronoun  in Cj is 
ment ioned in a previous utterance, but  not  prior to the last time a 
boundary  was assigned; else global.pro = -global.pro 

Note that the global.pro feature is defined in a manner  that depends  on incremental  
assignment of boundar ies  and coding of features. To evaluate global.pro for an utterance 
Cj requires that all boundar ies  occurring prior to Cj have been assigned. If a new 
FICU is not  initiated in Pi+I, values for all three features are NA. The NP features 
reflect Passonneau's  hypotheses  that adjacent utterances are more likely to contain 
expressions that corefer, or that are inferentially linked, if they occur within the same 
segment; and that a definite p ronoun  is more likely than a full NP to refer to an 
entity that was ment ioned in the current  segment,  if not  in the previous utterance. 
These hypotheses  are inspired by centering theory (Grosz, Joshi, and Weinstein 1995), 
psycholinguistic research (Marslen-Wilson, Levy, and Tyler 1982; Levy 1984), and pilot 

9 The cue phrases that occur in the corpus are shown as potential values in Figure 6. 
10 The NP algorithm can assign multiple boundaries within one prosodic phrase if the phrase contains 

multiple clauses; these very rare cases are normalized (Passonneau and Litman 1993). A total of 5 
boundaries are eliminated in 3 of the 10 test narratives (out of 213 in all 10). 
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22.4 and they/see this little accident. 
23.1 [1.6 [.55] And u-h] they/come over, 
23.2 and they/help  himj, 
23.3 [.4? and [.2]] you know, 
23.4 (ZERO/) help himj pick up the pears and everything. 

Site before after pause duration cue1 wordl cue2 word2 corer infer globaLpro cue-prosody 

(22.4,23.1) + t 0.55 t and f 
(23.1,23.2) f 0 t and f 
(23.2,23.3) t 0 t and f 
(23.3,23.4) + f 0 f NA f 

Figure 7 
Example feature coding of potential boundary sites. 

NA + + t 
NA + + f 
NA NA NA NA t 
NA + + f 

studies on data from corpora (Passonneau 1993) or published excerpts (Grosz 1977; 
Grosz and Sidner 1986). Unlike the cue and pause features, the NP features were thus 
not directly based on simplifications of existing results. 

Cue-prosody, which encodes a combination of prosodic and cue word features, was 
motivated by an analysis of errors on our training data, as described in Section 4.3.1. 
Cue-prosody is assigned complex if: 

1. before = +sentence.final.contour 

2. pause -- true 

3. And either: 

(a) 
(b) 

cue1 = true, word1 ~ and 
cue1 -- true, word1 = and, cue2 = true, word2 ~ and 

Else, cue-prosody has the same values as pause. 
Figure 7 illustrates how four example boundary sites in Figure 5 would be coded 

using the features in Figure 6. The subscripting on noun phrases indicates coreference. 
The ability of humans to reliably code linguistic features similar to those coded 

in Figure 7 has been demonstrated in various studies. Evaluation of prosodic labeling 
using TOBI, a prosodic transcription system somewhat similar to that used in the Pear 
corpus, has been found to be quite reliable between transcribers (Pitrelli, Beckman, and 
Hirschberg 1994). The results of a study of 953 spoken cue phrases showed that two 
judges agreed on whether cue phrases illustrated a discourse signaling usage or not in 
878 (92.1%) cases (Hirschberg and Litman 1993). For these 878 cases, an algorithm that 
assigned discourse signaling usages to cues if they were the first lexical item in their 
intermediate intonational phrase performed with 75% accuracy (Litman 1994), which 
is analogous to the method used here to assign the value true to the feature cue1. When 
coding involves either relatively objective phenomena or a well-defined decision pro- 
cedure, one can expect good interrater reliability among different coders (see Duncan 
and Fiske [1977] and Mokros [1984]). The corer feature falls into this category. In ad- 
dition, preliminary data from a third coder provides good evidence that coref can be 
coded reliably. A feasibility study of the parsers CASS (Abney 1990) and FIDDITCH 
(Hindle 1983) showed that coding FICUs on this data could be automated, n Subjectiv- 
ity in coding the infer feature was eliminated by providing operational definitions of 

11 Spec i f i ca t ions  for a d a p t i n g  the  p a r s e r  a n d  i n c o r p o r a t i n g  it  in to  c o d i n g  s o f t w a r e  w e r e  f o r m u l a t e d ,  b u t  
n e v e r  i m p l e m e n t e d .  
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Subjects 

Algorithm Boundary Nonboundary 
Boundary a b Recall - ~ F a l l o u t  = ~ 0 (a~-c) (b+d) 

Nonboundary c d Precision = (a+b)a Error ---- __.._(b+C)(a+b+c+d) 

F i g u r e  8 

Information retrieval metrics. 

a small set of types of inferential links, also fully documented in Passonneau (1994), 
where infer occurs only if one or more of the bridging inferences occurs. 

4.1.3 Evaluation. The segmentation algorithms presented in Section 4.2 are evaluated 
by quantifying their performance in segmenting a test set of 10 narratives from our 
corpus. As discussed above, there is no training data for the algorithms in this section, 
which are derived from the literature. These initial results provide us with a baseline 
for quantifying improvements resulting from distinct modifications to the algorithms. 

In contrast, the algorithms presented in section 4.3 are developed using the 10 
narratives previously used for testing as a training set of narratives. The algorithms in 
this section are developed by tuning the previous algorithms (e.g., by considering both 
new and modified linguistic features) such that performance on the training set is in- 
creased. The resulting algorithms are then evaluated by examining their performance 
on a separate test set of 5 more narratives. (The remaining 5 of the 20 narratives 
in the corpus are reserved for future research.) The 10 training narratives range in 
length from 51 to 162 phrases (Avg.=101.4), or from 38 to 121 clauses (Avg.=76.8). 
The 5 test narratives range in length from 47 to 113 phrases (Avg.=87.4), or from 37 
to 101 clauses (Avg.=69.0). The ratios of test to training data measured in narratives, 
prosodic phrases, and clauses, respectively, are 50.0%, 43.1%, and 44.9%. For the ma- 
chine learning algorithm we also estimate performance using cross-validation (Weiss 
and Kulikowski 1991), as detailed in Section 4.3.2. The evaluations in this section allow 
us to compare the utility of two tuning methods: error analysis, and machine learning. 

To quantify algorithm performance, we use the information retrieval metrics shown 
in Figure 8. Recall is the ratio of correctly hypothesized boundaries to target bound- 
aries. Precision is the ratio of hypothesized boundaries that are correct to the total 
hypothesized boundaries. (See Figure 8 for fallout and error.) These metrics assume 
that ideal behavior would be to identify all and only the target boundaries: the values 
for b and c in Figure 8 would thus both equal 0, representing no errors, u The ideal 
values for recall, precision, fallout, and error are 1, 1, 0, and 0, while the worst values 
are 0, 0, 1, and 1. To get an intuitive summary of overall performance, we also sum 
the deviation of the observed value from the ideal value for each metric: (1 - recall) 
+ (1-precision) + fallout + error. The summed deviation for perfect performance is 
thus 0. 

Finally, to interpret our quantitative results, we use the performance of our human 
subjects as a target for the performance of our algorithms (Gale, Church, and Yarowsky 
1992). Table 3 shows the average human performance for both the training and test sets 
of narratives, for both boundaries identified by at least three and four subjects. Note 
that human performance is basically the same for both sets of narratives. However, two 
factors prevent this performance from being closer to ideal (e.g., recall and precision 

12 Elsewhere we have discussed problems with the use of IR metrics, given that segmentation is a fuzzy 
phenomenon. However, they provide a rough (lower bound) measure of performance. 
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Table 3 
Average human performance. 

Recall Precision Fallout Error Summed Deviation 

Boundary Threshold = 3 

Training Set .63 .72 .06 .12 .83 
Standard Deviation .17 .17 .05 .05 .31 

Test Set .64 .68 .07 .11 .86 
Standard Deviation .19 .20 .06 .06 .42 

Boundary Threshold = 4 

Training Set .74 .55 .09 .11 .91 
Standard Deviation .19 .16 .06 .05 .33 

Test Set .73 .55 .09 .10 .91 
Standard Deviation .20 .21 .06 .06 .43 

of 1). The first is the wide variation in the number of boundaries that subjects used, 
as discussed above. The second is the inherently fuzzy nature of boundary location. 
We discuss this second issue at length in Passonneau and Litman (1996). In Litman 
and Passonneau (1995b), we also present relaxed IR metrics that penalize near misses 
less heavily (cases where an algorithm does not place a boundary at a statistically 
validated boundary location, but does place one within one phrase of the validated 
boundary). 

4.2 Initial Hypotheses 
In principle, the process of determining whether the statistically validated segment 
boundaries correlate with linguistic devices requires a complex search through a large 
space of possibilities, depending on what set of linguistic devices one examines, and 
what features are used to recognize and classify them. Rather than developing a 
method to search blindly through the space of possibilities, we first provide an initial 
evaluation of three linguistic devices whose distribution or surface form has frequently 
been hypothesized to be conditioned by segmental structure: referential noun phrases, 
cue words, and pauses. We evaluate three algorithms, each of which uses features 
pertaining to only one of these linguistic devices, in order to see whether linguistic 
associations proposed in the literature can be used by natural language processing 
systems to perform segmentation, and to compare the utility of different knowledge 
sources. Unlike most previous work, which typically considers each linguistic device 
in isolation, we also evaluate a simple additive method for combining linguistic de- 
vices, in which a boundary is proposed if each separate algorithm proposes a bound- 
ary. As we will see, the performance of our algorithms improves with the amount 
of knowledge exploited. The recall of the three algorithms is comparable to human 
performance, the precision much lower, and the fallout and error of only the noun 
phrase algorithm comparable. Furthermore, the results on combining algorithms sug- 
gests that with more sophisticated methods, results approaching human performance 
can be achieved. 

4.2.1 Pauses. Several studies have demonstrated various correlations between pauses 
and discourse segment boundaries (Grosz and Hirschberg 1992; Hirschberg and 
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if pause ~ true then boundary 
else nonboundary 

Figure 9 
Pause algorithm. 

Site before after pause duration cue1 word1 cue2 word2 corer  infer global.pro cue-prosody 

(22.4,23.1) + t 0.55 t and f NA + + t 
(23.1,23.2) f 0 t and f NA + + f 
(23.2,23.3) t 0 t and f NA NA NA NA t 
(23.3,23.4) + f 0 f NA f NA + + f 
Site BOUNDARY PAUSE CUE NP EA ML 

(22.4,23.1) + + 
(23.1,23.2) + 
(23.2,23.3) + + 
(23.3,23.4) 

Figure 10 
Statistically validated versus algorithmically derived boundaries. 

Nakatani 1996; Swerts 1995). For example, segment-initial phrases have been corre- 
lated with longer preceding pause durations. As shown in Figure 9, we used a sim- 
plification of these results to develop an algorithm for identifying boundaries in our 
corpus using pauses. 13 If a pause occurs at the beginning of the prosodic phrase after 
the potential boundary  site, the potential boundary  site is classified as boundary and 
the phrase is taken to be the beginning of a new segment. 

Figure 10 shows boundaries assigned by the pause algorithm (PAUSE) for the 
boundary  slot codings from Figure 7, repeated at the top of the figure. For example, 
the pause algorithm assigns a boundary  between prosodic phrases 22.4 and 23.1, but  
not between phrases 23.1 and 23.2. 

Table 4 shows the average performance of the pause algorithm for statistically 
validated boundaries at the .0001 level (those boundaries proposed by at least four 
subjects). Recall is 92% (o = .008; max ~ 1; rain -~ .73), precision is 18% (or = .002; 
max = .25; rain = .09), fallout is 54% (or = .004; max = .65; rain = .45), and error is 
49% (o = .004 max = .61; min = .41). Our algorithm thus performs with recall higher 
than human  performance. 14 However, precision is low, and both fallout and error are 
quite high. The summed deviatio n metric, which takes all the metrics into account, 
shows that on the whole performance is considerably worse than humans.  

4.2.2 Cue Words. Cue words (e.g., now) are words that are sometimes used to explicitly 
signal the structure of a discourse. Hirschberg and Litman (1993) examined a large set 
of cue words proposed in the literature and showed that certain prosodic and structural 
features, including a position of first in prosodic phrase, are highly correlated with 
the discourse uses of these words. As shown in Figure 11, we developed a baseline 
segmentation algorithm based on a simplification of these results, using the value of 
the single cue phrase feature cue1. That is, if a cue word occurs at the beginning of the 
prosodic phrase after the potential boundary  site, the usage is assumed to be discourse. 

13 O u r  in i t i a l  a l g o r i t h m  d o e s  n o t  t ake  the  d u r a t i o n  of  the  p a u s e  in to  account ;  p a u s e  d u r a t i o n  is 
c o n s i d e r e d  in  the  a l g o r i t h m s  p r e s e n t e d  in  Sec t ion  4.3.2, h o w e v e r .  In  a d d i t i o n ,  s ince  ou r  s e g m e n t a t i o n  
t a sk  is n o t  h ie ra rch ica l ,  w e  d o  n o t  n o t e  w h e t h e r  p h r a s e s  beg in ,  end ,  s u s p e n d ,  or  r e s u m e  s e g m e n t s .  

14 N o t e  tha t  the  h u m a n s  d i d  n o t  h a v e  access  to p a u s e  i n fo rma t ion .  O t h e r  s t u d i e s  h a v e  s h o w n  tha t  w h e n  
b o t h  s p e e c h  a n d  text  a re  a v a i l a b l e  to labe lers ,  s e g m e n t a t i o n  is c lea re r  (Swer t s  1995) a n d  r e l i ab i l i t y  
i m p r o v e s  ( H i r s c h b e r g  a n d  N a k a t a n i  1996). 
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Table 4 
Evaluation for Tj >_ 4. 

Recall Precision Fallout Error Summed Deviation 

PAUSE .92 .18 .54 .49 1.93 
CUE .72 .15 .53 .50 2.16 
NP .50 .31 .15 .19 1.53 
Humans .74 .55 .09 .11 .91 

if  cue1 = true then  boundary 
else nonboundary 

Figure 11 
Cue word algorithm. 

For (FICUi_I ,  FICUi): 
i f  (corer = -coref and infer = -infer and  global.pro = -global.pro) then  boundary 
else nonboundary 

Figure 12 
Referential NP algorithm. 

Thus the potential  boundary  site is classified as boundary and the phrase is taken to 
be the beginning of a new segment.  Figure 10 shows boundar ies  (CUE) assigned by  
the algorithm. 

Table 4 shows the average performance of the cue word  algorithm. Recall is 72% 
(or = .027; max = .88; min  = .40), precision is 15% (or = .003; max = .23; min = .04), 
fallout is 53% (or = .006 max = .60; rain = .42) and error is 50% (o = .005 max = .60; 
min = .40). While recall is quite comparable  to h u m a n  performance (row 4), the 
precision is low while fallout and error are quite high. 

4.2.3 Referential N o u n  Phrases. The last segmentat ion algori thm we describe takes 
as input  information about  referential NPs. We refer to this algori thm as NP. Unlike 
the previous algorithms, in NP the potential  boundar ies  are first computed  as ordered  
pairs of adjacent functionally independent  clauses (FICUi,FICUi+I; see section 4.1.2) 
then normal ized to ordered pairs of prosodic phrases (see note  10). NP operates on 
the principle that if an NP in the current  FICU provides  a referential link to the 
current  segment,  the current  segment  continues. However ,  NPs and pronouns  are 
treated differently based on the assumption that the referent of a third person definite 
p ronoun  is more prominent ly  in focus (cf. Passouneau [1994]). A third person definite 
p ronoun  provides  a referential link if its index occurs anywhere  in the current segment. 
Any other NP type provides  a referential link if its index occurs in the immediately 
preceding FICU. Figure 12 illustrates the two decisions made  by  NP for each pair of 
adjacent FICUs. As described in Section 4.1.2, the corer feature is -coref if no NP in 
FICUi corefers with an NP in the FICUi_I; the infer feature is -infer if no NP in FICUi 
is inferentially linked to an NP in FICUi_I; the global.pro feature is -global.pro if FICUi 
contains no third person definite p ronoun  coreferring with an NP in any prior  FICU 
up to the last bounda ry  assigned by  the algorithm. If any feature has a positive value, 
no bounda ry  is assigned; if all have negative values, (FICUi_I,FICUi) is classified as a 
boundary.  
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Table 5 
Additive algorithms. 

Recall Precision Fallout Error Summed Deviation 

PAUSE/CUE .69 .29 .29 .29 1.66 
PAUSE/NP .47 .42 .08 .13 1.42 
CUE/NP .36 .34 .09 .15 1.59 
PAUSE/CUE/NP .34 .47 .05 .12 1.43 

The column headed  NP in Figure 10 indicates boundaries  assigned by the NP 
algorithm. No boundar ies  are assigned by NP. The first three phrases in Figure 7 
correspond directly to three consecutive FICUs, and each FICU has an NP coreferring 
with an NP in the next; likewise the global.pro feature is present. However ,  phrase 
23.3 is the onset of an FICU that continues through 23.4, so phrase 23.3 is not  coded 
for NP features. The coref and global.pro features are present  in the FICU that ends in 
23.4, due  to coreference of a pronominal  NP with an NP in the preceding FICU (from 
phrase 23.2). 

Table 4 shows the average performance of the referring expression algori thm (row 
labeled NP) on the four measures we use here. Recall is .50 (¢ = .17; max = .71; 
min = .18), precision is .31 (¢ = .097; max = .50; min = .20), fallout is .15 (¢ = .06; 
max = .27; min -- .07) and error rate is 0.19 (~r = .06; max = .31; min = .12). Recall is 
worse than PAUSE, CUE and human  performance,  and precision is better than PAUSE 
and CUE but  worse than human  performance.  Note that the error rate and fallout, 
which in a sense are more  robust  measures of inaccuracy than precision, are both much  
better than CUE and PAUSE. 

4.2.4 Addi t ive  Algori thms.  We report  here evaluation of a simple addit ive me thod  
for combining the three algorithms described above. That is, a boundary  is proposed  
if some combination of the algorithms proposed  a boundary.  We tested all pairwise 
combinations, and the combination of all three algorithms, as shown in Table 5. Preci- 
sion is the most  likely metric to be improved.  For a composite algorithm, recall cannot 
be increased: if neither NP, PAUSE, nor  CUE found a boundary,  then no combination 
of them can. However ,  the composite algorithms use narrower  criteria for boundaries,  
which should reduce the number  of false positives. The precision of the addit ive al- 
gorithms is indeed higher  than any of the algorithms alone. PAUSE/NP has the best 
addit ive algori thm performance as measured  by  the su m m ed  deviation. 

4.2.5 Discussion.  By using average human  performance as a baseline against which 
to evaluate algorithms, we are asking whether  algorithms perform in a manner  that 
reflects an abstraction over a popula t ion of humans,  rather than whether  they per form 
like a typical human.  No algori thm or combination of algorithms performs as well as 
this baseline. The referring expression algori thm (NP) performs better than the other 
unimodal  algorithms (PAUSE and CUE), and a combination of PAUSE and NP per- 
forms best. Our  results thus suggest that accurately predicting discourse segmentat ion 
involves far more  than directly using known linguistic differences between discourse 
boundaries  and nonboundaries ,  is Here we analyze some of the likely reasons for our  

15 Whittaker and Stenton (1988) also show that cue phrases are not reliable for predicting segment 
boundaries, and similarly argue for the use of multiple linguistic devices. In addition, our training data 
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results, to motivate the methodologies for algorithm improvement presented in the 
next section. 

First, we must take into account the dimensions along which the three algorithms 
differ, apart from the different types of linguistic information used. As shown in Fig- 
ures 9, 11, and 12, NP uses more knowledge than PAUSE and CUE. PAUSE and CUE 
each depend on only a single feature, while NP relies on three features. Unsurpris- 
ingly, NP performs most like humans. For both PAUSE and CUE, the recall is relatively 
high, but the precision is very low, and the fallout and error rate are both poor. For NP, 
recall and precision are not as different, precision is higher than PAUSE and CUE, and 
fallout and error rate are both relatively low. These results, as well as the improved 
performance of the additive algorithms, suggest that performance can be improved by 
considering more features. The algorithms presented in Section 4.3 indeed use more 
features, as shown in Figure 6. 

A second dimension to consider in comparing performance is that humans and 
NP assign boundaries based on a global criterion, in contrast to PAUSE and CUE. 
Our subjects typically use a relatively gross level of speaker intention. By default, NP 
assumes that the current segment continues, and assigns a boundary under relatively 
narrow criteria. However, PAUSE and CUE rely on cues that are relevant at the local 
as well as the global level, and consequently assign boundaries more often. This leads 
to a preponderance of cases where PAUSE and CUE propose a boundary but where a 
majority of humans did not. However, when either PAUSE or CUE is combined with 
the more global NP, as in PAUSE/NP and CUE/NP, we see that performance im- 
proves. These results suggest that another way to improve performance is to consider 
more sophisticated methods for combining features across the three types of linguistic 
devices. 

4.3 Developing New Hypotheses by Combining Multiple Knowledge Sources 
In this section we present two methods for developing segmentation algorithms that 
combine the features of multiple linguistic devices in more complex ways than sim- 
ply combining the outputs of independent algorithms. Our first method relies on an 
analysis of the errors made by the best-performing algorithm. Our second method 
uses machine learning tools to automatically construct segmentation algorithms from 
a large set of input features: features used in our previous experiments, enhancements 
to hand-coded features, and new features obtainable automatically from our tran- 
scripts. Both methods consider much more knowledge than previously considered by 
ourselves or others, and result in algorithms that exhibit marked improvements in per- 
formance. We present our results using two sets of statistically validated boundaries: 
those derived using a significance level of .0001 (corresponding to Tj ~ 4 subjects, 
as in the previous section), and those derived using a less conservative level of .02 
(corresponding to Tj ~ 3 subjects). 

4.3.1 Error Analysis. To improve performance, we analyzed the two types of IR errors, 
defined in Figure 8 above, made by the original NP algorithm on the training data (Pas- 
sonneau and Litman 1993). Type "b" errors, misclassification of nonboundaries, were 
reduced by redefining the coding features pertaining to clauses and NPs. Most "b" 

(like previous research) shows that pauses preceding boundaries have average longer durations. For 
Tj ~ 3, the average pause duration is .64 (¢ = .65) before boundaries, and .39 (rr = 1.70) before 
nonboundaries; for Tj ~ 4, the average durations are .72 (¢ = .67) and .39 (¢ = 1.64), respectively. As 
will be seen in Section 4.3.2, this correlation does not translate into any high-performing algorithm 
based primarily on pause duration. 

126 



Passonneau and Litman Discourse Segmentation 

CI. Phr. 
6 3.01 [1.1 [.7] A-nd] he's not really., doesn't  seem to be paying all that much attention 
7 [.55? because [.45]] you know the pearsfalli, 
8 3.02 and.. he doesn't  really notice (f~i), 

Figure 13 
Inferential link due to implicit argument. 

errors correlated with one of two kinds of the information used in the NP algorithm: 
identification of clauses (FICUs) and of inferential links. The redefinition of FICU mo- 
tivated by error analysis led to fewer clauses. For example, FICU assignment depends 
in part on filtering out clausal interjections, utterances that have the syntactic form of 
clauses but that function as interjections. These include phrases like let's see, let me see, 
I don't know when they occur with no overt or implied verb phrase argument. The ex- 
tensional definition of clausal interjections was expanded, thus certain utterances were 
no longer classed as FICUs under the revised coding. Other changes to the definition 
of FICUs pertained to sentence fragments, unexpected clausal arguments, and embed- 
ded speech. Because the algorithm assigns boundaries between FICUs, reducing the 
number of FICUs in a narrative can reduce the number of proposed boundaries. 

Error analysis also led to a redefinition of infer, and to the inclusion of new types 
of inferential relations that an NP referent might have to prior discourse. Previously, 
infer was a relation between the referent of an NP in one utterance, and the referent of 
an NP in a previous utterance. This was loosened to include referential links between 
an NP referent and referents mentioned in, or inferable from, any part of the previous 
utterance. For example, discourse deixis (demonstrative reference to a referent deriv- 
able from prior discourse [Passonneau 1993; Webber 1991]) was added to the types 
of inferential links to code for. In the second utterance of The storm is still raging, and 
that's why the plane is grounded, the demonstrative pronoun that illustrates an example 
of discourse deixis. Expanding the definition of infer also reduces the number of pro- 
posed boundaries: recall that the algorithm does not assign a boundary if there is an 
inferential link between an NP in the current utterance unit and the prior utterance 
unit. 

Three types of inference relations linking successive clauses (Ci-1, Ci) were added 
(originally there were five types [Passonneau 1994]). Now, a pronoun (e.g., it, that, this) 
in Ci referring to an action, event, or fact inferable from Ci-1 provides an inferential 
link. So does an implicit argument, as in Figure 13, where the missing argument of 
notice is inferred to be the event of the pears falling. The third case is where an NP 
in Ci is described as part of an event that results directly from an event mentioned 
in Ci-1. 

Misclassification of boundaries ("c" type errors; see Figure 8) often occurred where 
prosodic and cue features conflicted with NP features. The original NP algorithm 
assigned boundaries wherever the three values -coref, -infer, -global.pro co-occurred. 
Experiments led to the hypothesis that the most improvement came by assigning a 
boundary if the cue-prosody feature had the value complex, even if the algorithm would 
not otherwise assign a boundary, as shown in Figure 14. See Figure 10 for boundaries 
assigned by the resulting algorithm (EA, for error analysis). 

Table 6 presents the average IR scores across the narratives in the training set for 
the NP and EA algorithms. The top half of the table reports results for boundaries that 
at least three subjects agreed upon (T = 3), and the lower half for boundaries using a 
threshold value of 4 (T = 4), where NP duplicates the figures from Table 4. Going by 
the summed deviations, the overall performance is about the same, although variation 
around the mean is lower for T = 4. The figures illustrate a typical tradeoff between 
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if (corer = -coref and infer ~- -infer and global.pro = -global.pro) then boundary 
elseif cue-prosody ~ complex then boundary 

else nonboundary 

Figure 14 
EA algorithm. 

Table 6 
Performance on training set. 

Average Recall Precision Fallout Error Summed Deviation 

Boundary Threshold = 3 

NP .42 .40 .14 .22 1.54 
Standard Deviation .18 .12 .06 .07 .34 

EA .58 .62 .08 .14 1.02 
Standard Deviation .14 .10 .04 .05 .18 

Boundary Threshold = 4 

NP .50 .31 .15 .19 1.53 
Standard Deviation .17 .10 .06 .06 .23 

EA .70 .47 .10 .12 1.05 
Standard Deviation .16 .06 .04 .03 .15 

Table 7 
Performance on test set. 

Average Recall Precision Fallout Error Summed Deviation 

Boundary Threshold = 3 

NP .44 .29 .16 .21 1.64 
Standard Deviation .18 .17 .07 .05 .32 

EA .50 .44 .11 .17 1.34 
Standard Deviation .21 .06 .03 .04 .29 

Boundary Threshold = 4 

NP .56 .25 .16 .20 1.55 
Standard Deviation .29 .15 .08 .05 .23 

EA .60 .37 .11 .15 1.30 
Standard Deviation .20 .05 .03 .02 .17 

precision and recall; where one goes up, the other goes down.  All scores are better for 
EA. 

Table 7 shows the results of the tuned algorithm on the 5 randomly  selected test 
narratives for NP and EA. Performance on the test set is slightly better overall for 
T = 4, as shown by lower summed  deviations. The NP results are very similar to the 
training set except that precision is worse. Thus, despite the high standard deviations, 
10 narratives seems to have been a sufficient sample size for evaluating the initial NP 
algorithm. EA results are better than NP in Table 7 or Table 6. This is strong evidence 
that the tuned algorithm is a better predictor of segment boundar ies  than the original 
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NP algorithm. The test results of EA are, of course, worse than the corresponding 
training results, particularly for precision (.44 versus .62). This confirms that the tuned 
algorithm is over calibrated to the training set. Using summed deviations as a sum- 
mary metric, EA's improvement is about 1/3 of the distance between NP and human 
performance. 

The standard deviations in Tables 6 and 7 are often close to 1/4 or 1/3 of the 
reported averages. This indicates a large amount of variability in the data, reflecting 
wide differences across narratives (speakers) in the training set with respect to the 
distinctions recognized by the algorithm. Although the high standard deviations show 
that the tuned algorithm is not well fitted to each narrative, it is likely that it is over 
specialized to the training sample in the sense that test narratives are likely to exhibit 
further variation. 

4.3.2 Machine Learning. While error analysis is a useful method for refining an ex- 
isting feature representation, it does not facilitate experimentation with large sets of 
multiple features simultaneously. To address this, we turned to machine learning to 
automatically develop algorithms from large numbers of both training examples and 
features. 

We use the machine learning program C4.5 (Quinlan 1993) to automatically de- 
velop segmentation algorithms from our corpus of coded narratives, where each po- 
tential boundary site has been classified and represented as a set of linguistic features. 
The first input to C4.5 specifies the names of the classes to be learned (boundary and 
nonboundary), and the names and potential values of a fixed set of coding features 
(Figure 6). The second input is the training data, i.e., a set of examples for which the 
class and feature values (as in Figure 7) are specified. Our training set of 10 narratives 
provides 1004 examples of potential boundary sites. The output of C4.5 is a classifi- 
cation algorithm expressed as a decision tree, which predicts the class of a potential 
boundary given its set of feature values. 

Because machine learning makes it convenient to induce decision trees under 
various conditions, we have performed numerous experiments varying the number of 
features used, the definitions used for classifying a potential boundary site as boundary 
or nonboundary and the options available for running the C4.5 program. Figure 15 
shows one of the highest-performing learned decision trees from our experiments. 
This decision tree was learned under the following conditions: all of the features 
shown in Figure 6 were used to code the training data, boundaries were classified 
using a threshold of three subjects, and C4.5 was run using only the default options. 16 
The decision tree predicts the class of a potential boundary site based on the features 
before, after, duration, cue1, wordt, corer, infer, and global.pro. Note that although not all 
available features are used in the tree, the included features represent three of the four 
general types of knowledge (prosody, cue phrases, and noun phrases). Each level of 
the tree specifies a test on a single feature, with a branch for every possible outcome of 

16 The manually derived segmentation algorithm evaluates boundary assignment incrementally, i.e., 
utterance-by-utterance, after computing the features for the current utterance (or FICU). This allows 
relative information about previous boundaries to be used in deriving the global.pro feature. By 
allowing machine learning to use global.pro, we are testing whether characterizing the use of referring 
expressions (certain pronouns) in terms of relative knowledge about segments (whether the current 
referent was already mentioned in the current segment) is useful for classifying the current boundary 
site. Although none of the other features are derived using classification knowledge of any other 
potential boundary sites, note that global.pro does not encode the boundary/nonboundary classification of 
the particular site in question. Furthermore, even when machine learning does not use global.pro (as 
with the "Learning 2" algorithm discussed below), performance does not suffer. 
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if  before = -sentence.final.contour then nonboundary 
elseif before = +sentence.final.contour then 

if  corer ~ N A  then nonboundary 
elseif corer = +coref then 

i f  after = +sentence.final.contour then 
i f  duration < 1.3 then nonboundary 
elseif duration > 1.3 then boundary 

elseif after = -sentence.final.contour then 
i f  word1 E {also,basically, because,finally, first,like, 

meanwhile,no,oh,okay, only, see,so,well,where,NA } 
then nonboundary 

elseif word1 C {anyway, but,now, or, then} then boundary 
elseif word 1 = and then 

i f  duration < 0.6 then nonboundary 
elseif duration > 0.6 then boundary 

elseif corer = -coref then 
i f  infer = +infer then nonboundary 
elseif infer = N A  then boundary 
elseif infer ~ -infer then 

i f  after = -sentence.final.contour then boundary 
elseif after = +sentence.final.contour then 

if  cue1 = true then 
i f  global.pro ~ N A  then boundary 
elseif global.pro = -global.pro then boundary 
elseif global.pro = +global.pro then 

if  duration < 0.65 then nonboundary 
elseif duration > 0.65 then boundary 

elseif cuel = false then 
if  duration > 0.5 then nonboundary 
elseif duration < 0.5 then 

i f  duration < O.35 then nonboundary 
elseif duration > 0.35 then boundary 

Figure 15 
Learned decision tree for segmentation. 

the test} 7 A branch can either lead to the assignment of a class, or to another test. For 
example, the tree initially branches based on the value of the feature before. If the value 
is -sentence.final.contour then the first branch is taken and the potential boundary site 
is assigned the class nonboundary. If the value of before is +sentence.final.contour then 
the second branch is taken and the feature coref is tested. Figure 10 illustrates sample 
output of this algorithm (ML). 

The performance of this learned decision tree averaged over the 10 training narra- 
tives is shown in Table 8, on the line labeled "Learning 1". The line labeled "Learning 
2" shows the results from another machine learning experiment, in which one of the 
default C4.5 options used in "Learning 1" is overridden. The default C4.5 approach cre- 
ates a separate subtree for each possible feature value; as detailed in Quinlan (1993), 
this approach might not be appropriate when there are many values for a feature, 
which is true for features such as word1 and word2. In "Learning 2" C4.5 allows feature 
values to be grouped into one branch of the decision tree. While the "Learning 2" 
tree is more complex than the tree of Figure 15, it does have slightly better perfor- 
mance. The "Learning 2" decision tree predicts the class of a potential boundary site 
based on the features before, duration, cue1, word1, word2, corer, infer, and cue-prosody. 
At T = 3, "Learning 1" performance is comparable to human performance (Table 3), 
and "Learning 2" is slightly better than humans; at T = 4, both learning conditions 
are superior to human performance. The results obtained via machine learning are 
also better than the results obtained using error analysis (EA in Table 6), primarily 

17 The  actual  tree branches  o n  e v e r y  v a l u e  of  word1;  the f igure m e r g e s  these  branches  for clarity. 
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Table 8 
Performance on training set. 

Average Recall Precision Fallout Error Summed Deviation 

Boundary Threshold = 3 

Learning 1 .54 .76 .04 .11 .85 
Standard Deviation .18 .12 .02 .04 .28 

Learning 2 .59 .78 .03 .10 .76 
Standard Deviation .22 .12 .02 .04 .29 

Boundary Threshold = 4 

Learning 1 .47 .84 .01 .07 .77 
Standard Deviation .26 .18 .02 .04 .42 

Learning 2 .53 .77 .02 .07 .79 
Standard Deviation .23 .18 .02 .03 .35 

due to better precision. In general, the machine learning results have slightly greater 
variation around the average. 

The performance of the learned decision trees averaged over the 5 test narratives is 
shown in Table 9. Comparison of Tables 8 and 9 shows that, as with the error analysis 
results (and as expected), average performance is worse when applied to the testing 
rather than the training data, particularly with respect to precision. However, the best 
machine learning performance is an improvement over our previous best results (EA 
in Table 7). For T ~ 3, "Learning 1" is comparable to EA while "Learning 2" is better. 
For T = 4, EA is better than "Learning 1", but "Learning 2" is better still. However, 
as with the training data, EA has somewhat less variation around the average. 

We also use the resampling method of cross-validation (Weiss and Kulikowski 
1991) to estimate performance, which averages results over multiple partitions of a 
sample into test versus training data. We performed 10 runs of the learning program, 
each using 9 of the 10 training narratives for that run's training set (for learning the 
tree) and the remaining narrative for testing. Note that for each iteration of the cross- 
validation, the learning process begins from scratch and thus each training and testing 
set are still disjoint. While this method does not make sense for humans, computers can 
truly ignore previous iterations. For sample sizes in the hundreds (our 10 narratives 
provide 1004 examples) 10-fold cross-validation often provides a better performance 
estimate than the hold-out method (Weiss and Kulikowski 1991). Results using cross- 
validation are shown in Table 10, and are better than the estimates obtained using the 
hold-out method (Table 9), with tlle major improvement coming from precision. 

Finally, Table 11 shows the results from a set of additional machine learning ex- 
periments, in which more conservative definitions of boundary are used. For example, 
using a threshold of seven subjects yields the set of consensus boundaries, as defined 
in Hirschberg and Nakatani (1996). Comparison with Table 9 shows that for T = 5, 
"Learning 1" rather than "Learning 2" is the better performer. However, the more 
interesting result is that for T = 6 and T = 7, the learning approach has an important 
limitation with respect to the boundary classification task. In particular, the way in 
which C4.5 minimizes error rate is not an effective strategy when the distribution of 
the classes is highly skewed. For both T = 6 and T = 7, extremely few of the 1004 
training examples are classified as boundary (40 and 19 examples, respectively). C4.5 
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Table 9 
Performance on test set. 

Average Recall Precision Fallout Error Summed Deviation 

Boundary Threshold = 3 

Learning 1 .43 .48 .08 .16 1.34 
Standard Deviation .21 .13 .03 .05 .36 

Learning 2 .47 .50 .09 .16 1.27 
Standard Deviation .18 .16 .04 .07 .42 

Boundary Threshold = 4 

Learning 1 .31 .41 .06 .13 1.47 
Standard Deviation .29 .15 .08 .05 .23 

Learning 2 .39 .52 .05 .11 1.24 
Standard Deviation .20 .05 .03 .02 .17 

Table 10 
Using 10-fold cross-validation. 

Average Recall Precision Fallout Error Summed Deviation 

Boundary Threshold = 3 

Learning 1 .43 .63 .05 .15 1.14 
Standard Deviation .19 .16 .03 .03 .24 

Learning 2 .46 .61 .07 .15 1.15 
Standard Deviation .20 .14 .04 .03 .21 

Boundary Threshold = 4 

Learning 1 .30 .71 .02 .10 1.11 
Standard Deviation .15 .19 .02 .03 .26 

Learning 2 .35 .52 .04 .11 1.28 
Standard Deviation .19 .24 .02 .04 .40 

minimizes  the error rate by  a lways  predict ing nonboundary. For example ,  for T -= 6, 
because  only 4% of the training examples  are boundar ies ,  C4.5 achieves an error rate 
of 4% by  a lways  predict ing nonboundary. However ,  this low error rate is achieved at 
the expense of the other metrics.  Using the te rminology  of Figure 8, since the algo- 
r i thm never  predicts  the class boundary, it is necessari ly the case that  a = 0, b = 0, 
recall = 0, and  precision is undef ined  ("-" in Table 11). In addit ion,  for T = 7, 2 of the 
5 test sets h a p p e n  to contain no boundar ies ;  for these cases c = 0 and  thus the value of 
recall is also somet imes  undefined.  The p rob l em of unbalanced  data is not unique  to 
the b o u n d a r y  classification task. Current  w o r k  in machine  learning is explor ing ways  
to induce pat terns  relevant  to the minor i ty  class, for example ,  by  al lowing users to 
explicitly specify different penalt ies  for false posi t ive and  false negat ive errors (Lewis 
and Catlett  1994). (In contrast,  C4.5 assumes  that  bo th  types  of errors  are penal ized 
equally.) Other  researchers (e.g., Hirschberg  [1991]) have  p roposed  sampl ing  the ma-  
jority class examples  in a training set in order  to p roduce  a more  ba lanced training 
sample.  
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Table 11 
Performance on test set for higher boundary thresholds. 

Average Recall Precision Fallout Error Summed Deviation 

Boundary Threshold = 5 

Learning 1 .31 .46 .03 .08 1.35 
Standard Deviation .11 .30 .02 .02 .43 

Learning 2 .28 .39 .04 .08 1.46 
Standard Deviation .17 .24 .03 02 .45 

Boundary Threshold = 6 

Learning 1 0 0 .04 
Standard Deviation 0 0 .02 

Learning 2 0 0 .04 
Standard Deviation 0 0 .02 

Boundary Threshold = 7 

Learning 1 0 .02 
Standard Deviation 0 .02 

Learning 2 0 .02 
Standard Deviation 0 .02 

Table 12 
Paired comparison of EA and automated algorithm 
results, using Student's T (df=4). 

Boundary Threshold = 4 

Comparison Metric Probability 

EA with Learning 1 Recall p < .20 
EA with Learning 1 Fallout p < .10 
EA with Learning 2 Recall p < .25 
EA with Learning 2 Error p < .20 

Boundary Threshold = 3 

EA with Learning 1 Precision p < .0005 
EA with Learning 1 Error p < .10 

4.3.3 Discussion.  We have  presented  two me thods  for deve lop ing  segmenta t ion  hy- 
potheses  using mult iple  linguistic features. The first method ,  error analysis, tunes 
features and a lgor i thms based on analysis of training errors. The second method ,  ma-  
chine learning, automatically induces.decision trees f rom coded corpora.  Both me thods  
rely on an enriched set of input  features compared  to our  previous  work.  With each 
method,  we  have  achieved m arked  improvemen t s  in pe r fo rmance  compared  to our  
previous  work  and are approach ing  h u m a n  performance .  Quantitatively, the machine  
learning versus  EA methods  differ only on certain metrics,  and  bear  a somewha t  in- 
verse relation to one another  for boundar ies  defined by  T _ 4 versus  T ~ 3. Table 12, 
which shows compar i sons  be tween  EA and the two machine  learning conditions, in- 
dicates which differences are statistically significant by  indicating the probabi l i ty  of 
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a paired comparison on each of the 5 test narratives using Student's t test. For the 
T = 4 boundaries, the superior recall of EA compared with conditions 1 and 2 of 
the automated algorithms is significant. Conversely, the superior fallout of condition 
1 and superior error rate of condition 2 are significant. For the T = 3 boundaries, 
the differences are not statistically significant for condition 2, but for condition 1, pre- 
cision and error rate are both superior, and the difference as compared with EA is 
statistically significant. The largest and the most statistically significant difference is 
the higher precision of the condition 1 automated algorithm. Qualitatively, the algo- 
rithms produced by error analysis are more intuitive and easier to understand than 
those produced by machine learning. Furthermore, note that the machine learning al- 
gorithm used the changes to the coding features that resulted from the error analysis. 
This suggests that error analysis is a useful method for understanding how to best 
code the data, while machine learning provides a cost-effective (and automatic) way 
to produce an optimally performing algorithm given a good feature representation. 

5. Conclusion and Future Directions 

Our initial hypotheses regarding discourse segmentation were that multiutterance seg- 
ment units reflect discourse coherence, and that while the semantic dimensions of this 
coherence may vary, it arises partly from consistency in the speaker's communica- 
tive goals (Grosz and Sidner 1986; Polanyi 1988). The results from the first part of 
our study (Section 3) support these hypotheses. On a relatively unconstrained linear 
segmentation task, the number of times different naive subjects identify the same seg- 
ment boundaries in a given narrative transcript is extremely significant. Across the 
20 narratives, statistical significance arises where at least three or four out of seven 
subjects agree on the same boundary location, depending on an arbitrary choice be- 
tween probabilities of .02 versus .0001 as the significance threshold. We conclude that 
the segment boundaries identified by at least three or four of our subjects provide a 
statistically validated annotation to the narrative corpus corresponding to segments 
having relatively coherent communicative goals. 

Before making concluding remarks on part two of our study, we mention a few 
questions for future work on segmentation. We believe our results confirm the utility 
of abstracting from the responses of relatively many naive subjects (our method), and 
indicate a strong potential for developing coding protocols using smaller numbers 
of trained coders (as in Nakatani, Hirschberg, and Grosz [1995], and Hirschberg and 
Nakatani [1996]). The use of an even larger number of naive subjects might yield a 
finer-grained set of segments (cf. Rotondo [1984], Swerts, [1995]). This is an important 
dimension of difference between the two sets of segments we use: segments identified 
by a minimum of four subjects are larger and fewer in number than those identified 
by a minimum of three. In addition, performance can be improved by taking into 
account that some segment boundary locations may be relatively fuzzy, as we discuss 
in Passonneau and Litman (1996). Finally, differences in segmentation may reflect 
different interpretations of the discourse, as we pointed out in Passonneau and Litman 
(1996), based on observations of our subjects' segment descriptions. 

The second part of our study (Section 4) concerned the algorithmic identification 
of segment boundaries based on various combinations of three types of linguistic in- 
put: referential noun phrases, cue phrases, and pauses. We first evaluated an initial 
set of three algorithms, each based on a single type of linguistic input, and their addi- 
tive combinations. Our results showed that the algorithms performed quite differently 
from one another on boundaries identified by at least four subjects on a test set of 
10 narratives from our corpus. In particular, the NP algorithm (which used three fea- 
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tures) outperformed both the cue phrase and pause algorithms (each of which used 
only a single feature). While none of the algorithms approached human performance, 
the fact that performance improved with the number of features coded, and by com- 
bining algorithms in a simple additive way, suggested directions for improvement. We 
applied two training methods, error analysis and machine learning, to the previous 
test set of 10 narratives. Richer linguistic input and more sophisticated methods of 
combining linguistic data led to significant improvements in performance when the 
new algorithms were evaluated on a test set of 5 new narratives. The best-performing 
algorithm resulted from the machine learning experiment in which certain default op- 
tions were overridden ("Learning 2" in Table 9). For the T = 4 boundary set, "Learning 
2" recall was 53% as good as humans, precision was 95% as good, fallout was better 
than humans, and error (11%) was almost as low as that of humans (10%). Thus the 
main need for improvement is in recall. 

A comparison of results on two sets of boundaries, those identified by at least 
three, versus those identified by at least four subjects, shows roughly comparable 
performance. The "Learning 1" algorithm performs better on the set defined by T = 3 
(Table 9); Error Analysis (Table 7) and "Learning 2" (Table 9) perform better on the 
T = 4 set. We have not yet determined what causes these differences, although in an 
early paper on our pilot study, we reported that there is a strong tendency for recall 
to increase and precision to decrease as boundary strength increases (Passonneau and 
Litman 1993). On the one hand, performance was consistently improved by enriching 
the linguistic input. On the other hand, there is wide performance variation around the 
mean. Despite this variation, as we pointed out in Litman and Passonneau (1995a), 
there are certain narratives that the NP, EA, and both machine learning algorithms 
perform similarly well, or poorly, on. These observations indicate a need for further 
research regarding the interaction among variation in speaker style, granularity of 
segmentation, and richness of the linguistic input. 

Finally, while our results are quite promising, how generally applicable are they, 
and do results such as ours have any practical import? As discussed in Section 2, the 
ability both to segment discourse and to correlate segmentation with linguistic devices 
has been demonstrated in dialogues and monologues, using both spoken and written 
corpora, across a wide variety of genres (e.g., task-oriented, advice-giving, information- 
query, expository, directions, and newspapers). Studies such as these suggest that our 
methodologies and/or  results have the potential of being applicable to more than 
spontaneous narrative monologues. 

As for the utility of our work, even though the algorithms in this paper were pro- 
duced using some features that were manually coded, once developed, they could be 
used in reverse to enhance the comprehensibility of text generation systems or the nat- 
uralness of text-to-speech systems that already attempt to convey discourse structure 
(e.g., systems such as Moore and Paris [1993], and Hirschberg [1990]). For example, 
given the algorithm shown in Figure 14, a generation system could better convey its 
discourse boundaries by constructing associated utterances where the values of corer, 
infer, and global.pro are as shown in the first line of the figure, or, for a spoken lan- 
guage system, where the value of cue-prosody is complex. In related work, we have 
tested the hypothesis that the use of a discourse focus structure based on the Pear 
segmentation data improves performance of a generation algorithm, thus providing a 
quantitative measure of the utility of the segmentation data (Passonneau 1996). There 
we present results of an evaluation of an NP generation algorithm under various con- 
ditions. The input to the algorithm consisted of semantic information about utterances 
in a Pear narrative, such as the referents mentioned in the utterance. Output was eval- 
uated against what the human narrator actually said. When the input to the algorithm 
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included a grouping of discourse referents into focus spaces derived from discourse 
segments, performance improved by 50%. 

In addition, if our results were fully automated, they could also be used to en- 
hance the ability of understanding systems to recognize discourse structure, which in 
turn improves tasks such as information retrieval (Hearst 1994) and plan recognition 
(Litman and Allen 1990). Recent results suggest that many of our manually coded 
features have the promise of being automatically coded. Given features largely out- 
put by a speech recognition system, Wightman and Ostendorf (1994) automatically 
recognize prosodic phrasing with 85-86% accuracy; this accuracy is only slightly less 
than human-human accuracy. Similarly, although our spoken corpus was manually 
transcribed, this could have been automated using speech recognition (although this 
would introduce further sources of error). In Aone and Bennett (1995), machine learn- 
ing is used to automatically derive anaphora resolution algorithms from automatically 
produced feature representations; the learned algorithms outperform a manually de- 
rived system (whose average recall and precision was 66.5% and 72.9%, respectively). 
Finally, the results of Litman (1996) show that there are many alternatives to the cue 
phrase algorithm used here, including some that use feature sets that can be fully 
coded automatically. 

Acknowledgments 
The authors wish to thank J. Catlett, 
W. Chafe, K. Church, W. Cohen, J. DuBois, 
B. Gale, V. Hatzivassiloglou, M. Hearst, 
J. Hirschberg, D. Lewis, K. McKeown, and 
E. Siegel for helpful comments, references, 
and resources. We wholeheartedly thank the 
anonymous reviewers for their very 
thorough commentary. Both authors' work 
was partially supported by DARPA and 
ONR under contract N00014-89-Jq782; 
Passonneau was also partly supported by 
NSF grants IRI-91-13064 and IRI-95-28998. 
Passonneau's work was not conducted 
under Bellcore auspices. 

References 
Abney, Steven P. 1990. Rapid incremental 

parsing with repair. In Proceedings of the 
6th New OED Conference: Electronic Text 
Research, pages 1-9. 

Anderson, Anne H., M. Bader, E. G. Bard, 
E. Boyle, G. Doherty, S. Garrod, S. Isard, 
J. Kowtko, J. McAllister, J. Miller, 
C. Sotillo, H. S. Thompson, and 
R. Weinert. 1991. The HCRC Map Task 
corpus. Language and Speech, 34:351-366. 

Aone, Chinatsu and Scott W. Bennett. 1995. 
Evaluating automated and manual 
acquisition of anaphora resolution 
strategies. In Proceedings of the 33rd Annual 
Meeting, pages 122-129. Association for 
Computational Linguistics. 

Brieman, Leo, J. Friedman, R. Olshen, and 
C. Stone. 1984. Classij~'cation and Regression 
Trees. Wadsworth and Brooks. 

Butterworth, Brian. 1980. Evidence from 

pauses in speech. In Brian Butterworth, 
editor, Language Production. Academic 
Press, London, pages 155-176. 

Carberry, Sandra. 1990. Plan Recognition in 
Natural Language Dialogue. MIT Press, 
Cambridge, MA. 

Carletta, Jean. 1996. Assessing agreement on 
classification tasks: The kappa statistic. 
Computational Linguistics, 22(2):249-254. 

Chafe, Wallace L. 1980. The Pear Stories: 
Cognitive, Cultural and Linguistic Aspects of 
Narrative Production. Ablex Publishing 
Corporation, Norwood, NJ. 

Cochran, William G. 1950. The comparison 
of percentages in matched samples. 
Biometrika, 37:256-266. 

Cohen, Robin. 1984. A computational theory 
of the function of clue words in argument 
understanding. In Proceedings of 
COLING84, pages 251-258, Stanford. 

Dale, Robert. 1992. Generating Referring 
Expressions. MIT Press, Cambridge, MA. 

Duncan, Starkey D. and Donald W. Fiske. 
1977. Face-to-face Interaction. Lawrence 
Erlbaum Associates, Hillside, NJ. 

Flammia, Giovanni and Victor Zue. 1995. 
Empirical evaluation of human 
performance and agreement in parsing 
discourse constituents in spoken 
dialogue. In Eurospeech 1995. 

Gale, William, Ken W. Church, and David 
Yarowsky. 1992. Estimating upper and 
lower bounds on the performance of 
word-sense disambiguation programs. In 
Proceedings of the 30th Annual Meeting, 
pages 249-256, Newark, DE. Association 
for Computational Linguistics. 

Grosz, Barbara J. 1977. The Representation and 

136 



Passonneau and Litman Discourse Segmentation 

Use of Focus in Dialogue Understanding. 
Ph.D. thesis, University of California, 
Berkeley. 

Grosz, Barbara and Julia Hirschberg. 1992. 
Some intonational characteristics of 
discourse structure. In Proceedings of the 
International Conference on Spoken Language 
Processing (ICSLP). 

Grosz, Barbara J., Aravind K. Joshi, and 
Scott Weinstein. 1995. Centering: A 
framework for modeling the local 
coherence of discourse. Computational 
Linguistics, 21(2):203-226. 

Grosz, Barbara J. and Candace L. Sidner. 
1986. Attention, intentions and the 
structure of discourse. Computational 
Linguistics, 12:175-204. 

Hearst, Marti A. 1993. TextTiling: A 
quantitative approach to discourse 
segmentation. Technical Report 93/24, 
Sequoia 2000 Technical Report, University 
of California, Berkeley. 

Hearst, Marti A. 1994. Multi-paragraph 
segmentation of expository text. In 
Proceedings of the 32nd Annual Meeting, 
pages 9-16. Association for 
Computational Linguistics. 

Hindle, Donald. 1983. Deterministic parsing 
of syntactic non-fluencies. In Proceedings of 
the 21st Annual Meeting, pages 123-128. 
Association for Computational 
Linguistics. 

Hirschberg, Julia. 1990. Accent and 
discourse context: Assigning pitch accent 
in synthetic speech. In Proceedings of the 
Eighth National Conference on Artificial 
Intelligence (AAAD, pages 952-957. 

Hirschberg, Julia. 1991. Using text analysis 
to predict intonational boundaries. In 
Proceedings of the Second European 
Conference on Speech Communication and 
Technology. 

Hirschberg, Julia and Diane Litman. 1993. 
Empirical studies on the disambiguation 
of cue phrases. Computational Linguistics, 
19(3):501-530. 

Hirschberg, Julia and Christine H. Nakatani. 
1996. A prosodic analysis of discourse 
segments in direction-giving monologues. 
In Proceedings of the 34th Annual Meeting, 
pages 286-293. Association for 
Computational Linguistics. 

Hirschberg, Julia and Janet Pierrehumbert. 
1986. The intonational structuring of 
discourse. In Proceedings of the 24th Annual 
Meeting, pages 136-144. Association for 
Computational Linguistics. 

Hobbs, Jerry R. 1979. Coherence and 
coreference. Cognitive Science, 3(1):67-90. 

Hwang, Chung H. and Lehnart K. Schubert. 
1992. Tense trees as the 'fine structure' of 

discourse. In Proceedings of the 30th Annual 
Meeting, pages 232-240. Association for 
Computational Linguistics. 

Isard, Amy and Jean Carletta. 1995. 
Replicability of transaction and action 
coding in the Map Task Corpus. In AAAI 
1995 Spring Symposium Series: Empirical 
Methods in Discourse Interpretation and 
Generation, pages 60-66. 

Kozima, Hideki. 1993. Text segmentation 
based on similarity between words. In 
Proceedings of the 31st Annual Meeting 
(Student Session), pages 286-288. 
Association for Computational 
Linguistics. 

Krippendorff, Klaus. 1980. Content Analysis. 
Sage Publications, Beverly Hills, CA. 

Levy, Elena. 1984. Communicating Thematic 
Structure in Narrative Discourse: The Use of 
Referring Terms and Gestures. Ph.D. thesis, 
University of Chicago. 

Lewis, David D. and Jason Catlett. 1994. 
Heterogeneous uncertainty sampling for 
supervised learning. In W. W. Cohen and 
H. Hirsh, editors, Proceedings of the 
Eleventh International Conference on Machine 
Learning (ML-94), pages 148-156. Morgan 
Kaufmann. 

Linde, Charlotte. 1979. Focus of attention 
and the choice of pronouns in discourse. 
In T. Giv6n, editor, Syntax and Semantics: 
Discourse and Syntax. Academic Press, 
New York, pages 337-354. 

Litman, Diane J. 1994. Classifying cue 
phrases in text and speech using machine 
learning. In Proceedings of the 12th National 
Conference on Artificial Intelligence (AAAI), 
pages 806-813. 

Litman, Diane J. 1996. Cue phrase 
classification using machine learning. 
Journal of Arti~'cial Intelligence Research, 
5:53-94. 

Litman, Diane J. and James Allen. 1990. 
Discourse processing and commonsense 
plans. In P. R. Cohen, J. Morgan, and 
M. E. Pollack, editors, Intentions in 
Communication. MIT Press, Cambridge, 
MA. 

Litman, Diane J. and Rebecca J. Passonneau. 
1995a. Combining multiple knowledge 
sources for discourse segmentation. In 
Proceedings of the 33rd Annual Meeting, 
pages 108-115. Association for 
Computational Linguistics. 

Litman, Diane J. and Rebecca J. Passonneau. 
1995b. Developing algorithms for 
discourse segmentation. In AAAI 1995 
Spring Symposium Series: Empirical Methods 
in Discourse Interpretation and Generation, 
pages 85-91. 

Mann, William C. and Sandra Thompson. 

137 



Computational Linguistics Volume 23, Number 1 

1988. Rhetorical structure theory: towards 
a functional theory of text organization. 
TEXT, 8:243-281. 

Marslen-Wilson, William, Elena Levy, and 
Lorraine K. Tyler. 1982. Producing 
interpretable discourse: The establishment 
and maintenance of reference. In R. J. 
Jarvella and W. Klein, editors, Speech, 
Place and Action. John Wiley and Sons 
Ltd., New York, pages 339-378. 

Mokros, Hartmut B. 1984. Patterns of 
Persistence and Change in the Sequencing of 
Nonverbal Actions. Ph.D. thesis, University 
of Chicago. 

Moore, Johanna D. and Cecile Paris. 1993. 
Planning text for advisory dialogues: 
Capturing intentional and rhetorical 
information. Computational Linguistics, 
19:652-694. 

Moore, Johanna D. and Martha E. Pollack. 
1992. A problem for RST: The need for 
multMevel discourse analysis. 
Computational Linguistics, 18(4):537-544. 

Morris, Jane and Graeme Hirst. 1991. 
Lexical cohesion computed by thesaural 
relations as an indicator of the structure 
of text. Computational Linguistics, 17:21-48. 

Moser, Megan and Johanna Moore. 1995. 
Investigating cue selection and placement 
in tutorial discourse. In Proceedings of the 
33rd Annual Meeting, pages 130-135. 
Association for Computational 
Linguistics. 

Moser, Megan, Johanna D. Moore, and Erin 
Glendening. 1995. Instructions for coding 
Sherlock explanations: Identifying 
segments, relations and minimal units. 
Technical Report 96-17, University of 
Pittsburgh, Department of Computer 
Science. 

Nakatani, Christine H., Julia Hirschberg, 
and Barbara J. Grosz. 1995. Discourse 
structure in spoken language: Studies on 
speech corpora. In AAAI 1995 Spring 
Symposium Series: Empirical Methods in 
Discourse Interpretation and Generation, 
pages 106-112. 

Passonneau, Rebecca J. 1993. Getting and 
keeping the center of attention. In 
R. Weischedel and M. Bates, editors, 
Challenges in Natural Language Processing. 
Cambridge University Press. 

Passonneau, Rebecca J. 1994. Protocol for 
coding discourse referential noun phrases 
and their antecedents. Technical report, 
Columbia University. 

Passonneau, Rebecca J. 1996. Using 
centering to relax Gricean informational 
constraints on discourse anaphoric noun 
phrases. Language and Speech, 39:229-264. 

Passonneau, Rebecca J. and Diane J. Litman. 

1993. Intention-based segmentation: 
Human reliability and correlation with 
linguistic cues. In Proceedings of the 31st 
Annual Meeting, pages 148-155. 
Association for Computational 
Linguistics. 

Passonneau, Rebecca J. and Diane J. Litman. 
1996. Empirical analysis of three 
dimensions of spoken discourse: 
Segmentation, coherence and linguistic 
devices. In E. Hovy and D. Scott, editors, 
Computational and Conversational Discourse. 
Springer Verlag, Berlin. 

Pierrehumbert, Janet and Julia Hirschberg. 
1987. The meaning of intonational 
contours in the interpretation of 
discourse. Technical Report TM 
11225-870325-07, AT&T Bell Laboratories. 

Pitrelli, J., Mary Beckman, and Julia 
Hirschberg. 1994. Evaluation of prosodic 
transcription labeling reliability in the 
ToBI framework. In Proceedings oflCSLP. 

Polanyi, Livya. 1988. A formal model of 
discourse structure. Journal of Pragmatics, 
12:601-638. 

Quinlan, John Ross. 1993. C4.5: Programs for 
Machine Learning. Morgan Kaufmann. 

Reichman, Rachel. 1985. Getting Computers to 
Talk Like You and Me. MIT Press, 
Cambridge, MA. 

Reynar, Jeffrey C. 1994. An 'automatic 
method of finding topic boundaries. In 
Proceedings of the 32nd Annual Meeting 
(Student Session), pages 331-333. 
Association for Computational 
Linguistics. 

Rotondo, John A. 1984. Clustering analysis 
of subject partitions of text. Discourse 
Processes, 7:69-88. 

Song, Fei and Robin Cohen. 1991. Tense 
interpretation in the context of narrative. 
In Proceedings of the 9th AAAI, pages 
131-136. 

Stifleman, Lisa J. 1995. A discourse analysis 
approach to structured speech. In AAAI 
1995 Spring Symposium Series: Empirical 
Methods in Discourse Interpretation and 
Generation, pages 162-167. 

Swerts, Marc. 1995. Combining statistical 
and phonetic analyses of spontaneous 
discourse segmentation. In Proceedings of 
the 12th International Congress of Phonetic 
Sciences (ICPhS 95), volume 4, pages 
208-211. 

Swerts, Marc and Mari Ostendorf. 1995. 
Discourse prosody in human-machine 
interactions. In ESCA Workshop on Spoken 
Dialogue Systems, pages 205-208. 

Walker, Marilyn A. 1995. Limited attention 
and discourse structure. Computational 
Linguistics, 22(2):255-264. 

138 



Passonneau and Litman Discourse Segmentation 

Walker, Marilyn and Steve Whittaker. 1990. 
Mixed initiative in dialogue: An 
investigation into discourse segmentation. 
In Proceedings of the 28th Annual Meeting, 
pages 70-78. Association for 
Computational Linguistics. 

Webber, Bonnie L. 1988. Tense as discourse 
anaphor. Computational Linguistics, 
14:113-122. 

Webber, Bonnie L. 1991. Structure and 
ostension in the interpretation of 
discourse deixis. Language and Cognitive 
Processes, 6.2:107-135. 

Weiss, Sholom M. and Casimir Kulikowski. 
1991. Computer Systems that Learn: 
Classification and Prediction Methods from 

Statistics, Neural Nets, Machine Learning, 
and Expert Systems. Morgan Kaufmann. 

Whittaker, Steve and Phil Stenton. 1988. 
Cues and control in expert-client 
dialogues. In Proceedings of the 26th Annu'al 
Meeting, pages 123-130. Association for 
Computational Linguistics. 

Wightman, Colin W. and Mari Ostendorf. 
1994. Automatic labeling of prosodic 
patterns. IEEE Transactions on Speech and 
Audio Processing, 2(4):469-481, October. 

Youmans, Gilbert. 1991. A new tool for 
discourse analysis: The vocabulary 
management profile. Language, 
67(4):763-790. 

139 




